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CHAPTER 1

Introduction

This document is devoted to questions related to forecasting time series models, a topic
which has now a growing importance in various domains like signal and image processing,
agro-industry, econometrics, geophysics and all socio-economics areas where good forecasts
can greatly improve the gains and limit the wasting.

1. General model

We are interested in models like

(1) Xk = a(Xk−1, . . . , Xk−p) + b(ek, . . . , ek−q) + εk ∀k,

where the observed variables are (Xn, . . . , X1) and (en+1, . . . , e1) and where the sequence
(εj) is an unobserved white noise. The goal is to predict the value of Xn+h for h = 1, 2, . . .
from the observed variables. For convenience, in most cases, we shall take the forecasting
horizon h = 1. But it should be clear to the reader that this is a real loss of generality.
Other values of h shall be treated in exercises.

Notice in (1) the simultaneous presence, in the right hand side, of an autoregressive
summand and of a purely regressive one.

• the autoregressive part a(Xk−1, . . . , Xk−p) means that the past values of the time
series, up to a lag of length p, affect the value Xk+h.

• the regressive part b(ek, . . . , ek−q) summarizes the action of an exogeneous sequence
(ej).

For example imagine that the electricity consumption Xk at time k depends on the con-
sumption at the p instants just before and on the temperature ek, . . . , ek−q at the moments
k, . . . , k − q.

2. Optimal predictor

The most usual forecasting method consists in minimizing a quadratic criterion (as-
suming that the second order moments are finite). Namely

X̃n+h = Argmin{(Xn+h − Z)2|Z ∈ Fn},

where Fn is the σ-algebra generated by (Xn, . . . , X1), (en+1, . . . , e1). With this criterion,
X̃n+h is nothing else than the conditional expectation

X̃n+h = E(Xn+h|Fn)

5



6 A. Philippe & M.-C. Viano

Consider the case h = 1. In all the situations studied below, εn is independent of Fn, so
that the one step ahead optimal predictor is

X̃n+1 = a(Xn, . . . , Xn−p+1) + b(en+1, . . . , en−q+1),

and consequently, εn+1 is the forecasting error at horizon h = 1. Unfortunately, the
functions a and b are generally unknown, so the statistician has to plug in an estimation
of the functions. Consequently, the forecasting error includes both the theoretical error εn

and the estimation error. More precisely, we have to replace X̃n+1 by

(2) X̂n+1 = â(Xn, . . . , Xn−p+1) + b̂(en+1, . . . , en−q+1),

implying that

Xn+1 − X̂n+1 = εn + (a(Xn, . . . , Xn−p+1)− â(Xn, . . . , Xn−p+1))

+
(
b(en+1, . . . , en−q+1)− b̂(en+1, . . . , en−q+1)

)
.

3. Difficulties

The theoretical treatments of the general model (1) are difficult for several reasons.
• The first reason is the fact these two regressions have a functional form: in order

to predict Xn+1, one has to estimate two functions a and b. Estimating functions
is always more tricky than to estimate finite-dimensional parameters.

• The second one is the simultaneous presence of regression and autoregression.
Regression is easy to treat, being a relatively well known situation. Autoregression,
which induces stochastic dependence between the X ′

js, is much more difficult to
handle, except in the familiar case of linear autoregression.

We shall proceed step by step. Firstly, in section 2 we deal with a linear version of (1).
Then we treat in sections 3 and 4 simple regression models, and a simple autoregression
one in section 5. In these two cases, we shall take p = q = 1 in (1), keeping in mind that
the general case can be treated as well, despite a necessary multivariate treatment (see
section 6 for example).



CHAPTER 2

Linear models

We begin with the linear version of (1)

(3) Xk = a0 + a1Xk−1 . . .+ apXk−p + b0ek + . . .+ bqek−q + εk ∀k.

1. Assumptions

• The noise (εn) is a Gaussian zero-mean i.i.d sequence, with variance σ2 6= 0.
• The exogeneous sequence (en) is i.i.d, Gaussian, with zero mean and Var(en) = 1.
• Independence: The two sequences (εn) and (en) are independent.
• Stationarity: ap 6= 0 and the polynomial A(z) = zp − a1z

p−1 − . . . ap does not
vanish on the domain |z| ≥ 1.

• Minimality: the two polynomials A(z) and B(z) = b0z
q + b1z

q−1 + . . . + bq have
no common root.

• Stationarity again: The process (Xn) is the unique stationary solution of (3).

Remark 1. Whiteness assumption of the input noise (εn) is rather natural, at least in
a first approach. So is the independence of (εn) and of (en).

Remark 2. The Gaussian assumption is convenient, but could easily be relaxed.

Remark 3. Assuming that (en) is i.i.d. is not realistic in most cases (for example when
en represents the temperature!), and should be relaxed. However, this situation is chosen
here because it makes the developments more easy.

Indeed, in this case, equations (3) have a unique Gaussian stationary solution that
satisfies the ARMA(p,q) representation

Yk − a1Yk−1 − . . .− apYk−p = ηk + c1ηk−1 + . . .+ cqηk−q(4)
with

Yk = Xk − E(Xk) = Xk −
a0

1− a1 − . . .− ap

=: Xk −m0.(5)

where (ηk) is a zero-mean Gaussian white noise (see exercise 1 for the proof of this result
in a simple case). This solution also writes

(6) Yk = uk + d1uk−1 + . . .+ dluk−l . . .

where

(7) uk = b0ek + . . .+ bqek−q + εk,

7
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and where the d′js are the coefficients of the expansion of the autoregressive part

(1− a1z − . . .− apz
p)−1 = 1 + d1z + . . .+ dlz

l + . . .

Remark 4. The minimality assumption implies that it is impossible to find for the
same model a shorter representation like

Xk = c0 + c1Xk−1 . . .+ cp−1Xk−p+1 + d0ek + . . .+ dq−1ek−q+1 + εk ∀k.

2. Parameter estimation

In the ARMA representation (4), we know that the maximum likelihood estimate θ̂∗n of
the vector parameter θ∗ = t(a1, . . . , ap, c1, . . . , cq) (hereafter, tv is written for the transpose
of vector v) is almost surely convergent and that n1/2(θ̂∗n − θ) is asymptotically normally
distributed (see for example [4], chapter 8). However, this is not a very useful result,
for two reasons. The first one is that the vector we want to estimate is not θ∗, but
θ =t (a1, . . . , ap, b0, . . . , bq), the link between the two vectors being highly non linear (see
exercise 1). The second reason is that in the classical ARMA theory, the input noise (ηn)
is unobserved, while in model (3), the exogeneous part ek, . . . , ek−q is observed. The only
unobserved term being εk. Estimator θ̂∗n is not fitted to this situation.

For those reasons, it is better to estimate θ by a direct least mean square method

(8) θ̂n = Argmin


n∑

k=1+p∨q

(
Xk − α0 −

p∑
j=1

αjXk−j −
q∑

j=0

βjek−j

)2
 ,

the minimum being taken over (α0, α1, . . . , αp, β0, . . . , βq). Denoting

k0 = 1 + p ∨ q
φk = t(1, Xk−1, . . . , Xk−p, ek, . . . , ek−q)

Mn =
n∑

k=k0

φk
tφk

it is easy to check that, if Mn is invertible, (8) has a unique solution given by

(9) θ̂n = M−1
n

n∑
k=k0

Xkφk.

For this estimator the following result holds.

Proposition 1. As n→∞, with θ̂n defined as in (8),
(i) θ̂n − θ = oas(n

−α) for every α < 1/2

(ii)
√
n
(
θ̂n − θ

)
L−→ N (0, σ2M−1)

where σ2 = Var(εn) and where M = E(φk
tφk), is invertible.
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Proof. Recall that un = oas(vn) means that unv
−1
n

a.s.−−→ 0.
Before proceeding, it is useful to see that the vector sequence (φk)k≥k0 is Gaussian,

stationary and ergodic. Indeed, using (7),

φk =



1
a0 + uk−1 +

∑∞
j=1 djuk−1−j

...
a0 + uk−p +

∑∞
j=1 djuk−p−j

ek
...

ek−q


so that, introducing the backward shift operator B (defined by Bmzn = zn−m), we can
write

φk =



1
a0
...
a0

0
...
0


+



0 0
B +

∑∞
j=1 djB

j 0
...

...
Bp +

∑∞
j=1 djB

p+j 0
0 B0

...
...

0 Bq


(
uk

ek

)

so that the sequence (φk)k≥k0 is clearly constructed by linear filtering from the Gaussian
sequence (uk, ek)k≥1. Finally, taking (7) into account, (φk)k≥k0 is obtained from t(ek, εk)k≥1

by linear filtering. Now we recall two results:
• If a stationary sequence (wk) has a spectral density, it is also the case for every

sequence (w′
k) obtained from w by linear filtering (i.e. w′

k =
∑∞

0 γjwk−j, with∑
‖γj‖2 <∞).

• A stationary Gaussian sequence having a spectral density is ergodic. For ergodicity
and related properties see for example [5]).

First step: consider the matrix Mn. Since (φk)k≥k0 is ergodic, the law of large numbers
applies, leading to

(10) n−1Mn
a.s.−−→M = E(φt

kφk).

