A two-sample test for comparison of long memory parameters

F. Lavancier1, A. Philippe1, D. Surgailis2

1Laboratoire Jean Leray, Université de Nantes

2Institute of Mathematics and Informatics, Vilnius

10th International Vilnius Conference on Probability and Mathematical Statistics
1 Introduction
The statistical problem

- \((X_1(t))_{t \in \mathbb{Z}}\) is a stationary process with long memory parameter \(d_1 \geq 0\)
- \((X_2(t))_{t \in \mathbb{Z}}\) is a stationary process with long memory parameter \(d_2 \geq 0\)
- \(X_1\) and \(X_2\) may be dependent.

We want to test the null hypothesis

\[H_0 : d_1 = d_2 \]
2 The Testing procedure and its consistency
First idea : Testing from the estimation of (d_1, d_2)

$H_0 : d_1 = d_2$

Procedure

- Estimate d_1 and d_2 by \hat{d}_1 and \hat{d}_2
 (different estimators are available : log-periodogram, Whittle, GPH, FEXP, etc.)
- Evaluate $|\hat{d}_1 - \hat{d}_2|$ to conclude
First idea : Testing from the estimation of \((d_1, d_2)\)

\[H_0 : d_1 = d_2 \]

Procedure

- Estimate \(d_1\) and \(d_2\) by \(\hat{d}_1\) and \(\hat{d}_2\)
 (different estimators are available : log-periodogram, Whittle, GPH, FEXP, etc.)
- Evaluate \(|\hat{d}_1 - \hat{d}_2|\) to conclude

Drawback

1. The joint probability law of \(\hat{d}_1\) and \(\hat{d}_2\) in the dependent case is not known.

2. The behavior of \(|\hat{d}_1 - \hat{d}_2|\) is strongly sensitive to the short-memory part of processes \(X_1\) and \(X_2\) (e.g. the ARMA part of a FARIMA), leading to a bad size of the test.
Our testing procedure

If \(X \) exhibits long memory,

\[
S_n(\tau) = \sum_{t=1}^{[n\tau]} (X(t) - EX(t))
\]

does not have a standard asymptotic behavior.
Our testing procedure

If X exhibits long memory,

$$S_n(\tau) = \sum_{t=1}^{\lceil nt \rceil} (X(t) - EX(t))$$

does not have a standard asymptotic behavior.

Example for $F(d)$

$$\frac{1}{n^{d+1/2}} S_n(\tau) \xrightarrow{D[0,1]} W_d(\tau)$$
Our testing procedure

If X exhibits long memory,

$$S_n(\tau) = \sum_{t=1}^{[n\tau]} (X(t) - EX(t))$$

does not have a standard asymptotic behavior.

Example for $F(d)$

$$\frac{1}{n^{d+1/2}} S_n(\tau) \xrightarrow{D[0,1]} W_d(\tau)$$

In particular, typically,

$$Var(S_n(\tau)) = O(n^{2d+1} L(n)),$$

where L is a slowly varying function.

⇒ The idea is to base the test on the variations of S_n.
Univariate time series

For univariate time series, the variations of S_n are used to test:

$$H_0 : d = 0 \text{ (short memory)} \text{ vs } H_1 : d \neq 0 \text{ (long memory)}$$

The most standard statistics

- R/S (Lo, 1991) : based on the range of S_n,
- KPSS (Kwiatkowski et al., 1992) : based on $E(S_n^2)$,
- V/S (Giraitis et al., 2003) : based on $Var(S_n)$.
Univariate time series

For univariate time series, the variations of S_n are used to test:

$$H_0 : d = 0 \text{ (short memory)} \text{ vs } H_1 : d \neq 0 \text{ (long memory)}$$

The most standard statistics

- R/S (Lo, 1991): based on the range of S_n,
- KPSS (Kwiatkowski et al., 1992): based on $E(S_n^2)$,
- V/S (Giraitis et al., 2003): based on $\text{Var}(S_n)$.

