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Abstract

Painlevé metrics are a class of Riemannian metrics which generalize the well-known separable
metrics of Stédckel to the case in which the additive separation of variables for the Hamilton-Jacobi
equation is achieved in terms of groups of independent variables rather than the complete orthogonal
separation into ordinary differential equations which characterizes the Stéckel case. Painlevé metrics
in dimension n thus admit in general only r < n linearly independent Poisson-commuting quadratic
first integrals of the geodesic flow, where r denotes the number of groups of variables. Our goal in this
paper is to carry out for Painlevé metrics the generalization of the analysis, which has been extensively
performed in the Stéckel case, of the relation between separation of variables for the Hamilton-Jacobi
and Helmholtz equations, and of the connections between quadratic first integrals of the geodesic
flow and symmetry operators for the Laplace-Beltrami operator. We thus obtain the generalization
for Painlevé metrics of the Robertson separability conditions for the Helmholtz equation which are
familiar from the Stdckel case, and a formulation thereof in terms of the vanishing of the off-block
diagonal components of the Ricci tensor, which generalizes the one obtained by Eisenhart for Stéckel
metrics. We also show that when the generalized Robertson conditions are satisfied, there exist 7 < n
linearly independent second-order differential operators which commute with the Laplace-Beltrami
operator and which are mutually commuting. These operators admit the block-separable solutions
of the Helmholtz equation as formal eigenfunctions, with the separation constants as eigenvalues.
Finally, we study conformal deformations which are compatible with the separation into blocks of
variables of the Helmholtz equation for Painlevé metrics, leading to solutions which are R-separable
in blocks. The paper concludes with a set of open questions and perspectives.
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1 Introduction and statement of results

Painlevé metrics [31, 32] are a class of Riemannian metrics that provide a broad generalization of the
well-known separable metrics of Stéckel [16, 35] to the case in which the Hamilton-Jacobi equation for
the geodesic flow can be additively separated into partial differential equations depending on groups of
independent variables rather ordinary differential equations resulting from a complete orthogonal separa-
tion. In particular, while Stickel metrics in dimension n admit n linearly independent Poisson-commuting
quadratic first integrals of the geodesic flow, Painlevé metrics in dimension n will admit only r < n such
integrals in general, where r denotes the number of groups of variables.

Our goal in this paper is to carry out the extension to Painlevé metrics of the well-known results
[1,2, 3,16, 21, 22, 23] which relate in the Stéckel case the additive separation of variables for the Hamilton-
Jacobi equation to the multiplicative separation of variables for the Helmholtz equation, and the existence
of quadratic first integrals of the geodesic flow to that of symmetry operators for the Laplace-Beltrami
operator. We shall thus obtain the generalization to Painlevé metrics of the Robertson separability
conditions [33] for the Helmholtz equation for Stickel metrics, and a formulation of these generalized
Robertson conditions in terms of the vanishing of the off-block diagonal components of the Ricci tensor,
thereby extending the classical result proved by Eisenhart [16] for Stéckel metrics. We shall also show
that when the generalized Robertson conditions are satisfied, there exist r < n linearly independent
second-order differential operators which commute between themselves and with the Laplace-Beltrami
operator. These operators will be shown to admit the block-separable solutions of the Helmholtz equation
as formal eigenfunctions, with the separation constants arising from the separation into groups variables
as eigenvalues. Finally, we shall also discuss conformal deformations of Painlevé metrics satisfying a
further generalization of the Robertson conditions, which is compatible with the separation into blocks
of variables of the Helmholtz equation, leading to solutions which are R-separable in blocks.



Before describing our results in further detail, we should remark that independently of the interest of
Painlevé metrics from the point of view of separation of variables, a key motivation for our study lies in
the goal of constructing geometric models of manifolds with boundary endowed with Painlevé metrics,
with the goal of investigating the anisotropic Calderén problem in this class of geometries. Recall that the
anisotropic Calderén problem consists in recovering the metric of a Riemannian manifold with boundary
from the knowledge of the Dirichlet-to-Neumann map defined by the Laplace-Beltrami operator. The
anisotropic Calderén problem is at the center of a great amount of current research activity. We refer
to [13, 19, 24, 25, 27, 28, 34, 40, 41] and the references therein for surveys of recent results on this
problem. We have recently investigated the anisotropic Calderén problem at fixed energy for geometric
models consisting of classes of Stickel manifolds with boundary, where the separation of variables for
the Helmholtz equation allows the decomposition of the Dirichlet-to-Neumann map onto a basis of joint
eigenfunctions of the symmetry operators resulting from the complete separation of variables, enabling
us to obtain a series of uniqueness and non-uniqueness results for the Calderén problem, with no a-
priori assumptions of analyticity, or on the existence of isometries [10, 13, 14, 11, 12, 18]. In the case of
Painlevé metrics, the separation of the Helmholtz into groups of variables and the concomitant families
of commuting symmetry operators admitted by these metrics will serve as an effective starting point for
the investigation of the anisotropic Calderén problem in this more general setting.

In order to put the results of the present paper in context, we first briefly recall some well-known
definitions and results pertaining to Stéckel metrics and their separability properties. Throughout the
paper, we shall assume for simplicity that the manifolds, metrics and maps being considered are smooth,
although many of the results that we quote or obtain can be shown to hold under weaker differentiability
properties. Recall [2, 16, 21, 35] that a Stickel metric on an n-dimensional manifold M is a Riemannian

metric g for which there exist local coordinates (z?!,...,z") in which the metric has the expression
. det S det S
ds? = gijda'da? = 7 (daz')? + i (dz™)?, (1.1)

where S is a Stickel matriz, that is a non-singular n x n matrix S = (s;;) of the form

spi(zt) oo spa(at)
s=| ] (12)

Sp1(x™) ... Spa(z™)

and s denotes the cofactor of the component s;; of the matrix S. Stéickel matrices thus have the property
that for each 1 < ¢ < n, their i-th row depends only on the i-th local coordinate x?, and that the cofactor
5% is independent of the i-th local coordinate z’. Furthermore, the diagonal components of the Stickel
metric (1.1) are given by the inverses of the entries of the first row of the inverse Stéickel matrix A = S~1.
The importance of Stéckel metrics stems from the fact that they constitute the most general class of
Riemannian metrics admitting orthogonal coordinates for which the Hamilton-Jacobi equation

g oWo,W =E, (1.3)

for the geodesic flow of (M,g), where E denotes a positive real constant, admits a complete integral
obtained by additive separation of variables into ordinary differential equations. It is useful at this stage
to recall that a complete integral of (1.3) is defined as a parametrized family of solutions

W=W(' ..., 2%a,...,a,), a:=F, (1.4)



defined over the domain U C M of the local coordinates (z!,...,2") and depending smoothly on n

parameters (aq,...,a,) defined on an open subset A C R™, such that the rank condition

0?W
det (8xi8aj) #0, (1.5)

is satisfied throughout the open set U x A.
It is easily verified that the Hamilton-Jacobi equation (1.3) will admit an additively separable complete
integral W(x!,..., 2" a1,...a,) of the form

W =Wi(zha1,...,a0) -+ Wo(z"a1,...,a,),
if and only if the summands W, satisfy the set of separated ordinary differential equations given by

dWl 2 n .
dmi = Sij (l’ )aj .

J=1

The n parameters (a1, ...,a,) appearing in the expression of the additively separable complete integral
(1.4) thus correspond to the separation constants arising from the complete separation of variables of the
Hamilton-Jacobi equation into ordinary differential equations.

One of the key consequences of this complete separation of variables property is that the geodesic flow
of an n-dimensional Stickel metric admits a linearly independent set of n—1 mutually Poisson-commuting
quadratic first integrals, given by

Kay = Kfzj)Pz‘Pj = Zaszi, 2<i<n (1.6)
j=1
with
{Ky, Ky} =0, for 1<im<n
where A = (a;;) denotes as above the inverse of the Stickel matrix S given by (1.2). Note that with the
notations of (1.6), we have Ky = H, where

H = g"pip;,

denotes the Hamiltonian for the geodesic flow.
A question closely related to the additive separation of the Hamilton-Jacobi equation is that of the
complete multiplicative separation of the Helmholtz equation

—Agu = Au, (1.7)

where 1
Ay = —=0i(V199”d;), lg| = det(gs)
g () 2/ 15)
Vgl

denotes the Laplace-Beltrami operator on (M, g) and A denotes a non vanishing real constant, into ordi-
nary differential equations. By complete multiplicative separation, we mean, following [2], the existence
of a parametrized family of solutions u defined on a domain U C M with local coordinates (z!,...,2")
of the form

n
u(zh, ... 2" a,. . ag,) = Hui(acl,...,w”;al,...agn),
i=1



depending smoothly on 2n parameters (ay,...as,) defined on on open subset A C R?", satisfying the
rank condition

vy Ovy
day T Oaznp
vy, vy,
P Ba
det | Hu} dar | #0, (1.8)
Ba1 e 8a2n
Owy, Owy,
6a1 e Bagn
at every point of U x A, where
u/ u{l
v; = L w; = -+
Usg %

This separation requires that additional conditions, known as the Robertson conditions, and given by
aiFj:O, ISZ#]SH, (19)
where . ]
(det S)z~1sit
(s11...s71)3
be satisfied. We refer to [2, 3, 16, 21, 22, 33] for detailed proofs of the fact that the Robertson conditions are
necessary and sufficient for complete multiplicative separation of the Helmholtz equation. The Robertson

conditions were interpreted by Eisenhart [16] in terms of the vanishing of the off-diagonal components of
the Ricci tensor of the underlying Stéckel metric, that is

I; = —0;[log ] (1.10)

Ry;=0 for 1<i#j<n. (1.11)

When the Robertson conditions are satisfied, the Poisson-commuting quadratic first integrals of the
geodesic flow give rise to n — 1 linearly independent second-order differential operators which commute
with the Laplace-Beltrami operator and also commute pairwise. Rewriting the quadratic first integrals
K(;y defined by (1.6) in the form

Ky = Kzlj)pipj )

these commuting operators, denoted by Ak, , are of the form
Ay = VK V), 2<i<n,

where V; denotes the Levi-Civita connection on (M, g). These operators, which are often referred to as
symmetry operators, admit the separable solutions of the Helmholtz equation as (formal) eigenfunctions.
We will not give any further details on symmetry operators at this stage, nor shall we say anything about
the proofs of the results we have just recalled since we shall shortly state and prove generalizations of
these to the case of Painlevé metrics, which admit all Stickel metrics as a special case.

We conclude these preliminaries by remarking that the above setting may be expanded significantly by
considering conformal deformations of Stackel metrics which are compatible with the complete separation
of the Helmholtz equation into ordinary differential equations, thus giving rise to the more general notion
of R-separability for the Helmholtz equation. Again, we shall not give any additional details on these
topics at this stage since conformal deformations and R-separability will be studied in the remainder of this
paper in the more general setting of Painlevé metrics. We refer to [2, 3, 4, 8, 21, 22, 23] for lucid accounts



of the key results on the separability and R-separability properties of Stickel metrics, their connection
to Killing tensors, quadratic first integrals of the geodesic flow and symmetry operators for the Laplace-
Beltrami operator. We also refer to [1, 30] for recent surveys on separability on Riemannian manifolds
and to [7] for a penetrating analysis of the relations between quadratic first integrals of the geodesic flow,
symmetry operators and conserved currents, in the general setting of Riemannian or pseudo-Riemannian
manifolds.