Now, suppose that E(φt
kφk) is not invertible. This means that there exists a non zero vector

v such that
E(tvφt

kφkv) = 0 ∀k

Hence, tvφk =a.s 0 for all k. This implies that there exists coefficients such that

v0 + v1Xk−1 + . . .+ vpXk−p + w0ek + . . . wqek−q = 0 ∀k.
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As ek is independent of the other variables in the expression above, this implies that w0 = 0,
so that

v1Xk−1 + . . .+ vpXk−p + w1ek−1 . . . wqek−q = −v0 ∀k.
But in turn this contradicts the hypothesis of minimality (see the assumption 4 in sub-
section 1) . Consequently, M is invertible, so that, almost surely, Mn is invertible for n
sufficiently large, and formula (9) is then valid.

Second step: let us prove the almost sure convergence. From (9), and from the fact
that Xk = tφkθ + εk, write

nα(θ̂n − θ) = M−1
n

n∑
k=k0

Xkφk − θ

= nα

(
M−1

n

n∑
k=k0

φk(
tφkθ + εk)− θ

)

= nα

(
M−1

n

n∑
k=k0

φkεk

)
=
(
nM−1

n

)(∑n
k=k0

φkεk

n1−α

)
(11)

Now, εk is independent of all the coordinates of φk, so that E(φkεk|Fk−1) = 0. In other
words, (φkεk)k≥k0 is a (vector) martingale difference sequence with respect to the sequence
(Fk)k≥1. Moreover, for β > 1/2∑

k≥k0

E
(
‖φkεk‖2)
k2β

= σ2E
(
‖φk‖2)∑

k≥k0

1

k2β
<∞

Hence, applying Theorem 3.3.1 in [16],

n−β

n∑
k=k0

φkεk
a.s.−−→ 0.

Finally, as was seen above, nM−1
n

a.s.−−→ M−1. Using (10), the almost sure convergence is
proved.

Third step: we prove now that

(12)
∑n

k=k0
φkεk√
n

L−→ N (0, σ2M)

To prove this result, let T be a fixed integer, and consider the truncated expansion

X
(T )
k = m0 + uk +

T∑
j=1

djuk−j,

and the corresponding vector

φ
(T )
k = t(1, X

(T )
k−1, . . . , X

(T )
k−p, ek, . . . , ek−q).
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It is easy to check that the sequence (εkφ
(T )
k )k≥k0 is T + p + q-dependent (that is to say:

εkφ
(T )
k and εk+hφ

(T )
k+h are independent as soon as h > T + p + q). Hence the central limit

theorem holds. In order to find the covariance matrix of the limiting law, notice that
E(εkεk+hφk

tφk+h) = 0 if h 6= 0. Hence,∑n
k=k0

φkεk√
n

L−→ N (0, σ2MT )

where MT = E
(
φ

(T )
k

tφ
(T )
k

)
.

Finally, as T → ∞, MT → M and Var(φ
(T )
k − φk) → 0. To prove (11) it remains to

apply the following lemma whose proof is left as an exercise.

Lemma 2. Suppose that,

Zn = ZT,n,1 + ZT,n,2 ∀n, T

where

• for fixed T , as n→∞, ZT,n,1
L−→ N (0, VT )

• VT → V as T →∞
• Var(ZT,n,2) → 0 uniformly with respect to n, as T →∞

then Zn
L−→ N (0, V ) when n→∞.

�

3. Forecasting

As was seen in the introduction, we choose

X̂n+1 = ˆtθnφn+1,

and, consequently, the forecasting error at horizon 1 is

Xn+1 − X̂n+1 = (θ − ˆtθn)φn+1 + εn+1,

where the two summands in the right hand side are independent. From Proposition 1, for
every α < 1/2, n−α(θ− ˆtθn)

a.s.−−→ 0. Moreover the distribution of φn does not depend on n.
To summarize,

Proposition 3. With the same assumptions as in Proposition 1,

Xn+1 − X̂n+1 = εn+1 + Tn,

where εn+1 and Tn are independent and where, as n→∞, Tn = oP (n−α) for every α < 1/2.
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4. Exercises

Exercise 1. Prove representation (4) for the simple model
Xk − a1Xk−1 = b0ek + b1ek−1 + εk,

and give a hint for the proof in the general case (3). ?

Exercise 2. Prove Lemma 2. ?

Exercise 3. Give the expression of the optimal forecast X̃n+2 at horizon h = 2 in the
model of exercise 1. ?

Exercise 4. Consider now the linear model
Xk+1 = aXk + bek+1 + εk+1,

and suppose that now that (ek) is an autoregressive sequence
ek+1 = cek + ηk+1

where (ηk) is a zero mean white noise.
(1) Show that, if |a| < 1 and |c| < 1, there is a stationary solution (Xk, ek).
(2) Working with this stationary solution, propose an estimator of the parameters a,

b and c.
?



CHAPTER 3

Preliminaries on kernel methods in functional regression
estimation

Kernel methods are old and popular methods used in all areas where the statistician
has to estimate a functional parameter.

As examples,
• let the data (Z1, . . . , Zn) represent a sample from an i.i.d. sequence, the question

being to estimate the density of the marginal distribution.
• Or let [(Y1, Z1), . . . , (Yn, Zn)] be a sample of an i.i.d. sequence, the problem being

then to estimate E(Z1|Y1 = y).
The first example is the problem of density estimation, for which kernel methods were
proposed by Parzen in 1962. The second is the problem of regression estimation, for which
kernel methods were proposed by Nadaraya and Watson in 1964.

Here we concentrate on regression estimation, and the so-called Nadaraya-Watson es-
timator.

1. Heuristic approach

1.1. Step 1. In the case of discrete data, when the denominator does not vanish

(13) r(y) := E(Z1|Y1 = y) =
E(Z1 IY1=y)

P (Y1 = y)
.

hence, from the sample (Y1, Z1), . . . , (Yn, Zn), it is natural estimate r(y) by

r̂n(y) =
n−1

∑n
j=1 Zj IYj=y

n−1
∑n

j=1 IYj=y

=

∑n
j=1 Zj IYj=y∑n

j=1 IYj=y

which, thanks to the law of large numbers, converges towards the conditional expectation.
Now, when the data are not discrete, formula (12) no longer holds, both numerator and
denominator generally being zero.

1.2. Step 2. However, the same method could be applied to estimate (if the denomi-
nator is non zero)

(14) E (Z1|Y1 ∈ [y − h, y + h]) =
E(Z1 IY1∈[y−h,y+h])

P (Y1 ∈ [y − h, y + h])

13
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by ∑n
j=1 Zj IYj∈[y−h,y+h]∑n

j=1 IYj∈[y−h,y+h]

.

1.3. Step 3. As every one knows, if h → 0 in (13), the left hand side tends to
E(Z1|Y1 = y), at least under suitable smoothness assumptions.

From this, it seems natural to replace h by a sequence hn tending to zero as n → ∞,
and take

(15) r̂n(y) =

∑n
j=1 Zj IYj∈[y−hn,y+hn]∑n

j=1 IYj∈[y−hn,y+hn]

,

where hn has to decrease when the sample size increases. This last point has to be devel-
oped. From now on, in order to have a well defined estimator, we take 0/0 = 0.

1.4. Step 4. Fast enough, but not too fast! Writing

Zj = E(Zj|Yj) + (Zj − E(Zj|Yj)) = r(Yj) + ηj

where Yj and Zj − E(Zj|Yj) =: ηj are uncorrelated, we get

r̂n(y)− r(y) =

∑n
j=1(Zj − r(y)) IYj∈[y−hn,y+hn]∑n

j=1 IYj∈[y−hn,y+hn]

=

∑n
j=1(r(Yj)− r(y)) IYj∈[y−hn,y+hn]∑n

j=1 IYj∈[y−hn,y+hn]

+

∑n
j=1 ηj IYj∈[y−hn,y+hn]∑n
j=1 IYj∈[y−hn,y+hn]

= An +Bn.

First consider An. If r is continuous, it is clear that this term tends to zero if hn → 0.
In fact, the smaller hn is, the smaller An.

Now consider Bn. For the sake of simplicity, suppose that (Yj, Zj) is Gaussian. Then
for every j, ηj is independent from all the indicators IYl∈[y−hn,y+hn], so that

Bn =
n∑

j=1

ηjuj

where, for every j, ηj and uj are independent and E(ηj = 0). This implies that E(Bn) = 0
and that, with pn = P (Yj ∈ [y − hn, y + hn])

Var(Bn) = E(Var(Bn|u1, . . . , un)) = Var(η1)E

(
n∑

j=1

u2
j

)

= Var(η1)E

(
1∑n

j=1 IYj∈[y−hn,y+hn]

)
≥ Var(η1)

1

npn

.(16)

This proves that npn →∞ is necessary for Var(Bn) → 0. From this it is clear that for the
convergence of Bn to zero, hn has to tend to zero not too fast. For example, if the Yj are
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uniformly distributed, we have pn ∼ chn, and then we see that the two conditions are

hn → 0 and nhn →∞.

More generally, we shall see that it is a general feature when a kernel method is used for
estimating a function that the same kind of antagonist constraints hold. The consequence
for the practitioner is that the smoothing parameter has to be carefully regulated.