In the same spirit, for testing $H_0 : d_1 = d_2$ our statistic is

$$T_{n,q} = \frac{V_1/S_{1,q}}{V_2/S_{2,q}} + \frac{V_2/S_{2,q}}{V_1/S_{1,q}},$$

where $V_1/S_{1,q}$ is the standard V/S statistic for X_1,
$V_2/S_{2,q}$ is the standard V/S statistic for X_2.
More precisely

\[T_{n,q} = \frac{V_1}{S_1,q} + \frac{V_2}{V_2/S_2,q} + \frac{V_2}{V_1/S_1,q}. \]

For i=1,2, \(\overline{X}_i \) denotes the sample mean of \(X_i \)
\(\hat{\gamma}_i(h) \) the empirical covariance function of \(X_i \).

\[V_i = n^{-2} \sum_{k=1}^{n} \left(\sum_{t=1}^{k} (X_i(t) - \overline{X}_i) \right)^2 - n^{-3} \left(\sum_{k=1}^{n} \sum_{t=1}^{k} (X_i(t) - \overline{X}_i) \right)^2 \]

\(V_i \) is the empirical variance of the partial sums of \(X_i \)

\[S_{i,q} = \sum_{h=-q}^{q} \left(1 - \frac{|h|}{q + 1} \right) \hat{\gamma}_i(h) = \frac{1}{q + 1} \sum_{h,\ell=1}^{q+1} \hat{\gamma}_i(h - \ell). \]

\(S_{i,q} \) estimates the variance of the limiting law of the partial sums
More precisely

\[T_{n,q} = \frac{V_1/S_{1,q}}{V_2/S_{2,q}} + \frac{V_2/S_{2,q}}{V_1/S_{1,q}}. \]

For \(i=1,2 \), \(\overline{X}_i \) denotes the sample mean of \(X_i \)

\[\hat{\gamma}_i(h) \] the empirical covariance function of \(X_i \).

\[V_i = n^{-2} \sum_{k=1}^{n} \left(\sum_{t=1}^{k} (X_i(t) - \overline{X}_i) \right)^2 - n^{-3} \left(\sum_{k=1}^{n} \sum_{t=1}^{k} (X_i(t) - \overline{X}_i) \right)^2 \]

(\(V_i \) is the empirical variance of the partial sums of \(X_i \))

\[S_{i,q} = \sum_{h=-q}^{q} \left(1 - \frac{|h|}{q + 1} \right) \hat{\gamma}_i(h) = \frac{1}{q + 1} \sum_{h,\ell=1}^{q+1} \hat{\gamma}_i(h - \ell). \]

(\(S_{i,q} \) estimates the variance of the limiting law of the partial sums)

Basically, when \(n, q, n/q \to \infty \),

\[\left(\frac{n}{q} \right)^{-2d_i} V_i/S_{i,q} \longrightarrow U(d_i) \]
Assumptions

Assumption A \(A(d_1, d_2) \) There exist \(d_i \in [0, 1/2), i = 1, 2 \) such that for any \(i, j = 1, 2 \) the following limits exist

\[
1) \quad c_{ij} = \lim_{n \to \infty} \frac{1}{n^{1+d_i+d_j}} \sum_{t,s=1}^{n} \gamma_{ij}(t-s).
\]

Moreover, when \(q \to \infty, n \to \infty, n/q \to \infty, \)

\[
2) \quad \frac{\sum_{k,l=1}^{q} \hat{\gamma}_{ij}(k-l)}{\sum_{k,l=1}^{q} \gamma_{ij}(k-l)} \to_p 1
\]

Remark.

This assumption claims that

1) the second moment of the partial sums of \((X_1, X_2)\) converge with the proper normalization,

2) the natural estimation of this second moment is consistent.
Assumptions (cont.)