With these preliminaries at hand, we are now ready to introduce the class of Painlevé metrics [31, 32].
As stated above, Painlevé metrics arise as a natural generalization of Stéckel metrics to the case in
which one no longer seeks complete separation of the Hamilton-Jacobi equation into ordinary differential
equations, but rather separation into partial differential equations involving groups of variables. The
separable coordinates admitted by Painlevé metrics are thus generally not orthogonal, although they
are orthogonal with respect to groups of variables. Let us recall that our goal in this paper is to carry
out for Painlevé metrics the analogue of the separability and R-separability analyses of the Helmholtz
equation which has been extensively worked out for Stickel metrics in [2, 3, 8, 21, 22, 23], and to show
that the separability into groups of variables gives rise to vector spaces of mutually commuting symmetry
operators for the Laplace-Beltrami operator, the dimension of which is determined by the number of
groups of variables. In particular, we will generalize to the case of Painlevé metrics the Robertson
conditions and the characterization thereof in terms of the Ricci tensor. We now proceed to define the
class of Painlevé metrics along lines similar to the ones used above for Stéckel metrics.

Let (M,g) be an n-dimensional Riemannian manifold and let x = (z!,...,2™) denote a set of local
coordinates on M. We shall consider partitions of x into r groups of local coordinates,

X = (Xl’ 7XT) )
where
T
x® = (z'), 14 <iq <ln, and Zla =n.
a=1
Latin indices 1 < 4,5 ... < n will be used to label the local coordinates on M, greek indices o, 3, ... to

label the r groups of local coordinates, and hybrid indices iy, 1o < i4 <, to denote the local coordinates
within the group x®. Unless there is an ambiguity in the notation being used, in which case we will write
out the summation signs explicitly, we shall apply the summation convention with the above range of
indices. A generalized Stickel matriz is a non-singular r X r matrix-valued function S on M of the form

si(xt) .. ospe(xh)
S=1 P (1.12)
$p1(X7) oo see(XT)

where for each 1 < a <, .

x¥ = (a'), 1o <iq <ly.
Let s*# denote the cofactor of the component s,s of S. We note that the cofactor s#7 will not depend
on the group of variables x? = (%) ,15 < i < l3. Moreover we shall assume that

det S

Socl

>0, Vi<a<r, (1.13)

in order to work with Riemannian Painlevé metrics.



Definition 1.1. Let S be a generalized Stackel matrix satisfying (1.13). A Painlevé metric is a Rieman-

nian metric g for which there exist local coordinates x = (x!,...,x") such that
.. detS det S
ds? = g;jda'dx? = ell G+ + =2 — Gr, (1.14)
s s

where each of the quadratic differential forms

l(Y l(l
Go = Go(x%) = Z Z Go(x la]adxlad:cja 1<a<r, (1.15)

ta=la ja=la
is positive-definite in its arguments and depends only on the group of variables x*.
We may thus write the metric (1.14) in block-diagonal form as

la

la
ds? = Z Z Z Ja la]adw“’dﬂc]“ = Z d;e;S Z Z (Ga)iajadxi“dwj”. (1.16)

a=lia=1¢ ja=1a ta=la ja=la

It is important to note that even though Painlevé metrics (1.14) are block-diagonal, and each quadratic
differential form (1.15) defines a Riemannian metric on the submanifolds defined by the level sets x” =
c?, B # «, a Painlevé metric is generally not a direct sum of Riemannian metrics, nor a warped product,
except for special non-generic cases. We also note that Painlevé metrics of semi-Riemannian (and in
particular Lorentzian) signature can readily be defined by modifying the requirement that each of the
quadratic differential forms G, given by (1.15) be positive-definite to one in which G,, is assumed to be
of signature (pa, go) With ps + ¢ = lo. Finally we also remark that the Painlevé form (1.14) is obviously
invariant under smooth and invertible changes of coordinates of the form X* = f*(x®), where 1 < o < r.

Let us call block orthogonal coordinates a system of coordinates (x*) such that the metric g has the
form

l(X

g= zr: caGa = Z Ca Z Z o) Zajadxiadacja , (1.17)
a=1

ta=la ja=la

where ¢, are non-vanishing scalar functions on M and the metrics G, are given by (1.15). In analogy
with the Stéckel case, we have

Proposition 1.1. A metric g is of the Painlevé form (1.14) if and only if there exist block orthogonal
coordinates such that the Hamilton-Jacobi equation

gIOWo,W = E,
admits a parametrized family of solutions which is sum-separable into groups of variables, of the form
W =Wi(x'a1,...,a,)+ -+ W, (x";a1,...,a,), (1.18)

depending smoothly on r arbitrary real constants (a1 := E,aa,...,a,) defined on an open subset A C R",
and satisfying the rank condition

G 02w,
Oélaj &3 (83
(3537 e () (2 ) o, 119

ta=la ja=la

where

G® = (Ga)™ L.



This Proposition will be proved in Section 4 as well as other (intrinsic) characterizations of Painlevé
metrics.

In further analogy with the Stéckel case, we now recall that Painlevé metrics admit 7 linearly indepen-
dent quadratic first integrals of the geodesic flow which are Poisson commuting. Indeed, the summands
W, appearing in (1.18) satisfy the following set of first-order PDEs [32]

oWy
]:( " Ox 1)—Cl1511(X1)+-~-+arsT1(x1)7
(1.20)
oW, - .
]:r( T7 W) = alsrl(x ) —+ -4 aTsTT(x ),
where -
Fo = (GY)' 9 (x")pi,pj., 1<a<r, (1.21)

and where the (a,) are arbitrary real separation constants. It follows now directly from the separated
equations (1.20) and from the fact that the generalized Stéckel matrix S is non-singular that one obtains
r linearly independent Poisson-commuting quadratic first integrals K, of the geodesic flow by solving
for the r separation constants (a,) from the separated equations (1.20). These are explicitly given by
(see [32])

or equivalently Ny
Ky = Kypip; ; (1.22)

where for each 1 < a <7, (K Zi )) is a symmetric block-diagonal tensor defined by

o B o
K(Zigf’ = detS(Gﬁ)’M@ K(Z(‘XW =0 forall 1<B#~y<r. (1.23)

These quadratic first integrals satisfy
{K@),Kp}t=0 1<aB<r where Kg)=H. (1.24)
The condition {K (), H} = 0 is equivalent to (K(Zi)) being a symmetric Killing tensor, that is
Vil(a)jr + ViK(aki + Vil = 0.
The commutation relations (1.24) are thus equivalent to the vanishing of the Schouten brackets of the
pairs of Killing tensors (K (q)i;), (K(8)i;)-

There exist a few classical examples of Painlevé metrics in the litterature. They include for instance
the di Pirro metrics [15, 32], for which the Hamiltonian of the geodesic flow is of the form

H = g7pipj = (cr2(a’, 2%) + e3(a®) 7 aa (2, 2?)pt + az (@, 2?)p3 + as(a®)p3] - (1.25)
It may indeed be verified directly that the function

K = (crz(a",2%) + e3(2®)) 7 es(@®) (ar (2", 22)p} + ao(x', 2%)p3) — cra(z', #%)as(a®)p3] .



Poisson-commutes with H, and thus defines a Killing tensor, which together with the metric tensor
generates a maximal linearly independent set of Killing tensors for generic choices of the metric functions
c12,a1,a2,as,cs in (1.25). Painlevé metrics also appear in the context of geodesically equivalent metrics
as metrics admitting projective symmetries, see [37, 38], and also as instances of 4-dimensional Lorentzian
metrics admitting a Killing tensor [20] (see Section 7 for further remarks on the latter point). At last, we
mention the recent paper by Chanu and Rastelli [9] that provides a classification of Painlevé metrics with
vanishing Riemann tensor in dimension 3, i.e. in E5. We will give some examples of Painlevé metrics in
all dimensions satisfying the generalized Robertson conditions (see below) as well as a catalogue of such
metrics in dimensions 2, 3,4 in Section 2.

As we stated above, our main goal in this paper is to investigate for the class of Painlevé metrics the
closely related question of product separability for the Helmholtz equation (1.7), and the relationship
between quadratic first integrals of the geodesic flow and symmetry operators for the Laplace-Beltrami
equation. The Laplace-Beltrami operator for a Painlevé metric g given by (1.14) can be expressed in
terms of the generalized Stickel matrix S and the Laplace-Beltrami operators for the r Riemannian
metrics Gg,1 < 8 < r, defined by (1.15), corresponding to the blocks of variables x?,1 < 5 < r. We
have

. st b i (det S)% ~1sP1
Agu:; {(dets){AGﬁqu 33 (@) [0, (log . 2...(87«1)’;”%“”’ (1.26)

i=1g jp=1p (11)

where Ag, denotes the Laplace-Beltrami operator for the Riemannian metric Gg, that is

lp
=> Z \/|G7 8is (\/1Gl(GP)#9205,), |Gl = det((Gp)igss) - (1.27)

’L/;—l jg 1

We now state our main results, the proofs of which will be given in Section 6. We first define the
generalized Robertson conditions, in analogy with the classical Robertson conditions (1.11) for Stéckel
metrics..

Definition 1.2. A Painlevé metric g is said to satisfy the generalized Robertson conditions if and only
if the differential conditions

0j.%ig =0, forall 1<a#p<r, la<ia<la, 1lp<ig<lg, (1.28)

where ( -

det S)=2~
Vi, = —0i,[log - ) - (1.29)

(s1)F ... (s1) %
are satisfied.
The generalized Robertson conditions (1.28) imply that
;.77 =0, forall 1<a#p<r. (1.30)
lg
’yjﬁ = Z (G'B)iﬁjﬂviﬁ' (131)
ig=1g



We shall be working with both the forms (1.28) and (1.30) of these conditions. Note that if the Robertson
conditions hold, then the positive Laplace-Beltrami operator can be written in a synthetic form as

r p1 ls
A = Z(dzts){AGBqu > wajﬁu}, (1.32)
B=1 Jp=lp
T Sﬂl
- Z(d vl
b=
lg

where the operators Bs = —Ag, + Z I8 0j, only depend on the group of variables xP.
Js=1p
As will be seen in Section 5, the generalization of the notion of complete multiplicative separation for
the Helmholtz equation to the case of separation in terms of groups of variables is given by considering

a parametrized family of product-separable solutions of the form

u= I_Iug(xﬁ;al,...,a,,)7 (1.33)

B
det (aaa (’3“‘3)) £0, (1.34)
ug
where we assume that ug # 0.