1.5. Step 5. Choice of the kernel. The estimator in (14) also writes

(17) r̂n(y) =
n∑

j=1

Zj

K
(

Yj−y

hn

)
∑n

j=1K
(

Yj−y

hn

) ,
where K(x) = I[−1,1](x). This kernel is often refereed to as the rectangular kernel. Other
ones are commonly proposed. What is asked is some smoothness at x = 0, symmetry and
some integrability conditions. As formula (14) shows, K is defined up to a multiplicative
constant.

As examples (up to multiplicative constants):
• Triangular kernel:

K(x) = (1− |x|) I[−1,1](x)

• Epanechnikov kernel

K(x) = (1− x2) I[−1,1](x)

• Biweight kernel
K(x) = (1− x2)2 I[−1,1](x)

• Gaussian kernel
K(x) = e−

x2

2
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Figure 1. Graph of the kernels: [Top] Gaussian, Epanechnikov and Rec-
tangular. [Bottom] Triangular and Biweight.

Except the rectangular kernel, they all are everywhere continuous. This is the reason
why the rectangular kernel is rarely used.

Notice also that all these kernels are non negative. In chapter 4 we use non positive
kernels in order to get better rates (see exercise 10).
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2. Naive interpretation

The estimator, in (16), writes also

r̂n(y) =
n∑

j=1

ZjWj,

so it is clear that the estimator is a weighted sum of the Zj’s. The weights Wj are random
positive variables and

n∑
j=1

Wj = 1.

Now, for all the kernels proposed above, the weight Wj =
K
�

Yj−y

hn

�

Pn
j=1 K

�
Yj−y

hn

� indicates whether

Yj is close or not to y. The closer Yj and y are, the larger is the weight. For the rectangular
kernel, the weights simply are 0 (if the distance is too large), or 1.

To summarize, the estimator of E(Z1|Y1 = y) is a weighted sum of the Zj’s, with weights
calculated according the distance between the Yj’s and y.

3. Exercises

Exercise 5. Prove the last inequality in formula (15). ?

Exercise 6. How the above method can be used to predict Zn from the observation
of Yn and of the (Yj, Zj)’s for j ≤ n− 1?

Could you give a naive interpretation of this predictor? ?

Exercise 7. Estimation of a distribution density.
Let X1, · · · , Xn n be i.i.d. variables having a density f . Let K be a kernel such that
•
∫
K(u)du = 1

•
∫
K2(u)du <∞,

•
∫
|uK(u)|du <∞

Consider the estimator of f given by

f̂n(x) =
1

n

n∑
k=1

1

hn

K

(
x−Xk

hn

)
Suppose that f is C1 and that f and f ′ are bounded.

1) Prove that

• hn → 0 when n→ +∞ then, for all x, Ef̂n(x) → f(x)
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• and that if nhn → +∞ then for all x,

Varf̂n(x) = O

(
1

nhn

)
2) Prove that for all x,

E
∣∣∣f̂n(x)− f(x)

∣∣∣2 ≤ c1h
2
n +

c2
nhn

and conclude that, if hn ∼ nα, there is a value of α for which the rate of convergence of
the quadratic risk is optimal.

This result shall be improved in the next chapter (see exercise 10). ?

Exercise 8. In exercise 7, take the rectangular kernel, and compare the obtained
estimator with the familiar histogram. ?

Exercise 9. Discuss the results given by Figure 2 and Figure 3 ? What is the sensitivity
of the kernel estimate to the choice of the kernels and of the bandwidths?

Explain why you could have guessed your conclusions from the results of this chapter
(and of the following ones!).
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in inches for each of 70 United States, [Right] Kernel density estimates with
5 different kernels
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CHAPTER 4

More on functional regression estimation

1. Introduction

We consider here model (1) where only the purely regressive part is present, and where
q = 0. Namely

(18) Xk = b(ek) + εk,

and we suppose that the noise (εn)n≥1 and the exogeneous sequence (en)n≥1 are two inde-
pendent i.i.d. sequences. Recall that the question is to predict Xn+1 from the observation
of en+1, . . . , e1.

1.1. The estimator. Notice first that, under the above hypotheses, the sequence
(ek, Xk)k≥1 is i.i.d. Hence, the situation is exactly the same as in the preceding chapter.
Here, E(Xn|en = e) = b(e), and the function b(e) is estimated by

(19) b̂n(e) =

∑n
j=1XjK

(
ej−e

hn

)
∑n

j=1K
(

ej−e

hn

)
and the predictor is

(20) X̂n+1 = b̂n(en+1)

The aim is to complete the heuristic results of chapter 3. Two types of convergence
shall be investigated. Section 2 is devoted to uniform almost sure convergence

(21) sup
e
|b̂n(e)− b(e)| a.s.−−→ 0,

and section 3 to the integrated quadratic error

E
(∫

(b̂n(e)− b(e))2w(e)de

)
.

In both cases, rates of convergence are given.

1.2. Assumptions. Among the following hypotheses, some are only technical (such
as boundedness of b and of the noise) and could easily be released. They are chosen to
shorten some proofs. Other ones (like smoothness of b) are more fundamental, as can be
seen from some simulations.

• The noise and the variables ej are two i.i.d. independent sequences
19
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• there exists a deterministic constant m such that

|en| ≤ m and |εn| ≤ m ∀n

• the exogeneous variable e1 has a density f , strictly positive on [−m,m] and C2.
• b is C2

• On the kernel: K is bounded, compactedly supported and∫
K(u)du = 1(22) ∫
uK(u)du = 0,(23) ∫
u2K(u)du 6= 0.(24)

Suppose also that there exists β > 0 and a constant γ such that

(25) |K(e1)−K(e2)| ≤ γ|e1 − e2|β if −m ≤ e1, e2 ≤ m.

Notice that, from the boundedness hypotheses,

(26) |Xn| ≤ sup
−m≤e≤m

|b(e)|+m ∀n.

Notice also that the noise can’t be Gaussian.

2. Uniform almost sure convergence

Theorem 4. We consider the estimator b̂n defined in (18), with a kernel satisfying
assumptions (22), (23) and (24). Under the hypotheses above, and if

hn → 0 and
nhn

lnn
→∞

then,

sup
e
|b̂n(e)− b(e)| = Oas(h

2
n) +Oas

(√
lnn

nhn

)
Let un and vn be random sequences. Recall that vn = Oas(un) means that |vn/un| is

almost surely bounded. Of course the bound may be a random variable.
Let us begin with the proof of the theorem. Then we shall give some remarks. We

choose a proof largely inspired by [9]. First rewrite the estimator as:

b̂n(e) =

∑n
j=1XjK

(
ej−e

hn

)
∑n

j=1K
(

ej−e

hn

) =

Pn
j=1 XjK

�
ej−e

hn

�

nhnPn
j=1 K

�
ej−e

hn

�

nhn

=:
ĝn(e)

f̂n(e)
(27)
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It should be clear (see chapter 3 and exercise 7) that f̂n(e) estimates the density f(e)
and that ĝn(e) estimates g(e) := b(e)f(e). Now, decompose the estimation error in

b̂n(e)− b(e) =
ĝn(e)

f̂n(e)
− g(e)

f(e)
=

ĝn(e)− g(e)

f̂n(e)
+ (f(e)− f̂n(e))

b(e)

f̂n(e)

implying that

sup
e
|b̂n(e)− b(e)| ≤ supe |ĝn(e)− g(e)|

infe |f̂n(e)|
+ ‖b‖∞

supe |f(e)− f̂n(e)|
infe |f̂n(e)|

and we treat separately the two numerators and the denominator in the following subsec-
tions.

2.0.1. Rate of convergence of supe |ĝn(e)− g(e)|. We are going to prove that

Lemma 5. With the hypotheses of Theorem 4,

(28) sup
e
|ĝn(e)− g(e)| = Oas

(√
lnn

nhn

)
+O(h2

n)

Proof. Since

ĝn(e)− g(e) = ĝn(e)− E(ĝn(e)) + E(ĝn(e))− g(e),

we shall give a bound for supe |ĝn(e)− E(ĝn(e))|, and for supe |E(ĝn(e))− g(e)|.

• We start with ĝn(e)− E(ĝn(e)) for fixed e. Define the i.i.d variables Uj by

(29) Uj =
1

hn

(
XjK

(
ej − e

hn

)
− E

(
XjK

(
ej − e

hn

)))
j = 1, . . . , n

From (25) and since K is bounded, it is clear that there is a constant C such
that

|Uj| ≤ C1/hn.

Secondly,
E(U2

j )| ≤ C2/hn,

because

E(U2
j ) =

1

h2
n

Var

(
XjK

(
ej − e

hn

))
≤ 1

h2
n

E
(
XjK

(
ej − e

hn

))2

=
1

h2
n

E
(
K2

(
ej − e

hn

)
E
(
X2

j |ej

))
=

1

h2
n

E
(
K2

(
ej − e

hn

)
(σ2 + b2(ej))

)
=

1

h2
n

∫
(σ2 + b2(u))K2

(
u− e

hn

)
f(u)du

=
1

hn

∫
(σ2 + b2(vhn + e))K2(v)f(vhn + e)dv ≤ C2

hn

,
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where the last integral is obtained via the change of variables v = (u− e)/hn, and
the last bound from boundedness assumptions on K, b and f .