ASSUMPTION B(d₁, d₂) The partial sums of X₁ and X₂

\[
\left(n^{-d_1-1/2} \sum_{t=1}^{[n\tau]} (X_1(t) - EX_1(t)), n^{-d_2-1/2} \sum_{t=1}^{[n\tau]} (X_2(t) - EX_2(t)) \right)
\]

converge (jointly) in finite dimensional distribution to

\[
(\sqrt{c_{11}}B_{1,d_1}(\tau), \sqrt{c_{22}}B_{2,d_2}(\tau)),
\]

where \((B_{1,d_1}(\tau), B_{2,d_2}(\tau))\) is a nonanticipative bivariate fractional Brownian motion with parameters \(d_1, d_2\) and the correlation coefficient

\[
\rho = \text{corr}(B_1(1), B_2(1)) = \frac{c_{12}}{\sqrt{c_{11}c_{22}}}
\]

Remark.

This is fulfilled for bivariate (super)linear processes under mild assumptions.
Asymptotic behavior of T_n

Proposition

Let Assumptions $A(d_1, d_2)$ and $B(d_1, d_2)$ be satisfied with some $d_1, d_2 \in [0, 1/2)$ and $\rho \in [-1, 1]$, and let $n, q, n/q \to \infty$.

(i) If $d_1 = d_2 = d$ then

$$T_n \to_{\text{law}} T = \frac{U_1}{U_2} + \frac{U_2}{U_1},$$

where

$$U_i = \int_0^1 (B^0_i(\tau))^2 d\tau - \left(\int_0^1 B^0_i(\tau) d\tau\right)^2, \quad i = 1, 2,$$

where $(B^0_i(\tau) = B_i(\tau) - \tau B_i(1), \tau \in [0, 1])$, $i = 1, 2$ are fractional Brownian bridges obtained from bivariate fBm $((B_1(\tau), B_2(\tau)), \tau \in \mathbb{R})$ with the same memory parameters $d_1 = d_2 = d$ and correlation coefficient ρ.

(ii) If $d_1 \neq d_2$ then

$$T_n \to_p \infty.$$
The dependent case

When \(X_1 \) and \(X_2 \) are dependent, we introduce

\[
\tilde{X}_1(t) = X_1(t) - \frac{S_{12,q}}{S_{2,q}} X_2(t), \quad t = 1, \ldots, n.
\]

where

\[
S_{12,q} = \frac{1}{q+1} \sum_{h,\ell=1}^{q+1} \hat{\gamma}_{12}(h-\ell)
\]

and \(\hat{\gamma}_{12}(h) = n^{-1} \sum_{t=1}^{n-h} (X_1(t) - \bar{X}_1)(X_2(t+h) - \bar{X}_2), h > 0. \)

\[\implies\] The partial sums of \(\tilde{X}_1 \) and \(X_2 \) are uncorrelated.

Then we consider

\[
\tilde{T}_n = \frac{\tilde{V}_1}{\tilde{S}_{1,q}} / \frac{V_2}{S_{2,q}} + \frac{V_2}{S_{2,q}} / \frac{\tilde{V}_1}{\tilde{S}_{1,q}},
\]

where \(\tilde{V}_1 \) and \(\tilde{S}_{1,q} \) are the same as before but with respect to \(\tilde{X}_1 \).
Proposition (Consistency of the test)

Let Assumptions $A(d_1, d_2)$ and $B(d_1, d_2)$ be satisfied with some $d_1, d_2 \in [0, 1/2)$ and $\rho \in [-1, 1]$, and let $n, q, n/q \to \infty$.

