Home   |   Publications   |   Code   |   Teaching   |   About me   |   Links

An introduction to knot theory
Seminar topics for the examination

Exams will be held on April 10, 2019, starting from 10, in Salle au Val. Here is the page of the course.

This is a list of possible topics, with references:

[CG] J. H. Conway and C. McA. Gordon, Knots and links in spatial graphs, doi:10.1002/jgt.3190070410.
[Cro] R. H. Crowell, Genus of alternating knot types, doi:10.2307/1970181.
[Kau] L. Kauffman, On knots, Princeton University Press.
[Lic] R. W. B. Lickorish, An introduction to knot theory, Springer.
[Mor1] H. R. Morton, The multivariable Alexander polynomial for a closed braid, doi:10.1090/conm/233/03427.
[Mor2] H. R. Morton, Threading knot diagrams, doi:10.1017/S0305004100064161.
[MM] H. R. Morton and D. M. Q. Mond, Closed curves with no quadrisecants, doi:10.1016/0040-9383(82)90007-6.
[PS] V. V. Prasolov and A. B. Sossinsky, Knot, links, braids, and 3-manifolds, American Mathematical Society.
[Prz1] J. H. Przytycki, On Murasugi's and Traczyk's criteria for periodic links, eudml.org/doc/164519.
[Prz2] J. H. Przytycki, 3-Coloring and other Invariants of Knots, in Knot theory, Banach center publications.
[Tur] P. Turner, Five lectures on Khovanov homology, doi:10.1142/S0218216517410097.

COPYRIGHT 2019 ALL RIGHTS RESERVED