Then it is possible to apply the following key exponential inequality of Hoeffd-
ing

Lemma 6. Let U1, . . . , Un be i.i.d. variables such that

E(Uj) = 0 and |Uj| ≤ d.

Then, for every ε ∈]0, δ2/d[,

P

(∣∣∣∣∣
∑n

j=1 Uj

n

∣∣∣∣∣ > ε

)
≤ 2e−

nε2

4δ2

where δ2 is any real number such that E(U2
i ) ≤ δ2

Applying this lemma to the variables Uj defined in (28), with d = δ2 = C
hn

gives, for 0 < ε < 1,

(30) P (|ĝn(e)− E(ĝn(e))| > ε)) = P

(∣∣∣∣∣
∑n

j=1 Uj

n

∣∣∣∣∣ > ε

)
≤ 2e−

nhnε2

4C

• The result (29) concerns a fixed value of e. We have now to consider the supremum
over e.

The method is simple. Cover [−m,m] by Jn intervals of length 2m/Jn, respec-
tively centered in e1, . . . , eJn . For any function φ, write

φ(e) = φ(ej(e)) + φ(e)− φ(ej(e))

where ej(e) is the nearest neighbour of e among e1, . . . , eJn . So,

sup
−m≤e≤m

|φ(e)| ≤ max
j=1,...,Jn

|φ(ej)|+ sup
−m≤e≤m

|φ(e)− φ(ej(e))|,

which in turn implies that

sup
−m≤e≤m

|φ(e)| ≥ ε =⇒ { max
j=1,...,Jn

|φ(ej)| ≥ ε/2 or sup
−m≤e≤m

|φ(e)− φ(ej(e))| ≥ ε/2}

Let’s apply this to φ(e) = ĝn(e)− E(ĝn(e)). We have, using inequality (6)

P

(
max

j=1,...,Jn

|ĝn(ej)− E(ĝn(ej))| ≥ ε/2

)
≤

Jn∑
j=1

P (|ĝn(ej)− E(ĝn(ej))| ≥ ε/2)

≤ 2Jne
−nhnε2

C1 .

Then, noticing that for every e, |e−ej(e)| ≤ m/Jn and using the Lipschitz property
of the kernel (see (24)),

sup
−m≤e≤m

∣∣ĝn(e)− E(ĝn(e))− ĝn(ej(e)) + E(ĝn(ej(e)))
∣∣ ≤ C2

Jβ
nh

1+β
n

(31)
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Now, chose Jn such that

(32)

√
nhn

lnn

1

h1+β
n

= o(Jβ
n )

For such a choice, the first member of (30) is smaller than ε0

√
ln n
nhn

, at least for n
large enough.

So, for n large enough,

P

(
sup

−m≤e≤m
|ĝn(e)− E(ĝn(e))| > ε0

√
lnn

nhn

)
≤ P

(
max

j=1,...,Jn

|ĝn(ej)− E(ĝn(ej))| > ε0

√
lnn

nhn

)

+ P

(
sup

−m≤e≤m

∣∣ĝn(e)− E(ĝn(e))− ĝn(ej(e)) + E(ĝn(ej(e)))
∣∣ > ε0

√
lnn

nhn

)

= P

(
max

j=1,...,Jn

|ĝn(ej)− E(ĝn(ej))| > ε0

√
lnn

nhn

)
≤ 2Jne

− ε20 ln n

C1 = 2Jnn
− ε20

C1

To finish with, take Jn = nβ, and ε0 large enough in order to obtain
∑
n

β− ε20
C1 <∞,

implying, via Borel Cantelli lemma, that almost surely,

sup
−m≤e≤m

|ĝn(e)− E(ĝn(e))| ≤ ε0

√
lnn

nhn

holds for n large enough. This proves that

(33) sup
−m≤e≤m

|ĝn(e)− E(ĝn(e))| = Oas

(√
lnn

nhn

)
which is the first part in the right hand member of (27).

• We turn now to E(ĝn(e))− g(e), the so-called bias term.
From the definition of ĝn and from stationarity,

E(ĝn(e))− g(e) =
1

hn

E
[
X1K

(
e1 − e

hn

)]
− b(e)f(e).

Then replacing X1 by its conditional expectation E(X1|e1) = b(e1),

E(ĝn(e))− g(e) =
1

hn

E
[
b(e1)K

(
e1 − e

hn

)]
− b(e)f(e)

=
1

hn

∫
b(u)K

(
u− e

hn

)
f(u)du− b(e)f(e)

=

∫
(b(vhn + e)f(vhn + e)− b(e)f(e))K(v)dv
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where the last line comes via the change of variable (u− e)/hn = v and from (21).
Now, since b and f are C2, so is the product bf and

b(vhn + e)f(vhn + e) = b(e)f(e) + vhn[bf ]′(e) + (vhn)2ψn(v, e)

where ψn(v, e) is uniformly bounded with respect to n, e and v, because the second
derivative of bf is continuous and the domain of the variables is compact.

Finally, remembering (22)

sup
e
|E(ĝn(e))− g(e)| = h2

n sup
e

∣∣∣∣∫ ψn(v, e)v2K(v)dv

∣∣∣∣ ≤ Ch2
n

∫
v2K(v)dv.

�

2.0.2. Rate of convergence of sup−m≤e≤m

∣∣∣f̂n(e)− E(f̂n(e))
∣∣∣.

Since f̂n(e) has the same form as ĝn(e) (simply replace Xi by 1), it is not so difficult to
understand that the same sort of technical proof as for (27) above leads to the following
result, whose proof is left to the reader.

Lemma 7. Under the hypotheses of theorem 4, as n→∞

(34) sup
e
|f̂n(e)− f(e)| = Oas

(√
lnn

nhn

)
+O(h2

n)

2.0.3. A lower bound for infe |f̂n(e)|.
Being C2 and strictly positive on [−m,m], f has a non zero lower bound

inf
e
f(e) = i > 0.

Then, writing f(e) = f̂n(e) + f(e)− f̂n(e) gives, for all e

i ≤ f(e) = |f(e)| ≤ |f̂n(e)|+ sup
e
|f̂n(e)− f(e)|

and consequently from (33),

inf
e
|f̂n(e)| ≥ i−Oas

(√
lnn

nhn

)
−O(h2

n)

proving that almost surely infe |f̂n(e)| ≥ i/2 for n large enough.

Collecting the results of the three subsections concludes the proof of Theorem 4.

Remark 5. Forgetting the technical details, the reader can notice that two types of
rates are obtained all along this proof

• rates like h2
n arise from bias terms E(ĝn)− g or E(f̂n)− f

• rates like
√

ln n
nhn

arise from ĝn −E(ĝn) or f̂n −E(f̂n), dispersions of the estimators
from their expectations.
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It is interesting to note again that (see also chapter 3, section1.4) the smoothing parameter
hn plays antagonistic roles in the bias and in the dispersion. Large hn increases the bias
and decreases the dispersion.

2.1. Optimal rate. Suppose that hn ∼ c
(

n
lnn

)β for some negative β. Then, the best
rate of convergence to zero of the bound

Oas(h
2
n) +Oas

(√
lnn

nhn

)
= Oas

(
ln

n

)−2β

+Oas

(
lnn

n

)(1+β)/2

is obtained for −2β = (β + 1)/2, that is for β = −1/5. This is summarized in the next
corollary

Corollary 8. With the hypotheses of Theorem 4, if

hn ∼ c

(
lnn

n

)1/5

,

then

sup
e
|b̂n(e)− b(e)| = Oas

(
lnn

n

)2/5

,

which happens to be optimal for the uniform convergence in this functional situation
and when the kernel is positive (see [10]).

Remark 6. Now let us compare with the results obtained in the linear case (chapter
2). In Proposition 1, the rate of convergence of the coefficient’s estimator is 1/nα for all
α < 1/2. So, roughly speaking, in the linear case the rate is n−1/2 while in the non linear
case it is n−2/5. Comparing 1/2 and 2/5 gives a good idea of the price to pay when passing
from a parametric to a non parametric estimation.

3. Integrated quadratic error

It is also interesting to consider the integrated quadratic error

(35) E
(∫

(b̂n(e)− b(e))2w(e)de

)
,

where w is a positive function (for example it can be the density f). We just give the
result:

Proposition 9. Under the assumptions of Theorem 4, if the weight w is bounded and
compactedly supported

E
(∫

(b̂n(e)− b(e))2w(e)de

)
= O(h4

n) +O

(
1

nhn

)
Remark 7. Compared to Theorem 4, there is no logarithmic factor in the second

term. The result is better than what is obtained by directly replacing (b̂n(e) − b(e))2 by
supe |b̂n(e)− b(e)|2 in the integral, and using the bound in Theorem 4.
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Remark 8. It is worth noticing that, if hn ∼ nβ, the optimal value of β is −1/5, the
optimal rate of the right hand side is n−4/5. Hence, up to a logarithmic factor, we obtain
the same optimal rate of the error as in the preceding remark.