(i) If $d_1 = d_2 = d \in [0, 1/2)$, then

$$\tilde{T}_n \to_{\text{law}} T = \frac{U_1}{U_2} + \frac{U_2}{U_1},$$

where

$$U_i = \int_0^1 (B_{i,d}^0(\tau))^2 d\tau - \left(\int_0^1 B_{i,d}^0(\tau) d\tau \right)^2 \quad (i = 1, 2)$$

and where $B_{1,d}^0(\tau)$, $B_{2,d}^0(\tau)$ are mutually independent fractional bridges with the same parameter d.
Proposition (Consistency of the test)

Let Assumptions $A(d_1, d_2)$ and $B(d_1, d_2)$ be satisfied with some $d_1, d_2 \in [0, 1/2)$ and $\rho \in [-1, 1]$, and let $n, q, n/q \to \infty$.

(i) If $d_1 = d_2 = d \in [0, 1/2)$, then

$$\tilde{T}_n \to_{\text{law}} T = \frac{U_1}{U_2} + \frac{U_2}{U_1},$$

where

$$U_i = \int_0^1 (B_{i,d}^0(\tau))^2 d\tau - \left(\int_0^1 B_{i,d}^0(\tau) d\tau \right)^2 \quad (i = 1, 2)$$

and where $B_{1,d}^0(\tau), B_{2,d}^0(\tau)$ are mutually independent fractional bridges with the same parameter d.

(ii) If $d_1 > d_2$, then

$$\tilde{T}_n \to_{p} \infty.$$
Proposition (Consistency of the test)

Let Assumptions \(A(d_1, d_2) \) and \(B(d_1, d_2) \) be satisfied with some \(d_1, d_2 \in [0, 1/2) \) and \(\rho \in [-1, 1] \), and let \(n, q, n/q \to \infty \).

(i) If \(d_1 = d_2 = d \in [0, 1/2) \), then

\[
\tilde{T}_n \to_{\text{law}} T = \frac{U_1}{U_2} + \frac{U_2}{U_1},
\]

where

\[
U_i = \int_0^1 (B_{i,d}^0(\tau))^2 d\tau - \left(\int_0^1 B_{i,d}^0(\tau)d\tau \right)^2 \quad (i = 1, 2)
\]

and where \(B_{1,d}^0(\tau), B_{2,d}^0(\tau) \) are mutually independent fractional bridges with the same parameter \(d \).

(ii) If \(d_1 > d_2 \), then

\[
\tilde{T}_n \to_p \infty.
\]

Remark.

When \(d_1 < d_2 \), \(\tilde{T}_n \to_p \rho^2 + \rho^{-2} \).
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Test Statistic</th>
<th>In practice</th>
<th>Simulations</th>
</tr>
</thead>
</table>

3. Practical implementation of the test
We want to test $d_1 = d_2$ vs $d_1 > d_2$ with the test statistic

$$\tilde{T}_n = \frac{\tilde{V}_1/\tilde{S}_{1,q}}{V_2/S_{2,q}} + \frac{V_2/S_{2,q}}{\tilde{V}_1/\tilde{S}_{1,q}}.$$

Under H_0, $\tilde{T}_n \rightarrow_{law} U_d$ which depends on $d = d_1 = d_2$.
We want to test $d_1 = d_2$ vs $d_1 > d_2$ with the test statistic

$$\tilde{T}_n = \frac{\tilde{V}_1/\tilde{S}_{1,q}}{V_2/S_{2,q}} + \frac{V_2/S_{2,q}}{\tilde{V}_1/\tilde{S}_{1,q}}.$$

Under H_0, $\tilde{T}_n \rightarrow_{\text{law}} U_d$ which depends on $d = d_1 = d_2$.

For a practical implementation, given a sample and a significance level $\alpha \in (0, 1)$, we must:

- first choose the parameter q
- compute \tilde{T}_n
- estimate d by a consistent estimator $\hat{d} = (\hat{d}_1 + \hat{d}_2)/2$
- test whether $\tilde{T}_n > c_\alpha(\hat{d})$ (the critical region),

where $c_\alpha(d)$ is the upper quantile of order α of U_d.
Choice of q

The choice of q is crucial.
From the theory, we must have $q, n/q \to \infty$ when $n \to \infty$.
Choice of q

The choice of q is crucial.
From the theory, we must have $q, n/q \to \infty$ when $n \to \infty$.