Our first result states the separability conditions for the Helmholtz equation, and gives their inter-
pretation in terms of the vanishing of the off-block diagonal components of the Ricci tensor:

satisfying the rank condition:

Theorem 1.1. 1) Given a Painlevé metric g of the form (1.14) satisfying the Robertson conditions
(1.28), the Helmholtz equation
—Agu = Au, (1.35)

where A, denotes the Laplace-Beltrami operator (1.26) admits a solution that is product-separable in the

r groups of variables (x',... ,x"),

u= Huﬁ(xﬁ;al =\ ag,...,0a.), (1.36)

and satisfies the rank condition (1.84).
2) The conditions (1.28) may be written equivalently in terms of the Ricci tensor of the Painlevé metric

(1.14) as
Rjk, =0, forall 1<a#pB<r, and 14 <jo<la, 1g<ksg<lg. (1.37)

Our next result shows that the Laplace-Beltrami operator for a Painlevé metric satisfying the gener-
alized Robertson conditions admits r linearly independent mutually commuting symmetry operators:

Theorem 1.2. Consider a Painlevé metric (1.14) for which the generalized Robertson conditions (1.28),
which imply the separability of the Helmholtz equation, are satisfied. Then the operators Ak, defined for
2<a<rby

Lol

Ak = Vil K, V5 Z YooY V(KLY (1.38)

Y=liy=1y jy=1,

10



where K () is defined by (1.23), commute with the Laplace-Beltrami operator A, and pairwise commute
[AK(Q)Ag] :O, [AK(Q)aAK(ﬁ)] :07 ZSQ,BST, (139)

and admit the separable solutions (1.86) as formal eigenfunctions with the separation constants a, arising
from the separation of variables as eigenvalues,

AK(Q)U =aqu, 2<a<r, (1.40)

Our final result shows that the above framework can be expanded just as in the Stéckel case by con-
sidering conformal deformations of the Painlevé metrics (1.14) which are compatible with the separation
of the Helmholtz equation into groups of variables. This corresponds to a generalization of the important
notion of R-separability [4, 8, 23] to the context of Painlevé metrics.

Let us first recall that upon a conformal rescaling of the metric given by

g ctyg, (1.41)

where ¢ denotes a smooth positive function, the Laplace-Beltrami operator A, obeys the transformation
law

Acig = ¢ (n+2) (Ag = geg)c" 2, (1.42)
where
Qeg = "N (1.43)
Thus, letting
v=c""2y (1.44)

and using the expression (1.26) of the Laplace-Beltrami operator for a Painlevé metric g, the Helmholtz
equation

_Ac4gu: AU, (145)
takes the form
LANCH ls _ \
{ Terg(—Acs+ D0 70) + ey — At v =0, (1.46)
p=1 Jp=1p

We have

Theorem 1.3. Let g be a Painlevé metric. Suppose furthermore that g is conformally rescaled by a
factor c¢* as in (1.41), where c is chosen so as to satisfy the non-linear PDE

861

n—2 n+2 n—2 _
A2 = A2 - a1+;_1det5(Pﬁ —¢p) | =0, (1.47)
where 1 1 )

Pﬁ = 75 jﬁ’yjﬁ - Z’yjﬁajﬁ IOg |Gﬁ‘ + Z(Gﬂ)iﬁjﬁvzﬁ’wﬁ ) (148)
and where a1 is a constant and ¢g = ¢g (x%) are arbitrary smooth functions. Then the Helmholtz equation
(1.45) for the conformally rescaled metric c*g is R-separable in the r groups of variables (x!,...,x").
More precisely, if u is given by

u=c " Ruw, (1.49)

11



with R defined by
15 r
(s1)F .. (sH)F

R= S (1.50)
(det S) =
then w satisfies
T 861
> () [ 2a, + ds]w = arw, (1.51)

=1

which is separable in the v groups of variables (x*,...,x") in the sense of (1.83)-(1.84) with the operators
Bg replaced by the operators Ag = —Ag, + ¢p-

We remark that the PDE of Yamabe type given by (1.42) satisfied by the conformal factors ¢(x)
can be viewed as an extension of the generalized Robertson conditions to the setting of metrics that are
conformally Painlevé. Moreover, the existence of such conformal factors will be addressed in Section 2
through Proposition 2.1. In particular, it will be shown there that such metrics enlarge considerably the
class of Painlevé metrics satisfying the generalized Robertson conditions (1.28).

We conclude this section by referring to the interesting recent paper by Chanu and Rastelli [9] that
was published during the elaboration of the present paper. It turns out that Chanu and Rastelli define
the Painlevé form of metrics like our definition 1.1 in connection with the notion of separability of the
Hamilton-Jacobi equations in groups of variables. They provide several intrinsic characterizations of
Painlevé metrics extending the ones stated in our section 5. We refer for instance to the beautiful
invariant characterization of Painlevé metrics given in their Proposition 5.8 that allow them to classifiy
all Painlevé metrics in Eg.

2 Examples of Painlevé metrics satisfying the generalized Robert-
son conditions

In this section, we provide several examples of Painlevé metrics satisfying the generalized Robertson
conditions (1.28) in all dimensions. Then we try to give a catalogue - as complete as possible - of such
Painlevé metrics in dimensions 2, 3 and 4. All our examples are local in the sense that they are defined
in a single coordinate chart. Obtaining global examples of Riemannian or semi-Riemannian manifolds
admitting an atlas of coordinate charts in which the metric is in Painlevé form appears to be a challenging
task, well worthy of further investigation. This point will be discussed as one of the perspectives listed
in Section 7. From the notations used in definition (1.1), recall that a Painlevé metric is given in local

coordinates (z!,...,2") = (x!,...,x") where x® denotes group of variables indexed by 1 < a < r by
i, detS det S
g = gijddi dz’ = S1l Gl +-- 4+ ST Gr, (2.52)
for quadratic differential forms
lo o
Go=Ga(x*)= > Y Galx)i,j.da'da’>, 1<a<r (2.53)
ia=la ja=la
and a generalized Stéckel matrix S of the form
sip(xt) o spe(xh)
S =
se1(X") oo Spe(XT)
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From (1.28), recall also that the Robertson conditions read
8javiﬁ:0, 1<a#pB<r, 1lg<iy<ly, 1@§iﬁ§lﬁ,

where .
(det S)3 ~1sP1 ]
g .
(311)%1 . (Srl)%
Since s does not depend on the group of variables x?, these conditions can be equivalently formulated
as the algebraico-differential condition:

Vi = =0, [0

e n—2 r
m = ]i[lfa(xa), (2.54)

where f, = fo(x%) are arbitrary functions of the indicated group of variables. We will use this last
expression of the Robertson conditions to find different examples of Painlevé metrics in all dimensions
that satisfy them. Our main examples are:

Example 2.1. If r = 2 and n = 2, then any Stéckel matrix

S _ 811(131) 812(1’1)
821(1'2) 822(12) ’
satisfies automatically the usual Robertson conditions (2.54). The corresponding Stéckel metrics in 2D
can be given the following normal form

g=(filz") + f2(=?)) ((dz")? + (dz?)?), (2.55)

where f,, a = 1,2 are arbitrary functions of x® such that f; + fo > 0. Thus we recover the classical
Liouville metrics.
If r =2 and n > 3, then any generalized Stickel matrix

g (Sll(xl) 812(X1)) ’

0 599 (X2)

satisfy the generalized Robertson conditions (2.54). The corresponding Painlevé metrics can be given the
following normal form
g=G1+ fi(x")Ga, (2.56)

where 1, G5 are Riemannian metrics as in (2.53) and f; = fi(x!) is any positive function. Note that
the metrics are classical warped products.

Example 2.2. Consider a generalized Stickel matrix of the form

sin(xt) .. spe(xt)
as1 . agy
S = ,
ar1 ce Qpp

where the entries aq3,2 < a <r,1 < <r, are real constants chosen such that (1.13) is satisfied. Then
it is immediate that
(det S)n—2 B 1
(s1h)ln . (s71)ir = [i(x%),
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for some function f; depending only on x!. Hence the Robertson conditions (2.54) are trivially satisfied.
The corresponding Painlevé metrics are of the general form of multiply warped products

9= fax")Ga, (2.57)
a=1

where f, are arbitrary positive functions of x! and G, are given by (2.53). We note that the inverse
anisotropic Calder6n problem on a class of singular metrics of the form (2.57) is studied in [11].

Example 2.3. Our final class of examples is the most interesting one and comes from the theory of
geodesically (or projectively) equivalent metrics (see for instance [6, 39, 29, 37, 38]) and its link to
particular Stdckel systems called Benenti systems [1, 5]. Note that it only applies to Stéickel metrics
satisfying the usual Robertson conditions, i.e. we assume that r = n in the following. Consider a Stéckel
matrix S of Vandermonde type (see Thm 8.5 in [1])

S = <(_1)n+a_'8+1fg_ﬁ)1<a B<n’

where the functions f, = f,(z®) only depend on the variable 2% and satisfy
fixh) < fa(z?) <--- < fo(a"), Va*, 1<a<n.

An easy calculation shows that

det(s): || |f04_fﬁ|7 871: Il |fa_fﬂ|7 V1§’7§n7
1<a<p<n 1<a<pB<n
a,f#y

from which we deduce that the Robertson conditions (2.54) are satisfied. The corresponding Stéckel
metrics are given by

g=TI1fo—Al| @)+ | T] 1fa = fol | (d2®)? + -+ | T] 1fa = fal | (d2™)%. (2.58)
a#l a#2 a#n

Let us now use the above classes of examples to give as exhaustively as possible a list of Painlevé
metrics satisfying the generalized Robertson conditions in dimensions n = 2,3,4. We always assume that
2<r<n.

2D Painlevé metrics. Let n = 2 and r = 2. Then according to example 2.1, the only Painlevé metrics
are Stickel metrics given by

g=(filz") + f2(=?)) ((dz")? + (dz?)?), (2.59)

for some functions f; and fy such that fi; + fo > 0. Hence Painlevé metrics satisfying the Robertson
conditions in 2D are Liouville metrics.

3D Painlevé metrics. Let n = 3.

14



If r =2 and say I = 1, Iy = 2, then according to Example 2.1, Painlevé metrics satisfying the
generalized Robertson conditions are classical warped products; more precisely

g=(dz")? + fi(z")Ga, or g= fo(x?*)(dz")? + Gy, (2.60)

for some positive functions f; and fo depending only on the indicated groups of variables and any
Riemannian metric

Go = (Ga)ij(¢?,2°)da'da?, i,j = 2,3.

If r = 3, then 3D Painlevé metrics are in fact Stéckel metrics. According to Examples 2.2 and 2.3,
we have the following possible expressions for Stéckel metrics g satisfying the Robertson conditions
(see also [18]):

g = fr(dzh)? 4 hy(dz?)? + ky(dz®)?, (2.61)

9= "(fs— f1)(f2— f1)(dz")? + (f3 — fo)(f2 — f1)(dz®)* + (f3 — f1)(f3 — f2)(dz?)?, (2.62)

where fi, k1, k1 are functions of the variable ' only and fs, f3 are functions of the variables z2? and
2 respectively such that f; < fa < f3. We add a last example to this list found by inspection of
the Robertson conditions (2.54). Consider the Stickel matrix

1 s12 asi3

where a is a real constant and the s;; = s;;(z") are arbitrary functions of the indicated variables
for which det .S # 0. Then we can check directly that the Robertson conditions are satisfied and we
obtain the following expression for the corresponding Stéckel metrics

9= (dz")? + (1) {(322533 - 323532)< (de?)” | _(do)’ )} . (2.63)

512 $32 — 4S33 §23 — AS22

Note in particular that such metrics are warped products and thus admit a conformal Killing vector
field.