4. Illustration

We illustrate the properties of the estimate (18) on different simulated data sets.

−6 −4 −2 0 2 4 6

−1
.0

−0
.5

0.0
0.5

1.0

c= 1   h= 0.37 ,n= 1000

t

es
tim

ate
 of

 a(
t)

true function b
KERNEL :
Gauss
triang.
Epan.
biw.
Rect.

Figure 1. The model is defined by b(e) = sin(e), (en) are iid from a Gauss-
ian N (0, 4) and a Gaussian noise N (0, 1). The sample size is n = 1000 and
the bandwidth hn = 0.37

As shown Fig 1, the choice of the kernel has few effects on the convergence properties
of the estimate of b, except the rectancular kernel which provide a less regular estimate.

Hereafter
We only consider the case of the Gaussian kernel and we evaluate the effects of the

bandwidth hn. According to the theoretical result we take hn of the form C(log(n)/n)1/5

for different values of C.

4.1. Presentation. The following pictures provide
• The set of point (ei, Xi) and the histogram of both series (Xi) and (ei)
• The kernel estimate for the sample size n = 500, 5000 and the constant C =

0.1, 0.5, 1, 2.

• Figures 2, 3 and 4 : the model is defined by b(e) = sin(e)
– Fig. 2 and Fig.3 : the random variables (en) are iid from the Gaussian N (0, 2)

and the noise is Gaussian with variance equal to 1 (Fig. 2) and 4 (Fig. 3)
– Fig. 4: the random variables (en) are iid from the uniform distribution on

[−2, 2] and the noise is Gaussian N (0, 1)
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• Figure 5 : the model is defined by b(e) = 2 ∗ sign(e), (en) are iid from a uniform
distribution on (−2π, 2π) and a Gaussian noise N (0, 9).

• Figure 6 : the model is defined by b(e) = −2eI[0,1](e) + 2eI[−1,0](e), (en) are iid
from a uniform distribution on (−2π, 2π) and a Gaussian noise N (0, 1).

4.2. Comments. The main features to be noticed as illustrating the theory are the
following:

4.2.1. Influence of hn. Too small values of the smoothing parameter lead to small bias
and large variance, while too large values lead to oversmoothing, that is small variance and
bad bias.

4.2.2. Influence of the constant. In all the examples the chosen rate is the optimal rate
(lnn/n)2/5, multiplied by a constant c. In view of the preceeding comment, for a fixed n,
the value of c is important.

4.2.3. Influence of the law of Xn. The histogram of the values Xj is depicted on the
top graphic in each page. Since there are less observations on the tails of the histogram,
the function b is badly estimated in these zones. Keeping this in mind, compare Figures 1
and 2 with the other ones.

4.2.4. Smoothness of b. See exercise 14 below.
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Figure 2. The model is defined by b(e) = sin(e), (en) are iid from a
Gaussian N (0, 4) and a Gaussian noise N (0, 1).
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Figure 4. The model is defined by b(e) = sin(e), (en) are iid from a uniform
distribution on (−2π, 2π) and a Gaussian noise N (0, 1).
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Figure 6. The model is defined by b(e) = −2eI[0,1](e)+2eI[−1,0](e), (en) are
iid from a uniform distribution on (−2π, 2π) and a Gaussian noise N (0, 1).
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5. Forecasting

Recall that the problem consists in predicting Xn+1 from the observed values
(Xn, . . . , X1, en+1, . . . , e1). In the model (17), taking into account the fact that en+1 is
independent of (Xn, . . . , X1, en, . . . , e1),

E(Xn+1|Xn, . . . , X1, en+1, . . . , e1) = E(Xn+1|en+1) = b(en+1).

So, the optimal predictor is b(en). As in general the function b is unknown, we replace it
by the estimator (18), and take

X̂n+1 = b̂n(en+1).

The forecasting error is

Xn+1 − X̂n+1 = εn+1 + b(en+1)− b̂n(en+1).

5.1. Theoretical forecasting error. From the uniform convergence result of Theo-
rem 4:

Proposition 10. With the same assumptions as in Theorem 4,

Xn+1 − X̂n+1 = εn+1 + Tn,

where εn+1 and Tn are independent and where, as n→∞,

Tn = Oas(h
2
n) +Oas

(√
lnn

nhn

)
.

5.2. How to build the forecasting interval? Proposition10 implies that the dis-
tribution of forecasting error converges to the law of the noise. If the statistician knows
this law, he can, neglecting the estimation error Tn, take as forecasting interval

[X̂n+1 +Qα , X̂n+1 +Q1−α]

where Qα and Q1−α are the two quantiles of order α and 1− α of the law of ε1.
Unfortunately, the distribution of ε1 is generally unknown and the quantiles are to be

estimated. The following consequence of Corollary 8 and of Proposition 10 gives a method

Corollary 11. Under assumptions of Proposition 10, denoting by Fε the marginal
distribution function of ε,

sup
u

∣∣∣∣∣
∑n

j=1 I]−∞,u](Xj − b̂n(ej))

n
− Fε(u)

∣∣∣∣∣ a.s.−−→ 0.

Proof. For every fixed j and u, from Proposition 10, Xj+1− b̂n(ej+1)
a.s.−−→ 0 as n→∞.

Since the noise has a marginal density, P (εj = u) = 0. Hence, I]−∞,u](Xj − b̂n(ej)) −
I]−∞,u](εj)

a.s.−−→ 0, which in turn implies that∑n
j=1 I]−∞,u](Xj − b̂n(ej))− I]−∞,u](εj)

n

a.s.−−→ 0.
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Then, by the law of large numbers applied to the noise,∑n
j=1 I]−∞,u](εj)

n

a.s.−−→ Fε(u),

leading to ∑n
j=1 I]−∞,u](Xj − b̂n(ej))

n

a.s.−−→ Fε(u).

The uniform convergence is a consequence of the fact that we deal with distribution func-
tions. �

This corollary means that the statistician can treat the sample of prediction errors as
a sample of estimated εj and use it to estimate the law of the noise. As this law is also the
limit law of the forecasting error, the estimated quantiles Q̂n,α and Q̂n,1−α can be used to
build a forecast interval of asymptotic level α

[X̂n+1 + Q̂n,α , X̂n+1 + Q̂n,1−α].

6. Increasing the memory

We now consider models of the form

Xk = b(ek, . . . , ek−q+1) + εk.

Now we have to estimate a function of q variables b(e(1), . . . , e(q)). The more natural idea
is to replace in (18) the index measuring the distance between ej and e by the distance
between the two vectors

ej
j−q+1 := t(ej, . . . , ej−q+1) and e := t(e(1), . . . , e(q)),

and estimate b(e1, . . . , eq) = b(e) by

b̂n(e) =

∑n
j=1XjK

(∥∥∥∥ ej
j−q+1−e

hn

∥∥∥∥
2

)
∑n

j=1K

(∥∥∥∥ ej
j−q+1−e

hn

∥∥∥∥
2

) .

Remark 9. Recall the naive interpretation of the preceding chapter (section2). The
estimator is a weighted sum of the observations, each Xj having a small or large weight
according to the distance of its immediate past of length q from the fixed block (e1, . . . , eq).

In this situation, and with the same hypotheses as in the previous sections (some of
them have to be adapted because now b is a function of several variables) if the smoothing
parameter has the form hn ∼ L1(n)n−1/(q+4) where L1 is a logarithmic function, then

(36) sup
e
|b̂n(e)− b(e)| = Oas

(
L2(n)

n2/(q+4)

)
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where L2 is another logarithmic function. For the proof, for details on the hypotheses and
on the functions L1 and L2 see [2].

Remark 10. For q = 1 we get back to the previous sections. As q increases, 2/(q + 4)
decreases and, since the bound in (35) is optimal, the rate of convergence really decreases.
As a result, the quality of estimation is rapidly deteriorating for dimensions q > 1.

One of the methods aiming to remedy this so-called “curse of dimensionality” consists
in adopting additive models such as

Xk =

q∑
j=1

bj(ek−j+1) + εk,

models for which we have to estimate q functions of one variable instead of one function
of q variables (see[11]).

7. Exercises

Exercise 10. Suppose that b and f are Ck (for some k > 2) and that∫
ujK(u)du = 0 j = 1, . . . , k − 1∫
ukK(u)du 6= 0,

(which implies of course that K can take negative values). Prove that

E(ĝn(e))− g(e) = O(hk
n),

and give the best rate of convergence of the estimator b̂n when hn ∼ cnβ. ?

Exercise 11. Find symmetric, bounded and compactly supported kernels satisfying
assumptions of exercise above. ?

Exercise 12. Use the idea of exercise 10 to improve the result of exercise 7. Compare
the rates to what obtains Proposition 9. Could you give one reason for preferring positive
kernels? ?

Exercise 13. Try to prove (at least give the main lines) the result of section 6 for the
model

Xk = b(ek, ek−1) + εk

?



36 A. Philippe & M.-C. Viano

Exercise 14. Comment Figures 4 and 5 where the function b does not satisfy hypothe-
ses of Theorem 4.

?

Exercise 15. For the models of Figures 2 to 5, give the density of Xn and comment
the histograms depicted on the top of each corresponding page.

?