But simulations show that

- n being fixed, d has a strong effect on the optimal choice of q,
- the short memory part is important (e.g. the ARMA part of a FARIMA).
Choice of q

The choice of q is crucial. From the theory, we must have $q, n/q \to \infty$ when $n \to \infty$.

But simulations show that

- n being fixed, d has a strong effect on the optimal choice of q,
- the short memory part is important (e.g. the ARMA part of a FARIMA).

We optimize q to guarantee a correct level of the test. We focus on the ratio $S_{1,q}/S_{2,q}$ that appears in \tilde{T}_n. We obtain the linear expansion of

$$E\left(\frac{S_{1,q}}{S_{2,q}} \ast \frac{c_{22}}{c_{11}} - 1 \right)^2.$$

We choose q which minimizes the first term in this expansion.
Choice of q

This scheme leads to the choice

$$
\hat{q} = 0.3 \left| \hat{I} \right|^{1/2} \begin{cases}
 n^{1/(3+4\hat{d})} & \text{if } \hat{d} \leq 1/4, \\
 n^{1/2-\hat{d}} & \text{if } \hat{d} \geq 1/4,
\end{cases}
$$

where $\hat{d} = (\hat{d}_1 + \hat{d}_2)/2$ is the adaptive FEXP estimator (see Louditsky et al, 2001) and

$$
\hat{I} = \int_{0}^{\pi} \left(\frac{\hat{g}_1(x)}{\hat{g}_1(0)} - \frac{\hat{g}_2(x)}{\hat{g}_2(0)} \right) \frac{dx}{x^{2\hat{d}} \sin^2(x/2)},
$$

where \hat{g}_i estimates the short memory part of the spectral density of X_i.

For \hat{g}_i, we choose the spectral density of the best AR process approaching this short memory part. We proceed in a two steps procedure: we first estimate d by the adaptive FEXP estimator then we fit an AR process to $(1-L)^{\hat{d}}X_i$ by BIC criterion.
Choice of \(q \)

This scheme leads to the choice

\[
\hat{q} = 0.3 \, |\hat{I}|^{1/2} \begin{cases}
\frac{n^{1/(3+4\hat{d})}}{\hat{n}^{1/2-\hat{d}}} & \text{if } \hat{d} \leq 1/4, \\
\frac{n^{1/(3+4\hat{d})}}{\hat{n}^{1/2-\hat{d}}} & \text{if } \hat{d} \geq 1/4,
\end{cases}
\]

where \(\hat{d} = (\hat{d}_1 + \hat{d}_2)/2 \) is the adaptive FEXP estimator (see Louditsky et al, 2001) and

\[
\hat{I} = \int_0^{\pi} \left(\frac{\hat{g}_1(x)}{\hat{g}_1(0)} - \frac{\hat{g}_2(x)}{\hat{g}_2(0)} \right) \frac{dx}{x^{2\hat{d}} \sin^2(x/2)},
\]

where \(\hat{g}_i \) estimates the short memory part of the spectral density of \(X_i \).

For \(\hat{g}_i \), we choose the spectral density of the best AR process approaching this short memory part. We proceed in a two steps procedure :

- we first estimate \(d \) by the adaptative FEXP estimator
- then we fit an AR process to \((1 - L)^{\hat{d}} X_i \) by BIC criterion.
Some simulations
Simulations

We compute the test with independent X_1 and X_2 where

$$X_1 \sim FAR(1, d_1, 0)$$
$$X_2 \sim FAR(1, d_2, 0)$$

i.e. $(1 - a_i L)(1 - L)^{d_i} X_i(n) = \epsilon_i(n)$, where ϵ_i is a white noise.

Several values of a_i and d_i are tested:

$$a_i \in \{-0.4, 0, 0.4\} \text{ and } d_i \in \{0, 0.1, 0.2, 0.3, 0.4\}.$$

The probability of rejection is evaluated on 1000 replications of the test where the significance level is fixed at 5%.