4D Painlevé metrics. Let n = 4.

If r =2 and l; + 1 = 4, then according to Example 2.1, Painlevé metrics that satisfy the generalized
Robertson conditions are warped products of the type

g=G1+ fl(Xl)GQ, or g= fg(Xz)Gl + G, (264)

for some positive functions f; and fo depending only on the indicated variables and any Riemannian
metrics G1, Gs of the type (2.53).

If r =3 and Iy = 2, ls = l3 = 1 (the other cases are treated similarly), then according to example
2.2, we obtain the following Painlevé metrics

g = hGy + k(d2®)? + 1(da*)?, (2.65)

15



where h, k, | are positive functions of the variables z', z? only and Gy = (G1);j(x!, 2?)dz'dz?, i, j =
1,2 is any Riemannian metric. Following the same procedure as in example (2.63), we also obtain
the following class of Painlevé metrics

g:G1+(81> {(322333—823332)( (0 S )] (2.66)

12 §32 — (S33 §23 — AS22

where S12 = 812(561,1‘2), S99 = 322(56‘3), S23 = 823(2133), S32 = 832(584), 833 — 833(254) and Gl =
(G1)ij(zt,2%)dxtda?, i,5 = 1,2. Note in particular that such metrics are warped products that
admit a conformal Killing vector field.

If r = 4, the Painlevé metrics are Stdckel metrics. According to examples 2.2 and 2.3, possible
expressions for Painlevé metrics satisfying the Robertson conditions are

g = fi(dzh)? + hy(dz?)? + ky(dz®)? + 1y (dz*)?, (2.67)
or

g=(fa—f1)(fs = fi)(f2 = fl)(dxl)Q + (fa— f2)(fs — fo)(fa — fl)(dx2)2 (2.68)
+(fa = f3)(fs = f1)(fs = f)(d2®)? + (fa = f1)(fa = f2)(fa — f3)(dz?)?, )

where f1, h1, k1,11 are functions of the variable z!' only and fa, fs, f4 are functions of the variables

22, x3 and 2? respectively such that f; < fo < f3 < fi. We add a last example to this list found

by inspection of the Robertson conditions (2.54). Consider the Stéickel matrix

1 s12 asiz si2
0 1 S23 523
S = ,
0 0 533 534
0 0 S43 S44

where s;; = s;;(x") arbitrary functions of the indicated variables. Then we can check directly that
the generalized Robertson conditions are satisfied and we obtain the following expression for the
corresponding Stickel metrics

g=(d)"+ (;) {<dw2>2 + <3231_ 1) <(833844 - 534543)(SS=’E_SZB + sfﬁ;))] - (260)

Note that such metrics are warped products and that the metrics between square brackets are also
warped products.

We end this section by giving some existence results for the conformal factor ¢(x) appearing in

Theorem 1.3, in the case in which M is a smooth compact manifold of dimension n > 3, with smooth
boundary dM. We recall from Theorem 1.3 that the conformal factor ¢(x) must satisfy a non-linear PDE
of Yamabe type, given by:

where

Agc" 2 + f(x)c" 2 = A" =0, (2.70)
T A1
Fo =" Get 598 —Fp) | —ar, (2.71)
p=1
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and where ¢5 = ¢5(x?) are arbitrary smooth functions. Setting w = ¢"~2

solutions w = ¢™ 2 of the non-linear elliptic PDE:

, we are thus interested in

{ Agw—i-f(x)w—)\w% =0, on M, }

2.72
w=rn, on OM, ( )

where 7 is any suitable smooth positive function on M. We can solve (2.72) by using the well-known
technique of lower and upper solutions which we briefly recall here. Setting

n+2

fw) = f(x)w = dwn=2,

we recall that an upper solution W is a function in C?(M) N C°(M) satisfying
Agw+ f(x,w) <0on M, and Wy >1n. (2.73)
Similarly, a lower solution w is a function in C?(M) N C°(M) satisfying

Agw+ f(x,w) > 0on M, and wyy <7. (2.74)

It is well-known that if we can find a lower solution w and an upper solution w satisfying w < w on M,

then there exists a solution w € C*°(M) of (2.72) such that w < w < W on M.
Now, we can prove the following result:

Proposition 2.1. 1. If A > 0 and f(x) > 0 on M, then for each positive function n on OM, there exists
a smooth positive solution w of (2.72).

2. If A\ <0 and f(x) < A on M, then for each for each positive function n on OM such that n <1, there
exists a smooth positive solution w of (2.72).

Bl

Remark 2.1. Since > 0 by the hypothesis (1.13), we see that the assumption f(x) > 0 on M,

e
(resp. f(x) < X\ on M) is satisfied if the ¢p’s are choosen sufficiently large, (resp. —¢a are sufficiently
large).

Proof. 1. We use the technique of lower and upper solutions. We define w = € where ¢ > 0 is small
enough. Thus, w <7 on OM and we have

Agw + f(x,w) = ¢ (f(x) - Ae%-l) >0, (2.75)

so w is a lower solution. In the same way, we define w = C where C is sufficiently large. Thus w > 7 and
we have »

A+ f(x,m) = C (f(x) = ACTE ) <0. (2.76)
It follows that w is an upper solution and clearly w < w. Thus, there exist a smooth positive solution w
of (2.72) satisfying e < w < C.

2. In the case A <0, f(x) < Aon M and n < 1 on OM, we define w as the unique solution of the
Dirichlet problem
{ Agw+ f(x)w =0, on M,

w =1, on OM. (2.77)
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The strong maximum principle implies that 0 < w < maxn on M. Moreover, Agw + f(x,w) =
—)\(Q)% > 0. Hence w is a lower solution of (2.72).
Now, we define w as the unique solution of the Dirichlet problem

n+2

Agw + f(x)w = f(x)(maxn)===, on M,
{ ’ w =, on OM. (2.78)

According to the maximum principle, we also have w > 0 on M. Setting v = W — max7, we see that

n+2

Agv + f(x)v = f(x)(maxn»—2 —maxn) >0, (2.79)

since 7 < 1. Hence, the maximum principle implies that v < 0 on M, or equivalently w < maxn.

We deduce that
n+2 n+2

Agw + f(3x,W) = f(x)(maxy — w7 2) + (f(x) = Nwr2 <0, (2.80)

since f(x) < A. Thus, w is an upper solution of (2.72). Finally, w — w satisfies

{ Ay (@ — w) + (%)

[

) = f(x)(maxp) =2 <0, on M,
P— ()7

2.81
on OM. (2.:81)

gl €l

Then, the maximum principle implies again @w > w. Then according to the lower and upper solutions
technique, there exists a smooth positive solution w of (2.72).

3 Generalized Killing-Eisenhart and Levi-Civita Conditions

The proofs of the main results of our paper, that is Theorems 1.1, 1.2 and 1.3, make use of generalizations
to Painlevé metrics of the classical Killing-Eisenhart equations and Levi-Civita separability conditions
which hold for Stéckel metrics (see for example [2, 3, 16, 21, 22, 32]). We present these generalizations in
the form of the following two lemmas, beginning with the Killing-Eisenhart equations. Thus in analogy
with the Stickel case, we introduce the quantities

7B

Note that by the assumption (1.13), we have s # 0.
The following lemma gives the generalization to the case of Painlevé metrics of the Killing-Eisenhart
equations given in [16, 2, 3, 21, 22| for Stickel metrics:

Lemma 3.1. We have, for all 1 < 3,6,y < r, the identities

61
05, (pss) = (psy — pps)(95,108 7o) - (3.83)

We will refer to (3.83) as the generalized Killing-Fisenhart equations.
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Proof. The Poisson bracket relations (1.24) imply

Ly

> ((a K{535) K{3™ = (0, KWH)K@W) =0, (3.84)

py=1

where 1 < is,j5 <ls,1 <k, <1, and 1 <4,y < r. Using the expressions (1.23) of the Killing tensors
(K(W)‘S) the fact that 8; (G?)"#9% = 0 for B # v, and the fact that each of the I, x I, matrices ((G?)"97),
is invertible, we obtain that the relations (3.84) are equivalent to
00, (155 g~ (00, (25)) g =0
Pridet S77 det S Pyidet S77 det S
where 1 < 4,7 <r,1, <p, <l,. In particular, the relations (3.84) are independent of the block metrics
(1.15). Setting § =~ in (3.85), we obtain

(3.85)

7B
8% (37) =0, (3.86)

for 1, < p, <, so that using the definition (3.82) of the quantities pg,, the relations (3.85) take the
form

851 S'yl 851 s'yl
0 —)——= = (0 3.87
v (P95 3er5) aers = O (Gers))Po Gats (3.87)
which in turn reduces to (3.83), thus proving our claim. O

In order to state the generalization to Painlevé metrics of the classical Levi-Civita conditions which
hold for Stéckel metrics, we make the hypothesis

PBs # PBe, V1<B<r Vi<i#e<r. (3.88)
The generalization of the Levi-Civita conditions to the Painlevé case is now given by the following:

Lemma 3.2. A generalized Stickel matriz (1.12) corresponding to a Painlevé metric (1.14) for which
the genericity hypothesis (3.88) holds true satisfies, for all 1 < 8,~v < r, the identities

9. 1 st 90 1 st 01 sP1 o 1 gl
(95 Og(d tS))( s Og(idets)) + (9., og(ol tS))( s Og(dets)) 50
det S g1 .
o sl Ja kﬂ(m) = Oa
In particular, we have the identities
0 1o} det S
Oxie Oxks (80418,81) =0, (390)

foralll <a,B8<r.
We will likewise refer to the identities (3.89) as the generalized Levi-Civita conditions.

Remark 3.1. 1) In the case of Stickel metrics, that is when r = n, the conditions (3.89) reduce to the
classical Levi-Civita conditions, given by

ol il k1 Gl det S Gl
(9 log(d tS))(@ 10g(det5)) + (85 log(m)) (Or 1o g(d tS)) - i 8j8k(dets) =0. (3.91)
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2) We shall show at the end of the next section 4 that the generalized Levi-Civita conditions (3.89) hold
in fact for all Painlevé metrics (1.14) without assuming our genericity hypothesis (3.88). Nevertheless,
it is easier to obtain them from the Killing-Eisenhart equations under the assumption (3.88) as we do
below.