Exercise 16. Consider the additive model
Xk = b1(ek) + b2(ek−1) + εk,

with i.i.d noise and i.i.d (ek).
(1) Notice that you have to suppose that either E(b1(ek)) = 0 or E(b2(ek)) = 0 for the

model to be identifiable. Why?
(2) Suppose that E(b2(ek−1)) = 0. Give the expression of E(Xk|ek).
(3) Use this result to propose a method to estimate b1(x).
(4) And now, use the same idea to build an estimator of b2(x).
(5) What do you think of your estimators (try to give the main lines of a proof).
(6) What happens if the ek are not independent?

?



CHAPTER 5

Functional autoregression models

1. Introduction

In this chapter we turn to functional autoregressive models

(37) Xk = a(Xk−1, . . . , Xk−p) + εk

that is models (1) where the exogeneous part is missing. The problem remains the same as
previously: find a good forecasting method forXn+1 based on the passed valuesXn, . . . , X1.
In fact, for the sake of simplicity, we shall suppose that p = 1. In other words, we deal
with the model

(38) Xk = a(Xk−1) + εk, k ≥ 2

where (εk) is an i.i.d. sequence.
Suppose for the moment that X1 is independent from the noise (εk). It should be clear

that the sequence (Xk) is a Markov process, and that

E(Xk|Xk−1, . . . , X1) = E(Xk|Xk−1) = a(Xk−1),

implying that the optimal forecast consists in taking

X̃n+1 = a(Xn).

Then, why not estimate a by a kernel method analogously to what was done in (18), and
take

(39) ân(x) =

∑n−1
j=1 Xj+1K

(
Xj−x

hn

)
∑n−1

j=1 K
(

Xj−x

hn

)
and then plug in the value of Xn to obtain

X̂n+1 = ân(Xn).

1.1. Heuristic interpretation. The same naive interpretation as for the pure au-
toregression can be developed. For each Xj+1, the estimator calculates a weight measuring
the vicinity of the observation Xj just before from the fixed value x. Then the estimator
is the weighted sum of the Xj’s.

37
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1.2. Theoretical difficulties. There is an important difference between the present
chapter and chapters 3 and 4.

Formally, the problem is the same in all the cases: estimate E(Zn+1|Yn+1 = y), using
the available observations. In the two preceding chapters, the (Zj, Yj)’s are i.i.d. For
example in the pure regression situation, we have Zj = Yj and Xj = ej and the (Xj, ej)’s
are independent.

Here, Zj = Xj+1 and Yj = Xj, and the (Xj+1, Xj)’s are certainly not independent.
So it should be evident that some knowledge on the dependence between the Xj’s is

necessary for studying the properties of the estimator (38).
• When a(x) = a1x+ a2, you recognize the usual linear AR1 (non centered) model,

Xk = a1Xk−1 + a2 + εk,

about which nearly every thing is known. In particular, it is well known that the
linear equations above admit a strictly stationary solution iff |a1| < 1.

• In the other cases, we give in the following section some results on the existence
of a stationary solution and on its dependence structure.

2. Weak dependence of non-linear autoregressions

Without giving any proof, we refer here to several papers or books, where details and
proofs can be found. For example: [6] is devoted to mixing properties, [7] treats precisely
markov processes like (37) and [10] and [17] include reviews on the question of weak
dependence of sequences and particularly of Markov sequences.

The main result is that, modulo ad hoc assumptions on the function a and on the
noise sequence, (37) has a stationary solution, and that, for this solution, the Xj’s are not
dependent enough to modify the results of the preceding chapter.

The most important notion to quantify weakness of dependencies is the notion of strong-
mixing.

Given a sequence (Un)n of stationary random variables (or random vectors), denote by
Uk

l the sigma-algebra generated by Ul, . . . , Uk

Definition 1. The strong-mixing coefficients αn of the sequence (Uk)k≥1 are defined
by

αn = sup
k

sup
A∈Uk

0 ,B∈U∞k+n

|P (A ∩B)− P (A)P (B)|

Definition 2. The sequence (Un)n is strong mixing if

αn → 0 when n→∞.

The sequence is geometrically strong mixing if the convergence to zero is as fast as the
convergence of a geometric sequence, meaning that there exists τ ∈]0, 1[ such that

αn ≤ cτn for n ≥ n0
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Remark 11. Clearly, for an i.i.d. sequence, αn = 0 for every n ≥ 1.

Remark 12. Roughly speaking, in a strong mixing sequence (Un)n≥1, the dependence
between Uj and Uk disappears when |j − k| increases.

Remark 13. If (Un)n∈Z is stationary, the dependence between Xk and Xk+n only
depends on n, so that αn can be redefined by

αn = sup
A∈U0

−∞,B∈U∞n
|P (A ∩B)− P (A)P (B)|

Remark 14. If (Un)n is a stationary Markov sequence,

αn = sup
A∈U0,B∈Un

|P (A ∩B)− P (A)P (B)|

where Uk = Uk
k is the sigma algebra generated by Xk.

Concerning model (37) we shall use the following result (see for example [6], or [7], or
[17])

Theorem 12. If (εk)k≥1 is an i.i.d. sequence having a strictly positive marginal density,
and if the function a is bounded then Markov model (37) has a strictly stationary solution
(Xk)k≥1, and this solution is geometrically strongly mixing.

3. Properties of strong mixing sequences, and their consequences

3.1. Invariance. The mixing property is invariant by simple transformations. For
example

Lemma 13. If (Un)n≥1 is strong mixing, so is the sequence (Vn = φ(Un−k1 , . . . , Un+k2))n≥1,
where k1 and k2 are fixed integers and φ any Rp-valued function. The rate of convergence
to 0 of the mixing coefficient is the same for the two sequences.

For example, it is easy to deduce from this Lemma that, under the assumption of
Theorem 12, the sequence (Xk+1, Xk)k≥1 is geometrically strongly mixing.

3.2. Exponential inequality. As mixing is a kind of weak dependence, it is not
surprising that most classical results for i.i.d. sequences still hold with minor changes for
mixing ones under a suitable rate of convergence of the mixing sequence.

As an example, take Lemma 6, which plays a key role in the proof of Theorem 4.
This lemma is stated for i.i.d. sequences. There are many analogous results for mixing
sequences. The following one is well fitted to our problem. See [15] for the proof.
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Lemma 14. Let Vj be a geometrically strong mixing sequence of centered bounded ran-
dom variables. For any a > 1, r > 1 and ε > 0,

P

(∣∣∣∣∣
n∑

j=1

Vj

∣∣∣∣∣ > 4ε

)
≤ 4

(
1 +

ε2

rs2
n

)−r/2

+ 2c
n

r

(
2r

ε

)a

where s2
n =

∑
1≤j,k≤n |Cov(Vj, Vk)|

3.3. Covariances. In order to use this inequality, we shall need to evaluate s2
n. The

key result to do that concerns the link between the covariance sequence and the sequence
of mixing coefficients (see [6] for other results of the same type).

Lemma 15. Let (Vn)n≥1 be a stationary sequence, and (αn) its sequence of mixing
coefficients defined in 1. Suppose that there exists a constant m such that |Vj| ≤ m for all
j. Then

|Cov(Vj, Vk)| ≤ 4m2αj−k ∀j, k

This inequality can be used for example to prove that, if αn → 0 fastly enough, s2
n ∼ n

as n→∞, that is to say that its asymptotic behaviour is (up to a multiplicative constant)
the same as if the variables were i.i.d. (see exercise 18 for details).

4. Estimation of a

We proceed exactly as in chapter 4, only changing (ek, Xk) for (Xk, Xk+1), as mentioned
in the introduction. So, we estimate a(x) by ân(x) defined in (38).

4.1. Assumptions.

• The noise is i.i.d. and there exists a deterministic constant m such that

|εn| ≤ m ∀n

• a is bounded and C2

• The marginal distribution of the stationary solution Xn has a density φ, strictly
positive on [−m,m] and C2.

• For every j, k, the distribution of (Xj, Xk) has a bounded density φj,k

• On the kernel: K is bounded, compactedly supported and satisfies the conditions
(21),(22),(23) and (24)

Remark 15. From these hypotheses

|Xk| ≤ ‖a‖∞ +m ∀k
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4.2. Convergence result. The result of Theorem 4 becomes now:

Theorem 16. Under assumptions above,

sup
x
|ân(x)− a(x)| = Oas

(√
lnn

nhn

)
+O(h2

n).

Proof. The proof follows the same lines as that of Theorem 4, modulo the change
indicated above. We rewrite the estimator:

ân(x) =

∑n−1
j=1 Xj+1K

(
Xj−x

hn

)
∑n−1

j=1 K
(

Xj−x

hn

) =

Pn−1
j=1 Xj+1K

�
Xj−x

hn

�

nhnPn−1
j=1 K

�
Xj−x

hn

�

nhn

=:
ψ̂n(x)

φ̂n(x)
,(40)

where φ̂n(e) estimates the marginal density φ(x) of Xj and where ψ̂n(x) estimates

ψ(x) := E(X2 IX1=x) = a(x)φ(x).