The sample size of X_1 and X_2 is 4096.
For fixed a_1, a_2, each cell contains the **probability of rejection of** H_0 for different parameters (d_1, d_2) with $d_i \in \{0, 0.1, 0.2, 0.3, 0.4\}$ and $d_1 \leq d_2$

<table>
<thead>
<tr>
<th></th>
<th>$a_i = -0.4$</th>
<th>$a_i = 0$</th>
<th>$a_i = 0.4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_2 = -0.4$</td>
<td>.057</td>
<td>.192 .050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.483 .148 .056</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.774 .387 .113 .057</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.911 .678 .356 .095 .029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_2 = 0$</td>
<td>.047</td>
<td>.118 .061</td>
<td>.589 .204 .048</td>
</tr>
<tr>
<td></td>
<td>.354 .092 .046</td>
<td>.233 .041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.620 .290 .083 .041</td>
<td>.857 .488 .144 .043</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.811 .568 .261 .078 .033</td>
<td>.958 .766 .422 .112 .029</td>
<td></td>
</tr>
<tr>
<td>$a_2 = 0.4$</td>
<td>.057</td>
<td>.101 .035</td>
<td>.355 .109 .048</td>
</tr>
<tr>
<td></td>
<td>.101 .035</td>
<td>.108 .042</td>
<td>.573 .192 .042</td>
</tr>
<tr>
<td></td>
<td>.293 .083 .046</td>
<td>.355 .108 .052</td>
<td>.840 .536 .165 .040</td>
</tr>
<tr>
<td></td>
<td>.575 .246 .073 .043</td>
<td>.697 .342 .108 .052</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.792 .475 .231 .061 .033</td>
<td>.882 .641 .302 .092 .033</td>
<td>.951 .778 .478 .143 .030</td>
</tr>
</tbody>
</table>
Mean-Value of q chosen for the above simulations

<table>
<thead>
<tr>
<th></th>
<th>a=-0.4</th>
<th>a=0</th>
<th>a=0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=-0.4</td>
<td>4.3</td>
<td>10.9</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>3.7 3.3</td>
<td>9.1 7.9</td>
<td>13.1 11.2</td>
</tr>
<tr>
<td></td>
<td>3.2 2.8 2.7</td>
<td>7.9 6.9 6.2</td>
<td>11.1 9.5 8.6</td>
</tr>
<tr>
<td></td>
<td>2.8 2.6 2.2 1.6</td>
<td>6.9 6.3 5.2 3.9</td>
<td>9.6 8.5 7.0 5.1</td>
</tr>
<tr>
<td></td>
<td>2.7 2.2 1.7 1.0 0.5</td>
<td>6.2 5.3 3.9 2.5 1.5</td>
<td>8.4 7.1 5.0 3.3 2.0</td>
</tr>
<tr>
<td>a=0</td>
<td>3.2</td>
<td>2.7 2.1</td>
<td>4.4 3.7</td>
</tr>
<tr>
<td></td>
<td>2.3 2.0 1.7</td>
<td>3.6 3.0 2.7</td>
<td>3.1 2.6 2.0 1.4</td>
</tr>
<tr>
<td>a=0.4</td>
<td>1.9 1.8 1.4 1.0</td>
<td>3.1 2.6 2.0 1.4</td>
<td>2.6 2.0 1.4 0.8 0.4</td>
</tr>
</tbody>
</table>
Simulations on dependent samples

We evaluate the test with

\[X_1(n) = (1 - p)Y_1(n) + pY_2(n) \]
\[X_2(n) = (1 - p)Y_2(n) + pY_1(n) \]

where \(Y_i \) are independent \(F(d_i) \) with \(d_i \in \{0, 0.1, 0.2, 0.3, 0.4\} \) and \(p \in [0, 1/2) \).