Proof. The general idea behind the proof is similar to the one that is used in the classical Stéckel
case, and is based on expressing the integrability conditions for the generalized Killing-Eisenhart (3.83),
with additional twist resulting from the fact that the separation is in groups of variables only. We let
1 < a # B < r denote fixed indices and introduce the simplified notation

598
Ps = Pps = "51 (3.92)

so as to make the expressions a bit more compact. The generalized Killing-Eisenhart equations (3.83)

thus take the form
da

Oy, 05 = (= 5) (9, (108 =) . (3.93)
where 1 < §,v < r. The integrability conditions
k. (8p,ps) = 0y, (Ok.ps) (3.94)
are now easily obtained. We have
571 501 01
Ok, (Op, ps) :[(P P1)0k, 108(522) = (pe = ps) Ok, log( )| Op, log 7=
- (3.95)
oy = 93010y, log( 7).
so that (3.94) becomes
571 01 01 5l
(02 = 00| (0 108 55)) 0, Tow( ) + (On () 0y, o8 )
01 $01 $01 (3.96)
— (O, log(d tS)) (0p, log(m)) O, Op, log(d tS) =0,

where 1 <e# v <rand 1 <§ <r. Using the rank hypothesis (3.88), expanding the logarithmic second
derivative in (3.96) using the identity

1
0ry 108 f = 500, ~ (9, 10g £)(0, lox ) (3.97)
and relabeling the indices, we obtain
y1 al $B1 1
(95, log(=—— tS))(% log(==—2)) + (9, 108(52-2)) (90, Log( ) 599
det S s )

~ o 20 (Gg) = 0

which is precisely (3.89). Finally, the relations (3.90) are obtained by setting 0 = € in the integrability
condition (3.96), using the identity (3.97), and the fact that the cofactors s7* and s°* are independent
of the groups of variables x” and x¢ respectively. O

20



4 Different characterizations of Painlevé metrics

Let us start with the characterization of Painlevé metrics in terms of complete additive separability of
the Hamilton-Jacobi equations stated in Proposition 1.1.

Proof of Proposition 1.1. In block orthogonal coordinates (x®) associated to the metric

r
9= Z caGa,
a=1

the Hamilton-Jacobi equation (1.3) reads

Zc Z Z G* Zaﬂ’a%gg —E=a, (4.99)

ia=la ja=1la

where ¢® = (¢,)~!. Assume that there exists a solution W in the block-separable form (1.18) satisfying
the completeness condition (1.19). Then (4.99) can be written as

la

. OW,, OW,,
Zc Z > (G axliaaza:E::al. (4.100)

ta=la ja=la

Differentiating (4.100) with respect to ag, we get

Lo LW, W,
Zc Z > 2@ wa:aw' (4.101)

ta=la ja=la

From (1.18) and (1.19), it follows that the family of matrices

. OW, O*W,
S(a,....a.) = (Sap)(ar, ... a,) = 2(G¥)iaja Lo _Z Wa 4.102
(ah ) @ ) ( B)(a’l a ) ( ) Ot 8&/581']“ ( 0 )
are non-singular stickel matrices of rank r for all (aq,...,a,) € U. Using the invertibility of S(ay,...,a,)

which is equivalent to the completeness condition (1.19), we get immediately from (4.101) that

Sal

= detS’

which proves that g is a Painlevé metric.
Conversely, assume that g is a Painlevé metric of the form (1.14). Then the Hamilton-Jacobi equation
(1.3) takes the form

roogal  la
Z Z > (Ga)mﬁl W _ . ar . (4.103)

Now, since
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we may rewrite (4.103) as

T

al oW oW
Z detS( Z Z GO i Bie Zsaﬁaﬁ) =0, (4.104)
p=1

ta=la ja=1la

for any (ay,...,a,) € U CR". Choosing W in the block-separable form (1.18), we see that any solution
of the reduced Hamilton-Jacobi equations

la la r
Z Z (G zaja%gza Zsaﬁaﬁ , (4.105)
A=1

will provide a solution of (4.104). But the latter equation always admit locally solutions W (x%, a1, ..., a,)
by standard PDE results [36]. Differentiating (4.105) with respect to ag, we obtain

r l l
- ~ [ OW, 0*W,,
A\laJa —
2 Z Z Z (&%) (835% ) <8ag0mja> fay - (4.106)

a=lia=1a ja=la

Since the generalized Stéckel matrix (1.12) is to be non-singular, it follows that the rank condition that
must be satisfied by our block-separable parametrized family of solutions of the Hamilton-Jacobi equation
is precisely (1.19), thus proving that metrics of the Painlevé form (1.14) are indeed characterized by the
existence of a parametrized family of solutions of the Hamilton-Jacobi equation satisfying a suitable
completeness condition. O

Let us now give another proof of Proposition 1.1 that will allow us to characterize Painlevé metrics
in terms of the generalized Levi-Civita conditions (3.89). Working in block-orthogonal coordinates or
directly with a Painlevé metric with the identification

det S

Sal

(& J.

: (4.107)

the Hamilton-Jacobi equation (1.3) takes the form

L
Zc Z > GO‘”%Sﬁ:E::al. (4.108)

ta=la ja=1la

We recall that we seek a solution W of (4.108) which is additively separable into groups of variables, that

is
W= Wax)
a=1

and let

l l

o a . OW. OW.
(1) — A\laJo o @
o Z Z (G%) Oxte Ogia’

ta=la ja=1la

in which case the Hamilton-Jacobi equation (4.108) takes the form
Z Cull) =ay .
a=1
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Differentiating the latter equation with respect to z*#, we obtain the first order differential system in
normal form:

_ 1 5T ) Ca) u(l) =8
B, ulD) :{ 7 Lozt (Oksc®)ua’ 7 =5, 4.109
e 0 Y#B. ( )
Introducing the first-order differential operators
) 1 « w1 O
a=1 B
the differential system (4.109) will admit a family of solutions ull) = u&l)(xl, oo, x™a, ..., a,) defined
on an open subset U € M and depending smoothly on r constants (aq, ..., a,) defined in an open subset
A C R", satisfying the rank condition
(’“)ut(xl)
det 0, 4.111
oo (G ) # (1111)
if and only if the operators (4.110) pairwise commute, that is
[Dks, Dj,] =0 (4.112)

forall 1 < a,8 < 7,14 < jo < lo,13 < kg < lzg. We refer to Theorem 2.1 in [2] for this result.
Note that if (4.112) hold, then the Hamilton-Jacobi equation admits locally a solution which is additively
separable into groups of variables and satisfies the completeness condition (1.19) as a consequence of the
completeness condition (4.111). In consequence, such metrics are of the Painlevé form (1.14).

We now prove that the commutation relations (4.112) are equivalent to the generalized Levi-Civita
conditions (3.89). Note that this is a natural generalization of the link between the complete separation
of variables which is familiar from the Stéckel case and the classical Levi-Civita separability conditions,
as reviewed in [2], [23]. Indeed, we have

Lemma 4.1. The pairwise commutation relations (4.112) for the derivations Dy, are equivalent to the
generalized Levi-Civita conditions (3.89).

Proof. Substituting the expression (4.110) of the differential operators Dy, into the commutation relations
(4.112), we obtain

1 « s (1) 1 O o o)
|00 G 0 ) + iy SOl 0|
=t ot ? ) (4.113)
1 5y,,() 1
+ [— ks ( > (@, )ug) + e Z(akﬁco‘)ug})(@wcﬁ)} a0 0
5=1 a=1 ¥
For 1 <+ # B <r, the above identity is equivalent to
1
(8;% log c”) (81,7 log co‘) + (akﬁ log co‘) (8% log cﬁ) — C—a@kﬁ Opc* =0, (4.114)

which are precisely the generalized Levi-Civita conditions (3.89) after relabeling of indices. Note that for
1 <~ = <r, the above identity is always satisfied by a straightforward calculation. O

A this stage, we thus have proved another characterization of Painlevé metrics which appears in [9],
p-12.
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Proposition 4.1. A metric g is of Painlevé type if and only if there exist block orthogonal coordinates
(™) such that the generalized Levi-Civita conditions (4.114) hold.

We finish this section giving still another characterization of Painlevé metrics of a more intrinsic
nature. The starting point is the observation that the generalized Killing-Eisenhart equations are related
to the existence of quadratic first integrals (or symmetries) K(g) by the following result proved in [9],
Proposition 5.3 (see also Lemma 3.1 for an implicit proof of this proposition)

Proposition 4.2. In block orthogonal coordinates, we have that
{Ha K(B)} =0,
if and only if the Killing-Fisenhart equations
0;,(pss) = (pay — pas) (95, log ), (4.115)
hold for all 1 < ~,0 <.

The second observation is the fact that the integrability conditions for the Killing-Eisenhart equations
(4.115) are given by

1
(psy — pss) | (05, log 05) (Ok, log ) + (9;, log ¢*) (9%, log 06) — Eaka 0., Al =0, (4.116)

for all 1 < a, 8,7, < r. Clearly, these integrability conditions can be shortened as
(psy — pps). [Levi-Civita conditions| = 0. (4.117)

Using these two observations, Chanu ad Rastelli proved in [9], Proposition 5.5, the following charac-
terization of Painlevé metrics.

Proposition 4.3. (M, g) is a Painlevé manifold if and only if

1) there ewist r independent quadratic first integral Ky, B = 1,...,7 such that Ky = H and
{H,K@g)} =0.

2) The associated Killing two tensors Kfé) are simultaneously block-diagonalized and have common
normally integrable eigenspaces.

Proof. If g is a Painlevé metric, then the above assertions were already proved.

Assume now that there exist r linearly independent Killing tensors simultaneously in block diagonal
form. Then the generalized Killing-Eisenhart equations (4.115) will admit an r-dimensional vector space
of solutions. The latter is equivalent to the invertibility of the fundamental matrix A defined by

P11 .- Pir
A= :
Pri oo Prr
Hence any solution (p1,...p,) of (4.115) is given by
P1 ai
=A ,

Pr ar
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for some constants (a1,...,a,) € A. It is clear then that the Killing-Eisenhart equations are completely
integrable and thus satisfy the integrability conditions (4.117). Moreover, from the invertibility of A, we
can always choose the constants (aq,...,a,) such that p, # pg, V1 < a # < r at a point p € M and
therefore in an neighbourhood of p, by continuity. Hence, the integrability conditions (4.117) reduces to
the generalized Levi-Civita separability conditions (4.114). We conclude that g is a Painlevé metric from
Proposition 4.1. 0

As a concluding remark for this section, we emphasize that the hypotheses (3.88) that we make to
deduce the Levi-Civita conditions from the Killing-Eisenhart equations aren’t in fact necessary. Indeed,
it follows from Proposition 4.1 or Proposition 4.3 that the Levi-Civita conditions always hold whenever
g is a Painlevé metric, that is a metric of the form (1.14).

5 The generalized Robertson conditions and the separability of
the Helmholtz equation

Assume that the manifold (M,g) admits locally a block-orthogonal coordinates (x®) such that g =

ZCQGQ. Then using the same calculation that led to the expression (1.26) of the Laplace-Beltrami
B=1
operator, the Helmholtz equation (1.35) for such a metric reads

T g
D Pl -Bg, + Y A0 ]u=aru, (5.118)
B=1 jg:lﬁ

where ¢” = (cg)~! and
N Ly

) ls . c2 . ..c?
v —— Z (Gﬂ)lﬁjﬂaiﬁ log< 1 r )

c
ip=1g B

We shall say that a block diagonal metric g = 22:1 cgGg satisfies the generalized Robertson condi-
tions if and only if the differential equations

i7" =0, Yi<a#pB<r, (5.119)

hold.
Note that under the assumption (5.119), we may write the Helmholtz equation (5.118) as

T
Z ?Bsu = aju,
p=1

where the partial differential operators Bg,1 < 8 < r, defined by

ls
Bﬁ = 7AG5 + Z ’Yjﬁajﬁ .