So, the estimation error is splitted into

ân(x)− a(x) =
ψ̂n(x)

φ̂n(x)
− ψ(x)

φ(x)
=

ψ̂n(x)− ψ(x)

φ̂n(x)
+ (φ(x)− φ̂n(x))

a(x)

φ̂n(x)

implying that

sup
x
|ân(x)− a(x)| ≤ supx |ψ̂n(x)− ψ(x)|

infx |φ̂n(x)|
+ ‖a‖∞

supx |φ(x)− φ̂n(x)|
infx |φ̂n(x)|

.

From this point, the only modifications from the proof of theorem 4 concern inequalities
(29) and (32). The basic Lemma 6 is now replaced by Lemma 14 which we apply to the
variables

(41) Vj := Xj+1K

(
Xj − x

hn

)
− E

(
Xj+1K

(
Xj − x

hn

))
.

These variables are bounded by a constant C (see what concerns variables Uj in the proof
of Lemma 27). Moreover, applying Theorem 12 and Lemma 13 shows that the sequence
(Vj)j≥1 is geometrically strong mixing.

Then we apply Lemma 14. Firstly we need an estimation of s2
n =

∑
1≤j,k≤n |Cov(Vj, Vk)|.

Lemma 17. If, as n→∞, hn ∼ cnβ1(lnn)β2 then

(42) s2
n = O(nhn)

Let us prove the lemma. With the same kind of proofs as for the variables Uj (see again
proof of Lemma 27) we obtain

Var(Vj) ≤ Chn ∀j,(43)
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|Cov(Vj, Vk)| ≤
∫
K

(
u− x

hn

)
K

(
v − x

hn

)
φj,k(u, v)dudv

+

(∫
K

(
u− x

hn

)
φ(u)du

)2

= h2
n

∫
K(u)K(v)φj,k(hnu− x, hnv − x)dudv

+ h2
n

(∫
K(u)φ(hnu− x)du

)2

= O(h2
n) ∀j 6= k(44)

and, from Lemma 15

(45) |Cov(Vj, Vk)| ≤ 4C2αj−k ∼ C1τ
|j−k|

We use inequality (44) for large values of |j − k|, inequality (42) for the variances and
inequality (43) otherwise. For a sequence δn to be precised,

s2
n =

∑
|j−k|≤δn

|Cov(Vj, Vk)|+
∑

|j−k|>δn

|Cov(Vj, Vk)|

= nVar(X1) +
∑

1<|j−k|≤δn

|Cov(Vj, Vk)|+
∑

|j−k|>δn

|Cov(Vj, Vk)|

≤ C2(nhn + nδnh
2
n + n2αδn).

Then we take δn = 1/(hn lnn) and obtain

s2
n = O(nhn + n2τ 1/(hn ln n))

Taking hn ∼ cnβ1(lnn)β2 and using the fact that τx = o(x−k) for every k > 0, it is easy
to see that the second term is negligible compared with the first one, and the lemma is
proved.

Now, from Lemma 14, together with the bound (41), we deduce for any a > 1, r > 1
and ε > 0,

P

(∣∣∣∣∣
n∑

j=1

Vj

∣∣∣∣∣ > 4ε

)
≤ 4

(
1 +

C3ε
2

rnhn

)−r/2

+ 2c
n

r

(
2r

ε

)a

,
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leading to

P
(
|ψ̂n(x)− ψ(x)| ≥ ε0

√
lnn

nhn

)
= P

(
|
∑n

j=1 Vj|
nhn

≥ ε0

√
lnn

nhn

)
=

= P

(∣∣∣∣∣
n∑

j=1

Vj

∣∣∣∣∣ ≥ ε0

√
nhn lnn

)
≤ 4

(
1 +

C3ε
2
0nhn lnn

16rnhn

)−r/2

+

+ 2c
n

r

(
2r

ε0

√
nhn lnn

)a

≤ 4e−C4
r
2

ε20 ln n

16r + 2c
n

r

(
2r

ε0

√
nhn lnn

)a

= 4e−
C4ε20 ln n

32 + 2c
n

r

(
2r

ε0

√
nhn lnn

)a

= 4n−
C4ε20
16 + 2c

n

r

(
2r

ε0

√
nhn lnn

)a

.

Then, take r = nβ. Remembering that hn ∼ cnβ1 lnnβ2 gives

P
(
|ψ̂n(x)− ψ(x)| ≥ ε0

√
lnn

nhn

)
≤ 4n−

C4ε20
16 +

2a+1c

εa
0

n1/2+b(1−a)−β1/2

(lnn)(1+β1)/2
.

Then, it remains to chose ε0 large enough to have C4ε
2
0 > 16, and a and b large enough

to have 1/2 + b(1 − a) − β1/2 < −1. Then the series
∑

n P
(
|ψ̂n(x) − ψ(x)| ≥ ε0

√
ln n
nhn

)
converges, which implies that

ψ̂n(x)− ψ(x) = Oas

(√
lnn

nhn

)
.

The rest of the proof goes similarly as for theorem 4 and is omitted. �

Remark 16. Notice that the rate of convergence is the same as in the pure regression
problem. The reason is, as was already pointed out in the introduction, the weakness of
dependence between the Xj’s.

4.3. Optimal rate. From Proposition 16, with smoothing parameter hn ∼ cnβ1 lnnβ2 ,

sup
x
|ân(x)− a(x)| = Oas

(
n(1−β1)/2 lnn(1+β2)/2

)
+O(n2β1 lnn2β2).

The optimal rate is obtained for β2 = −β1 = 1/5. Hence

Corollary 18. For smoothing parameters having the form hn ∼ cnβ1 lnnβ2, the opti-
mal rate of convergence, obtained for

hn ∼ c

(
lnn

n

)1/5

,

is

sup
x
|ân(x)− a(x)| = Oas

(
lnn

n

)2/5
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5. Illustration

We illustrate the properties of the estimate (38) on different simulated data sets.
We only consider the case of the Gaussian kernel and we evaluate the effects of the

bandwidth hn. According to the theoretical result we take hn of the form C(log(n)/n)1/5

for different values of C.

5.1. Presentation. The following pictures provide
• The time series (Xi) with its auto correlations function and the set of points

(Xi, Xi+1)
• The kernel estimate for the sample size n = 500, 5000 and the constant C =

0.1, 0.5, 1, 2.

• Figures 4, 1 and 2 : the model is defined by a(x) = sin(x)
– Fig. 4 :
– Fig. 1 :
– Fig. 2

• Figure 3 : the model is defined by a(x) = 1/(1+x2) and a Gaussian noise N (0, 1)
• Figure 5 : the model is defined by a(x) = 2∗ sign(x) and a Gaussian noise N (0, 1)
• Figure 6 : the model is defined by a(x) = −2xI[0,1](x)+2xI[−1,0](x) and a Gaussian

noise N (0, 1)

5.2. Comments. The same comments as in Chapter 4 can be given. We leave them
to the reader. It may be interesting to look at the empirical autocorrelations given on the
first line of each page, and to think of the ARMA (linear) models which could be adapted
to the data.
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the simulated series
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Figure 1. The model is defined by a(x) = sin(x) and a Gaussian noise N (0, 1).
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the simulated series
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Figure 2. The model is defined by a(x) = sin(x) and a uniform noise on (−π, π).
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the simulated series
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Figure 3. The model is defined by a(x) = sin(x) and a uniform noise on (−2π, 2π).
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the simulated series
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Figure 4. The model is defined by a(x) = 1/(1 + x2) and a Gaussian noise N (0, 1).
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Figure 5. The model is defined by a(x) = 2sign(x) and a Gaussian noise N (0, 1).
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Figure 6. The model is defined by a(x) = −2xI[0,1](x) + 2xI[−1,0](x) and a
Gaussian noise N (0, 1).
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6. Forecasting

In order to predict Xn+1 from the observed values Xn, . . . , X1, take

X̂n+1 = ân(Xn),

with ân() is defined in (38). From the uniform result given in Proposition 16, if hn is chosen
as in Corollary 18,

Xn+1 − X̂n+1 = εn+1 +Oas

(
lnn

n

)2/5

,

and the construction of a forecasting interval of level α is exactly the same as in the pure
regression situation.

7. Increasing the memory

7.1. Theoretical results. The reason for taking p = 1 in the autoregressive model
was only simplicity of the proofs. Modulo a few changes, the results also hold for the more
general model

Xk = a(Xk−1, . . . , Xk−p) + εk.

To build the estimator, it is natural to insert in (38) an index measuring the distance
between the two vectors

Xj
j−p+1 := t(Xj, . . . , Xj−p+1) and x := t(x(1), . . . , x(p)),

and estimate a(x1, . . . , xp) := a(x) by

(46) ân(x) =

∑n−1
j=1 Xj+1K

(∥∥∥∥Xj
j−p+1−x

hn

∥∥∥∥
2

)
∑n−1

j=1 K

(∥∥∥∥Xj
j−p+1−x

hn

∥∥∥∥
2

) .

This general case is treated for example in [2] (Theorem 3.2), where it is proved that
the optimal rate of convergence is

(47) ân(x)− a(x) = Oas

(
L(n)

n2/(p+4)

)
.

The comments are the same as for the pure regressive case: the rate is a decreasing
function of p. A practical consequence is that the method behaves rather badly
for autoregressions of order larger than p = 1.