Jp=1p

now depend on the group of variables x? only.
In this section, we want to prove
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Proposition 5.1. Assume that the manifold (M, g) admits locally block-orthogonal coordinates and satis-
fies the Robertson conditions (5.119). Then g is a Painlevé metric if and only if there exists a parametrized
family of solutions u of the Helmholtz equation (5.118) which is product-separable into groups of variables,
of the form

u= Hu,@(xﬁ;al,...,ar), (5.120)
p=1

and satisfies the completeness condition

det (8% (Biuﬁ)) £0. (5.121)
5

Proof. Assume that ¢ is a Painlevé metric. This means that cg = d:;f . Then the Helmholtz equation

(5.118) may equivalently be written in terms of the generalized Stéckel matrix S = (so3) and a set of
arbitrary real parameters (a; := A, ag,...,a,) defined on an open subset of A of R" as

T

Z PBs — Z Sgate]u =0. (5.122)
a=1

p=1 =

We now consider a parametrized family of solutions w of the Helmholtz equation (5.122) which is
product-separable into groups of variables, of the form (5.120) where for each 1 < g8 < r, the factor ug is
required to satisfy the partial differential equation in the group of variables x? given by

T
Baug = (D 8gaaa) up. (5.123)
a=1
We note that for Painlevé metrics of Riemannian signature on a compact manifold, it follows by
Theorem 8.3 of [17] that the elliptic partial differential equation (5.123) admits a unique solution if the
parameters (a; := A, ag,...,a,) are chosen so that the non-positivity condition

r
Z SBala < 07
a=1

is satisfied (at least locally).

The form of the separated equations (5.123) and the assumption that the generalized Stickel matrix
is invertible imply that our parametrized family of block-separable solutions of the Helmholtz equation
must satisfy the rank condition (5.121), i.e.

det (aaa(Bzuﬁ)) £0.
B

We now prove the converse statement, namely that the existence of a parametrized family of block-
separable solutions (5.120) of the Helmholtz equation satisfying partial differential equations of the form

ZcﬂBBu =au, (5.124)
p=1
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and the rank condition (5.121) implies that the underlying metric must be of Painlevé form. Substituting
u of the form (5.120) into (5.124) gives

T

Bsgu
Zcﬁiﬁ ﬂ:al.
= P

Differentiating the latter equation with respect to a,, we obtain

i c? (aaa (35”3)) =07

A=1 us
Letting
B up
(=)
ug

we obtain the expression of cg for a Painlevé metric as given in (4.107).

SBa = 8,1@

)

O

Remark 5.1. From (5.123) and the fact that the Stdckel matriz S is invertible, we conclude that the
product separable solutions (1.36) satisfy eigenvalue equations of the form

Tou=aqu, 1<a<r, (5.125)
where the T, are the linear second order differential operators given by

O
a_[;dets A

They will be shown in Theorem 1.2 to be identical to the operators AK(Q) defined by (1.88). Hence the
separation constants ai,...,a, can be understood as the natural eigenvalues of the operators AK(Q).

6 Proofs of the main Theorems

6.1 Proof of Theorem 1.1

The fact that the generalized Robertson conditions (1.28) are sufficient conditions for the product sepa-
rability of the Helmholtz equation (1.35) in the groups of variables associated to a Painlevé metric follows
from Proposition 5.1.

What remains to be done in order to prove Theorem 1.1 and what constitutes our main task is
therefore to show that the generalized Robertson conditions are equivalent to the conditions (1.37) on
the Ricci tensor, thus generalizing the classical result of Eisenhart [16] to Painlevé metrics. In order to
do this, we will show that

det 5)?—2 1
)l A P

(s1)l ... (s71) 47 Ieko (6.126)

3
Rjakrg = —iajaakﬁ log
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where

51 6Pl det S - st sol
Tjaks = (la +15 = 2) det S aj"akﬁ(s‘”sﬁl)Jr Z b {(8% log det S)(akB Ogd tS)
7 p=l1 (6.127)
sh1 st det S s ]

+ (9., logd tS)(akﬁ 1o tS) st Yia ’“f’(m)

We note that the expression (6.126) of the off block-diagonal components of the Ricci tensor Rj_ x, is
independent of the r Riemannian block metrics Gg,1 < 8 < r defined by (1.15). We also remark that
the first term in the expression (6.127) of T}, ,, involving second derivatives, vanishes identically in the
special case of Stéckel metrics since the pre-factor [, + g — 2 is zero in that case.

Once we will have established (6.126), it will then follow from Lemma 3.2 and more precisely from the
generalized Levi-Civita conditions (3.89) and (3.90) that the generalized Robertson conditions (1.28) are
indeed equivalent to the vanishing conditions (1.37) on the non-block diagonal components of the Ricci
tensor. We therefore proceed to establish the form (6.126) of the Ricci tensor for a Painlevé metric.

The expression of the Ricci tensor in terms of the Christoffel symbols is given by

Rjo ks = Rlzjakﬁ = 3lrlj(,k5 - ajaFlzkﬁ + ij(,kBFllm — lekﬂFljam , (6.128)

where the summation convention is applied with 1 <I,m < n = dim M. In order to compute the right-
hand side of (6.128), we will need expressions for the Christoffel symbols of a Painlevé metric (1.14).
Using the standard formulas

1 . )
Thji = 5(8hgji +0igin — Oign;) s Tinj = g"*Thjn, (6.129)

and writing the Painlevé metric (1.14) in block-diagonal form as

la la

ds’ = Z Yo D (Ga)isjadatedae, (6.130)

a=lig=la ja=la

we obtain for fixed indices 1 < o, 8 < r,

lo lg
i 1 Y i 1 j
I kais = 3 D ()P0 (9o kape » TPinke = ) > (870 (9a)iak. for a# B,
Pa=1la pB:]-E
(6.131)
and
l
1 - i
2 Z 9% (Ono Gk + 0o Ghake — OkoGhajn) - (6.132)

ka=1lq

In view of the expressions (6.131) of the Christoffel symbols, it is convenient to split the sum over [
appearing in (6.128) into three sums, the first sum corresponding to the values of the summation index [
lying in groups of indices different from the groups corresponding to « and /3, and the remaining two to
the values of [ belonging to the groups of indices labelled by a and § respectively. Thus we write

lﬁ

r Iy la
]“kﬁ ZRllJakB - Z Z Rpj;»yjakﬁ Z RP; Jaks Z pgg,,kﬁ (6133)

y#o,B=1py=1y Pa=1la pp=1p
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Let us begin with the first term. We have, for v # «, 3,

Ly

by ly la Ly ls
E Py — . P Mo, D mg . P
vajakﬁ B : : aﬂar .prkﬁ + : : § : r Jakﬁr Wp'vma + § : § : r Jakﬁr —Yp’vmﬂ

py=1y Py=1y Py=lyma=la Py=1y mp=lg

Ly Iy
- T ’Yp«,kgrp’yjanbw )

Py =1y my=1,

(6.134)

where the summations have been written out explicitly to avoid notational ambiguities. We begin with
evaluating the first-derivative term on the right-hand side of (6.134) using the expressions (6.131) for the
Christoffel symbols, thus obtaining, for v # «, 3,

l l l
Y 1 il v 1
S 0 =5 2 2 5 (@) O (G)n) = 505,00 sl . (6135)

Py=1y py=1y ny=1y
where |g,| := det(g;. ;). It follows that

T

T l'y
1
> Zajarpwpvkﬁziajaakﬁ( II los(lg))- (6.136)

’Y#a:B:l p’Y:LY ’Y#O‘7ﬁ:1

From the Painlevé form (1.14), we have

det S
Givin = gy (G )ingy (6.137)
so that ( v
det )"
94| = Wl 5l (6.138)
Using the fact that |G| is a function of the variables x" only, we obtain
T l'y T
1 det S
S 9Tk, = 5 > 1,95, 0k, (log( i ). (6.139)

'Y?ﬁa,g:l P’Y:1’Y 'Y?éavﬁ:l

We notice that the above expression is independent of the quadratic differential forms G, defined by
(1.15).

Next we evaluate the terms quadratic in the Christoffel symbols in the right-hand side of (6.134).
Again, we use the fact that v # «, 8 and the fact that in the Painlevé form (1.14), each of the quadratic
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differential forms G, defined by (1.15) depends on the group of variables x* only. We have

la l’Y la l"f la

m ]' a\Yman
D D Tk, m, = 4 > (g™ Oy (90)jana )8 O ((95)p, )
Ma=1la py=14 Ma=1la py=14 na=1q
1 l(x l(x
=1 > (9%)™ " Oy ((9ox) jana ) O 108(1g 1)

1 & Lo gal det S
=1 2 2 2 G0k (i (Gajuna )9, 108(195)

det S (det S)b

1 Ma
=1 2 " Dy Toa(=5) O, Tos(Z )

1 Sal (571)lw
= (0 108(Gr5)) (0 oy ) -

(6.140)

We notice that the above expression is again independent of the quadratic differential forms G, defined
by (1.15). Likewise, we obtain for the next quadratic term in the Christoffel symbols that appears in the
right-hand side of (6.134),

lﬁ

SETT 1 - (1)
8. — (5. IS
D > Tk I my = (0 108(35)) (O, log( @t S5 (6.141)
mg=1lg py=1,
For the third and final quadratic term, we have
i r v L i: 5™ (O 1 = )67 ., (95, log( il )
My v . J— My v .
pykgl jamy = py \Okg 108 my \Cja 108
s, 4 s det S det S (6.142)
~1 S'yl
(8;% log(d tS)) (95 log(d S)) ,

which is likewise independent of the quadratic differential forms G, defined by (1.15). Putting together
the expressions (6.135), (6.140), (6.141) and (6.142) we obtain

Y R Z {aal(ﬂ) (al(sal))(a1(3ﬂ))
’Yv jaks = jo Ok 108 kg 108 og
1<y#a,B<r e y#a,f=1 det S det S det S
L il s (6.143)
1 71 Jed!
Z(@kﬁ log(d tS)) (8 log(detS))

We still need to evaluate the the curvature components R’y ; ; and R

pajaky> Which will require a
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separate calculation. We have

lOt la
E E E . P
pajakg - apar J(xkﬁ a]ar apakﬂ
Pa=la Pa=la Pa=la
lo lo lo lg
Ma . P mg . P
D DD DR NN R WD NS KT L (6.144)
Pa=la Mma=1la Pa=1la mp=1lg
lo lg
2 : § : Ma E E mg Pa .
F pakﬂ ]a"”a F lak’ﬁr Jampg >
Pa=la ma=1gy Pa=1la 177,13:13

where again we have written out the summation signs explicitly to avoid notational ambiguities. We
have, using (6.131),
det S

1
= 55 Jaakﬁ(log(

is independent of x“, we obtain

Fpajak?,{i )) s (6145)

so using the fact that the cofactor s*!

lo
S 90, = %ajaa,% (log(det S)) . (6.146)

Pa=la

and a similar calculation gives

- 1
> 0 TPk, = 5050k, (log((det S)'=)) . (6.147)

Pa=la

We now evaluate the quadratic terms in the Christoffel symbols that appear in the curvature component
(6.144). In order to do so, we substitute into the expression (6.132) of the Christoffel symbols the
expressions

det S

Sal

(9a)iaja = Ga s (6.148)

which result from the Painlevé form (1.14). We obtain the following expressions for the Christoffel
symbols,

Loy, |:5iaja ., (log (det S)) + 6", 0;, (log (det S))

N | —

afa — ryiahaj(y +
l (6.149)
Z G*)taka Ga)hajo O, (log (det S))} ,

where the ~y'e haj. denote the Christoffel symbols of the block metric G, given by (1.15). It then follows
from (6.149) and (6.145) that

G 1 det S\ [ & 1
Z Z Lo ks TP pome = if“ﬂzcﬁ(log(—sa1 ))[ Z ryPapaja—i—QZaama(log(detS))}. (6.150)

Pa=la Mma=la Pa=la

31



Similarly, using (6.145) and (6.149), we obtain

l 1
o o 1 det S
Yo Tk m, = 55@(10%(;7))
Pa=la ma=1q

(6.151)

It follows therefore from (6.150) and (6.151) that

la la la

YD I e = Y Z I, 1, TP ome = 0. (6.152)

Pa=la ma=1la Pa=la ma=1la

We now evaluate the remaining difference of two double sums in the expression (6.144) of the curvature,
using the expressions

m 1., det S m 1 (det S)le
D = 500, (e () T, = g0 (s (G5000) . (01s3)
for the Christoffel symbols, to obtain
la la lo lg
Z Z Fmajokﬂ]'—‘papama - Z Z FmBlakBFpajamﬁ
Pa=la ma=1lqa Pa=la mp=1lg (6.154)
1 det S det S
= (0 =125, (1og (“5)) 0, (log (1))

Substituting the expressions (6.146), (6.147), (6.150), (6.151) and (6.154) into (6.144), we obtain

det S det S

)0k, (log(—1)) . (6.155)

l
= 1—1, 1
Z Rp;a]akﬂ ( 2 )aja akﬂ (log(det S)) + Z(la 1)8J01 (log(

Pa=1la
and similarly

la

1-1
SR = (5 518, 0k, (log(det S)) + (zB ~ 195, (log(~51

pp=lg

We now substitute the expressions (6.143), (6.155) and (6.155) into the decomposition (6.133) of the
off-block diagonal Ricci curvature components R;_ i, to obtain, for o # £,

det S det S

7))k (log(—1)) » (6:156)

det S
Rj ky = Zl 0jo Ok (log(

'y 1

1
+ Z(l“ + 15 —2)9;, (1og(

7)) + 9.0k, (log(det S))

det det S

))3k6( (ST))

1O det S det S det S det S (6.157)
Py [akﬁ(log( )1, (108(*52)) 1, (1oa(“42)) (10 r2))
Y#a,f=1
~ 01, (10g(%5522)) 3, (105(“52)
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We observe that since the cofactors s®* and s°! are independent of the groups of variables x® and x”

respectively and since Y. _, I, = n, we have

det S 1 (det §)"—2
;l +0jo Ok (log( =) + 95, O (log(det S)) = —iajaa,% log [(sll)ll(s’"l)lr (6.158)
We write
1 (det §)"—2 3 (det S)"—2
_iajaakﬁ log [(811)11 (srl)lrj| - iajaakﬁ log {(311)11 (s (6.159)
1 (det S)"—2 ’
+ Zajaakﬁ log (sT)h - (sl |7
and compute the second term in (6.159) as follows:
1 (det §)"—2 1 (det )b (det S)latis—2
zajaakﬁ log [(Sll)h(srl)h:| = iajaakﬁ [ Z log (W) + log (W) (6.160)

1<y#a,B<r

Evaluating the derivatives an using the fact that the cofactors s*! and s°! are independent of the groups
of variables x* and x®, we conclude that the expression (6.157) of the off-block diagonal Ricci curvature
can be written as

3 (det 5)"—2 slghl det S
Rjakﬁ = 775']*&8165 log {WW} + Z(la + lﬂ - Q)Waja kﬁ(m)
vl Sal 8,81 S'yl
1 log —— i log —— log —— 6.161
+#§ O Tog g ts)(a’“f* %8 qorg) + (9 198 g5) (9s 1o 37g) (6.161)
det S 571
71 2 (detS)

This completes the proof of Theorem 1.1.

6.2 Proof of Theorem 1.2

Our proof follows the structure of the one given in [3] for the special case of Theorem 1.2 corresponding
to Stéckel metrics satisfying the classical Robertson conditions (1.11). We shall begin from the general
expression for the commutator of two operators of the form

Ak, = Z Z Z Awwﬁ L 0; +Z Z B(a) s (6.162)

y=1iy=1, jy=14 y=1j,=1,

and analyze this expression for the case where A K 18 given by

Lol

Ak = K(zzjx) Z Z Z Vi ( Z;;WV ), (6.163)

Y=liy=1y jy=14

where the (K(Zi)) are the Killing tensors defined by (1.23). We shall then prove that the commutator
is identically zero for all Painlevé metrics satisfying the generalized Robertson conditions. We shall see
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that the generalized Killing-Eisenhart equations (3.83) established in Lemma 3.1 play a key role in the
analysis of the commutator.
We have

T ly ly le le o o
Ar bl = 3 30 30 30 3 {2(aiy oty - aga,aty o, 0.,

ve=liy=1, jy=14 k=1, pc=1.

iyJy X X kepe _ iyJy . X kepe Jg i kepe _ JB i kepe
+ (A(a) 6’waJwA(,8) A(B) alwaij(a) +B(a)aJwA(/3) B(ﬁ)aij(a) >6keape (

iy Jy X Pe Iy Jy . € .
+2(A(a) 0;, B — A3y 0i, BY )ahape

+ (A(ljf 0:,0;, Bls) — Ay 9,03, By + Bioy 03, B(s) — B(3)di, Bﬁ)) ape} :
We will now evaluate the coefficients of the third, second and first derivatives in the expression (6.164)
of the commutator for Painlevé metrics satisfying the generalized Robertson conditions, and show that
must vanish identically.
Over the course of the calculations, it will be useful to rewrite the expressions (1.23) of the block
components of the Killing tensors (K Zi )) in the form

st

K = pan 5 (G = pan(97)17 (6.165)
where the quantities p, are defined by
s
Pay = 573 (6166)
in which case we obtain
o o g1 . by
A = K0 = par (G = pan ()77 BEy = —pey 3 (6)F T, (6.167)
iy=1,
where l l
1 : :
Tk, = =50 log(lg]) DD (9 ke On(g) P (6.168)
Pe=1e he=1,

Note that a standard calculation shows the important result:

Lemma 6.1. The generalized Robertson conditions (1.28) are equivalent to
0;, Tk, =0, Vi<a#p<r (6.169)

We will compute the expressions of the derivatives of the coefficients AE”QJ; and Bg;) when needed
during the calculations, making use of the generalized Killing-Eisenhart equations (3.83).
We begin with the coefficients of the third derivatives in (6.164), whose vanishing is equivalent to the
condition l
5
indy . AkePe _ pAlvIv g pAkePe | _
> (A(l)”c’)HA(m A 0, ALY ) =0. (6.170)

iy=1,
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We shall see shortly that in analogy with the Stéckel case, the vanishing of these coefficients does not
require the generalized Robertson conditions and holds tue for all Painlevé metrics. When the expression
(1.23) of the Killing tensors (Kzi)) is substituted into the condition (6.170), the latter reduces to

el el
. S e\kepe S . e\kepe
(a“(pﬁfdets)(G VT e 34759 (G )
(6.171)

el

Iy
l 561 s

) €\kepe . €\kepe
Z:: Md t5 (82”(p“€det5‘)(G) TP a5 () )

We now distinguish between the cases 7 = € and v # ¢ when analyzing (6.171). If v = ¢, then the
derivatives of G¢ cancel out in (6.171) and using (6.166), the condition (6.171) reduces to

; cryin (yer (g (20 L (2 0 6.172
i;( )E) <detS i (Gers) ~ Tt “(dets)> ' (6.172)
But the latter is an identity on account of the generalized Killing-Eisenhart equations expressed in the
form (3.85). Likewise, if v # ¢, then using the fact that we have then 9; (G€)*P¢ = 0, the condition
(6.171) becomes

- G i (GE)kep 57 P 5P s7P P 5
2 (@) (@) (detS (3t s) ~ dois “(dets)> =0, (6.173)

iy=1

which is again an identity by virtue of the generalized Killing-Eisenhart equations expressed in the form
(3.85).

We now proceed with the coefficients of the second derivatives in (6.164), whose vanishing is equivalent
to the conditions

l‘Y vy
Z Z ( w ) 8 (Akfpe) w "9, 8 (Akspg) Bg;)ah(AkaF) Bh@ (Akepe))

(@) @ )~ 4@ () ®) (69 (A
”‘”l”‘l (6.174)
#2 3 (Ao () - g 0. (813 ) =0,

and

Z (A&”@ Bg’g)) Azg)ha (Bg’;))> =0, (6.175)

iy=ly
where the round brackets denote symmetrization of indices.
We begin with the condition (6.174), for which we will need expressions for the first and second

derivatives of A ”” and BJ” Using (6.165) and (6.167), we obtain

o g1 g1 o g1 o
A7”YJ’Y — o o Y)er Iy oy ——— Y)er I~y 676 . 1
01 A = (010w o + 0 (o) ) €7 4 o e (7)) (6.176)

35



Using the generalized Killing-Eisenhart equations (3.83), the preceding equation reduces to

’Yl i~ S’Yl in ]
T tS)(G'Y) ~J~ era'ymakg ((G"/) ’YJ’Y)(S'YE
(9

)’737) .

Likewise, we obtain the following expressions for the second derivatives of the coefficients AE;J)-” by using

Ok, A(;J)w PacOk, (

= paeake (

(6.177)

again the generalized Killing-Eisenhart equations (3.83) :
O, Oy A7 = e, Dy, ((97)797) (6.178)
This implies immediately that the first two terms in (6.174) cancel each other out, that is

L
i'y "y ke € l’Y v kE €
S5 (A oo (4l - o0, (4

iy=1y jy=1,

(6.179)
=Y D [par(97)" 9 ppy0:, 05, (99 P = ppy(97) 7 pardi, By, (9) 7] = 0.
iy=ly jy=1y
By making use of the preceding remark, by observing that
B“ = Z A’“WPW (6.180)

iy=1,

and by using the expressions (6.177) and (6.178) for the first and second derivatives of the coefficients

Az”)”, the condition (3.90) becomes

le le
icke AhePe 1€p€ heke hepe ieke heke pteDe
2; hZ (A<a> A T A G — A Al A A(ﬁ)>a“rh<
te=1lc he=1¢

le le
Qe k hepe GeDe heke icke hepe LePe
+> (A Or (A5 ) + A i (A5 ) — Ay 01 (AGH) = A on (AL )>Fh =0.

te=1c he=1,

(6.181)

It is now easily verified that the second double sum in the preceding expression vanishes identically
as a consequence of (6.179), and that the first double sum is identically zero upon substitution of the
expressions (6.167) of the coefficients Azjj)”.

Next we turn our attention to the condition (6.175), which we may rewrite, using (6.180), as

by le

Z'y v pAhepe hepe 1'7 v _
> (A Al — AL AL ) (95, Tn, — 00, Ti,) = 0. (6.182)
iy=1, he=1,
We have )
et
; Ty, — Op T = —0; 1 1 ; 1
87 he — On, . 8w8h ( Ogd S) +8h€8 ( Ogd tS) 0 (6 83)

since the factors of det S cancel out in the logarithmic derivatives, and since s! (resp. s7!) is independent

of the groups of variables x¢ (resp. x7). Finally, we must show that the coefficients of the first derivatives
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in (6.164) are identically zero. We shall see that the analysis of these coefficients is slightly more involved
than that of the second and third derivatives, and that the argument needed to prove their vanishing
makes use of the generalized Robertson conditions.

Using (6.180) the vanishing of the coefficients of the first derivatives in (6.164) is seen to be equivalent
to

Ly Ly le

inJy Akepe kepe fing -
<A(;)7A(ﬁ) — A A(g)”)&wahrke

iy=1, jo=1, k=1,

ly Uy le
Iy Jy kepe Ty Jry kepe Iy Jy kepe Iy Jy kepe
+ 2 <A<a]> 0u, 05, AGES" — Ay 00,05, AT [Tk + 2LAGT Oi, AT — A 00, AGH )ajwrke
iy=1y jy=1y ke=1c
ly ly le ly
ma~J kepe M~ J kepe _
- S (a0 b ) - 4570, (4l 1)) =o.

iy=1y jy=1y ke=1c my=1,

(6.184)

The second triple sum in (6.184) vanishes identically on account of (6.170) and (6.179). Likewise, using

again (6.170) and the expressions (6.167) for Azjj)”, the condition (6.184) reduces to

I Y le

> (panpse = pacppy)(97) 7 () P (05,05, Tk, — Ti (95, Tk,)) = 0. (6.185)

iy=1y jy=1, ke=1c
In analogy with the notation used in [3], we introduce the tensor (C?;) defined by

Ly

Ciwk€ = Z (pavpﬁe - paepﬁv)(gv)iijajﬂ,rkg . (6186)

Ty =1y

The final steps in the proof will be to show that (6.185) is satisfied if an only if the tensor (C*;) has zero
divergence, that is

ro
>N Vi Chy, =0, (6.187)
y=1liy=1,

and that the generalized Robertson conditions are equivalent to C%j_ = 0. These are the analogues for
Painlevé metrics of the steps followed in [3] for the proof of the corresponding result for the special case
of Stickel metrics satisfying the classical Robertson conditions.

We have

r l,y r l-y r ls T ls
Z Z viwci’yks = Z Z (‘raz},ciwk'6 +Z Z Fiijhachsk-e - Z Z Fpajwkfchskf) . (6.188)
r=1liy=1, r=liy=1, 0=1hs=1s 0=1ps=1s

Substituting into the expression (6.188) of the divergence the definition (6.186) of the tensor (C?;) and
the expressions (6.131) and (6.132) that were computed above for the Christoffel symbols of Painlevé
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metrics, we obtain

S S
Z Z VHC’” k. = Z Z Z (pa'ypﬂs — paepﬁ,y) {(8%{ (gﬁ)zwpv)apwrks + (g’Y)szW(%Wapwrke
y=1li,=1, y=1i,=1, py=1,
el by

. s .
_ (g'Y)l“{p’Y (8pwrk€)(a7;,y log m) — (81,71“;66)( Z (g’Y)l‘wP“/]_—‘h_Y + 0jw (g’Y)Jwa)

l
1o =,
3 3 SO0 )6 (0, T+ 0, )|
he=1¢ ke=1,
(6.189)

Substituting into (6.189) the expression (6.137) of for the block components of the metric, we get

Lol

r ly r
Z Z ViW Civke = Z Z Z (pa'ypﬂe - pocepﬁ"/)(g’y)iwhY |:<8iwapwrke - Fiwapwrke)

y=1i,=1, y=1liy=1, py=14

1 Sel
+ 5 (317 (10g m)) (8k€ Fp,y — 6p7FkF):| .

(6.190)

We now remark that the first derivative terms 0x I',., — 0, T', in (6.190) vanish identically on account
of the identities (6.183), so that we finally obtain

Ll

r Iy r
DD Vil =3 > > (Paypse paepaw)(g”)”””{(&ﬁpﬁke ~Ti,0,Tk)|.  (6.191)

y=1li,=1, y=1i,=1, py=1,

It therefore follows from (6.191) that (6.185) will hold if and only if the tensor C*, is divergence-free.
Recapitulating our steps, we have shown that the vanishing of the commutator [A Koy DK ﬁ)] is equivalent
to the vanishing of the Poisson bracket {K(4), K(g)} and that of the divergence of C ., that is,

T l'y
Ak Ax,] =0 <= {Ku),Kg}=0 and Y Y V; C, =0. (6.192)

y=1li,=1,

The proof of the commutation relations (1.39) is concluded by observing that the generalized Robertson
conditions (1.28) are equivalent to (C?;) = 0 thanks to Lemma 6.1. Finally, it is easily shown that the
operators T, ,1 < o < r defined by (5.125) are identical to the operators Ay, defined by (1.38) by

observing that the Killing tensor (K (li )) is block-diagonal, with components given by

. Ba
igjp _ S

(@ " detS

(GP)odo, K3 =0 for B#7. (6.193)

6.3 Proof of Theorem 1.3

We start from the expression (1.46) of the Laplace-Beltrami operator for the conformally rescaled Painlevé
metrics. We now rescale v defined by (1.44) according to

v=Rw. (6.194)
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so that the Helmholtz equation (1.46) when expressed in terms of w becomes

i lp lp

2. (detS ~Ag, + Z V905, =2 Y Y (GP)#9(9;, log R) 9y, )w

. o R (6.195)
AgR
—5 )W

+ (qg c— At + =0.

The idea behind R-separability is that one choose the conformal factor ¢ appearing in the conformal
rescaling (1.41) and the scaling factor R appearing in (6.194) in such a way that the Helmholtz equation,
when expressed in terms of w, becomes separable in the groups of variables x” ;1 < 8 < r under a certain
condition on the conformal factor ¢. This is achieved in two steps, the first one being to choose the scaling
factor R so as to eliminate the first derivative terms 7 Jj,w in (6.195). This is equivalent to R solving
the overdetermined system of PDEs given by

lg
2 3 (GP)9(di,log R) =47, 13<js<ls. (6.196)

ig=lg

Using the expression (1.31) of the coefficients 77¢, we see that the system (6.196) admits a solution R

given by

(s")F (s )T’
(det S) T

which is precisely the scaling factor R given by (1.50), and which we shall work with from now on. We
may now compute the expression of R~' A, R appearing in (6.195), using the expression (1.26) of the
Laplace-Beltrami operator for Painlevé metrics and the fact that R solves (6.196). We obtain after some
calculations

, (6.197)

AR~ P AR, 0,R
R _;(dets)[ rot 2R

Jjs=1g

(6.198)

_ZdetS Z 63575_7 Z Z (G8)issa"' VJBJF* Z 9;,(log |Gly'?)] .

Jjs=lp ip=lg jp=lp Jjs=lp

When the expression (6.198) of R~! A R is substituted into the Helmholtz equation (6.195) satisfied by
w, the equation becomes

r 861
Z (detS) Z i’ = 5 Z Z (G)inja" "7
1 [ 1 1
B= JB 8 ﬁl B isg=1lp (6.199)
1 < . A
+3 2 OnloglGah]w (g = Acthw=0.
JI=1p

To second step towards R-separability is to choose the conformal factor ¢ in such a way that the equation
(6.199) for w becomes manifestly separable in the groups of variables x*,1 < a < r, which is achieved
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by requiring that c satisfy the scalar nonlinear PDE

T B1 lg lg lp
s 1 . 1 i
qg,c — At = —ay + Z (detS) [ - 5 Z 8]'57” + 1 Z Z (Gﬁ)iﬁjﬁ’y ﬁ’yjﬁ
B=1 jg=1g ig=1lg jp=1g
| s (6.200)
1 Z 9, (log|Gs|"?) + ¢5] ,
Jjg=1p

where a; is a constant and the ¢5 = ¢5(x”),1 < 8 < r, are arbitrary smooth functions of the group of
variables x?. Using the definition (1.43) of ¢, ., we see that the PDE (6.200) may indeed be rewritten
in the form (1.47). Note that the equation (6.199) takes the form (1.51). This concludes the proof of
Theorem 1.3.

7 Perspectives and open problems

While the main results of our paper provide a convenient starting point from which to initiate the study
of the anisotropic Calderén problem in manifolds with boundary endowed with Painlevé metrics, there
are a number of questions that are left open in the above analysis and that call for further investigation,
not just from a separation of variables point of view, but also in a more general differential geometric
context. In particular, we would like to mention the following:

e It would be worthwhile to obtain more examples in closed form of Painlevé metrics which are not of
Stéckel type and for which the generalized Robertson conditions (1.28) are satisfied. Given that the
notion of a Painlevé metric can readily be formulated in an arbitrary signature and in particular
in Lorentzian signature, it would be of particular interest to construct examples that would be
solutions of the Einstein vacuum equations in four or higher dimensions.

e One should be able to obtain an intrinsic characterization of the separable conformal deformations
and R-separability of the Painlevé metrics, considered in Theorem 1.3. Conformal Killing tensors
should be a key component of such a characterization ([8, 23]).

e While Painlevé metrics are a generalization of Stickel metrics, which admit orthogonal local coor-
dinates by definition, the Stéckel form admits an extension to non-orthogonal coordinates [22], an
important Lorentzian example of which is given by the Kerr metric in General Relativity. It would
be of interest to similarly extend the notion of a Painlevé metric to a non-orthogonal setting, where
the expression of the metric (1.14) defining the Painlevé form would be generalized to allow for the
presence of cross terms between pairs groups of coordinates x® and x? for o # (5. Again, some
partial results in this direction, which apply to the 4-dimensional Lorentzian case, appear in [20],
and suggest that non-orthogonal separability in this generalized sense would imply the existence of
commuting Killing vectors, as is the case with the Stéckel form [22, 42].

e The considerations of the present paper are all local, but there exist global classification results for
manifolds admitting Stéckel metrics (see [26] and the references therein). For example, it is shown
that in dimension two, a compact manifold which admits a sufficiently generic Stéckel metric must
be diffeomorphic to the 2-sphere, the real projective plane, the 2-torus or the Klein bottle. It would
be of interest to obtain analogues of these results for Painlevé metrics which are not Stéckel.
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e It would be of interest to characterize in analogy with the Stéckel case the scalar or vector potentials
which are compatible with the separation into groups of variables of the Helmholtz equation in the
class of Painlevé metrics.

Some of the above questions appear to be challenging, but progress on them would help to improve
our understanding of the geometries in which separation of variables can be achieved in a broader and
less restrictive sense than complete separation into ordinary differential equations.
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