This is the reason why additive models
Xk = a1(Xk−1) + . . .+ ap(Xk−p) + εk

have been successfully introduced (see [11] and exercise 22 below).

7.2. Some illustrations for p = 2. We illustrate the properties of estimate (45)
when the order of the model is equal to 2. We consider a bandwidth hn of the form Cn−1/6

for different values of C.
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7.3. Presentation. The following pictures provide
• the set of points (Xi+`, Xi+k) with `, k = 0, 1, 2
• The kernel estimate for the sample size n = 5000, 10000 and 50000, and the

constant C = 0.5, 1, 3.

7.4. Comments. The estimations are to be compared with the function a(x, y) on
the graphic on the right of the last line of each page. Some conclusions are evident

• The model sin(x) + sin(y) is easier to estimate than the model sin(x) + 1/(1 + y2)
(compare for example the results for n=10000 for both models).

• As before, for a fixed sample size n, the value hn of the smoothing parameter only
depends on the constant c, and the antagonism bias-variance which gives chaotic
estimates for small values of the constant c and oversmoothing (correct average
shape, but missing contrasts) for large values is well visible.



Forecasting in functional regressive or autoregressive models 53

X(i)

−4 −2 0 2 4

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●●

● ●
●

●

● ●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

● ●
●●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●●

●●
●

●

●

● ●●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

● ●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

● ●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●●
●

●

●

● ●
●

●
●

●

●

● ●

●

●
●

● ●
● ●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

● ●
●●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●●
●

●

●

●

●

●

● ●

●

●

● ●

●

●●
●

●

●●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●●
●

●●

●

●

●
●●
●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●●

●

●

● ●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

−4
−2

0
2

4

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

● ●

●

●

● ●

●●
●

●

● ● ●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●●

●

●

●

●

●

●

●

● ●

●●
●
●

●

●● ●

●

●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
● ●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●●
●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

● ●
●●

●

●

●

● ●●
●

●

●

● ●
●

●
●

●

●

●●

●

●
●

●●
●●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●
●●

●

●

● ●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
● ●●

●

● ●
●

●

●

●

●

●

●●

●

●

●●

●

● ●
●

●

● ●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

● ●●
●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

● ●

●

● ● ●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

−4
−2

0
2

4

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●●

●

●

● ●

●●
●

●

●●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
● ●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●●
●

●

●

●●
●

●
●

●

●

● ●

●

●
●

● ●
●●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●
● ●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●● ●

●

● ●
●

●

●

●

●

●

● ●

●

●

● ●

●

●●
●

●

● ●

●

●
●
●●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●●●
●

● ●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● X(i−1)
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●●

● ●
●

●

● ●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

● ●
●●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●●

●●
●

●

●

● ●●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

● ●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

● ●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●●
●

●

●

● ●
●

●
●

●

●

● ●

●

●
●

● ●
● ●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

● ●
●●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●●
●

●

●

●

●

●

● ●

●

●

● ●

●

●●
●

●

●●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●●
●

●●

●

●

●
●●
●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●●

●

●

● ●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

−4 −2 0 2 4

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●●

● ●
●

●

●●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●● ●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●● ●●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●● ●

●

●

●

●

●●

●

● ●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

● ●●
●

●

●

●

●

●

● ●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●●●
●

●

●

● ●
●

●
●

●

●

●●

●

●
●

●●
●●●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●●
● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●

● ●
●

●

●●

●

●
●

● ●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●●
●

● ●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●●

●

●

● ●

●●
●

●

●●●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
● ●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●●
●

●

●

●●
●

●
●

●

●

● ●

●

●
●

● ●
●●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●
● ●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●● ●

●

● ●
●

●

●

●

●

●

● ●

●

●

● ●

●

●●
●

●

● ●

●

●
●
●●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●●●
●

● ●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

−4 −2 0 2 4

−4
−2

0
2

4

X(i−2)

−4 −2 0 2 4

−4
−2

0
2

4

estimation a(x,y) ,n= 5000  c= 0.5 h= 0.17

x

y

−4 −2 0 2 4

−4
−2

0
2

4

estimation a(x,y) ,n= 5000  c= 1 h= 0.35

x

y

−4 −2 0 2 4

−4
−2

0
2

4

estimation a(x,y) ,n= 5000  c= 3 h= 1.03

x

y

−4 −2 0 2 4

−4
−2

0
2

4

a(x,y)

t

t

Figure 7. The model is defined by a(x, y) = sin(x)+sin(y), and a Gaussian
noise N (0, 1).
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Figure 8. The same model as Figure 7
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Figure 9. The model is defined by a(x, y) = sin(x)+sin(y), and a Gaussian
noise N (0, 4).
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Figure 10. The model is defined by a(x, y) = sin(x) + 1/(1 + y2), and a
Gaussian noise N (0, 4).



Forecasting in functional regressive or autoregressive models 57

−4 −2 0 2 4 6

−4
−2

0
2

4
6

estimation a(x,y) ,n= 50000  c= 0.5 h= 0.12

x

y

−4 −2 0 2 4 6

−4
−2

0
2

4
6

estimation a(x,y) ,n= 50000  c= 1 h= 0.25

x

y
−4 −2 0 2 4 6

−4
−2

0
2

4
6

estimation a(x,y) ,n= 50000  c= 3 h= 0.73

x

y

−4 −2 0 2 4 6

−4
−2

0
2

4
6

a(x,y)

t

t

Figure 11. The model is defined by a(x, y) = sin(x) + 1/(1 + y2), and a
Gaussian noise N (0, 1).
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Figure 12. The model is defined by a(x, y) = sin(x) I[−4,4](y), and a Gauss-
ian noise N (0, 1).
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Figure 13. The model is defined by a(x, y) = sin(x) I[−4,4](y), and a uni-
form noise on (−2, 2).
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8. Exercises

Exercise 17. Prove Lemma 13. ?

Exercise 18. Let (Uj) be a stationary bounded strong mixing sequence such that, as
n→∞, αn ∼ cτn where 0 < τ < 1.

(1) Prove that the series
∑

k Cov(X1, Xk) is absolutely convergent
(2) Deduce that, as n→∞,

1

n
Var

(
n∑

j=1

Uj

)
is convergent. Give an expression of the limit and compare with the i.i.d. case.

(3) Deduce also that s2
n ∼ cn as n→∞.

(4) Determine the values of parameter β for which the previous results still hold for
an arithmetic strong mixing sequence (αn ∼ cn−β as n→∞).

?

Exercise 19. Prove the optimality of β2 = −β1 = 1/5 in Corollary 18. ?

Exercise 20. Give comments for the acf graphs on the top of Figures 1 to 6 of the
present chapter. ?

Exercise 21. Give comments for the graphs depicting the set of (Xl, Xl+1) in the same
Figures. ?

Exercise 22. Do you see why the method you proposed in exercise 16 could give bad
result for the estimation of the functions a1() and a2() in the model

Xk = a1(Xk−1) + a2(Xk−2) + εk?

An iterative method which seems to goodly perform consists in an iterative scheme (see
[8] where chapter 8 for is devoted to the so-called backfitting ). The main lines are the
following.

• First step. Chose a preliminary estimate â
(0)
2 () of a2(). For example chose a

constant, which could be the mean of the observations.
• Second step. Use this estimate to estimate Xj − a2(Xk−2) by Xj − â(0)

2 (Xk−2) and
then calculate a first estimate of a1() by

â
(1)
1 (x) =

∑n−1
j=2 (Xj − â

(0)
2 (Xj−2))K

(
Xj−1−x

hn

)
∑n−1

j=2 K
(

Xj−1−x

hn

)
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• Third step. Re-estimate a2 by

â
(1)
2 (x) =

∑n−1
j=2 (Xj − â

(1)
1 (Xj−1))K

(
Xj−2−x

hn

)
∑n−1

j=2 K
(

Xj−2−x

hn

)
• Following steps. Re-estimate a1 as in step 2 from â

(1)
2 , and so on. Stop when the

estimates stabilize.
Do you understand why this iterative procedure could work? ?





CHAPTER 6

Mixed models

1. Introduction

We now turn to general models presenting an additive contribution of a functional
autoregression a(Xk) and of a pure regression on exogeneous variables b(ek)

Xk = a(Xk−1) + b(ek) + εk.

We suppose that (ek)k is i.i.d. This is really an unrealistic hypothesis, presented here for
easiness of theory. More, the method presented below is not adapted if the independence
is lost. In this case, methods of type backfitting as presented in exercise 22 are surely more
performing (see [8]).

1.1. Basic remark. Firstly, it is clear that

E(Xn+1|Xn, en+1, . . . , X1, e2) = a(Xn) + b(en+1),

implying that the optimal predictor based on (Xn, en+1, . . . , X1, e2) is

X̂n+1 = a(Xn) + b(en+1).

Then, a and b being unknown to the statistician, they have to be estimated. Notice that
a direct kernel method based on a 2-dimensional kernel measuring the distance between
(Xj, ej+1) and (x, e) can not be used, because, apart its well known bad performances, it
would result in a non additive function of (x, e).

Suppose that E(ek) = 0, then

E(Xk|Xk−1, . . . , X1) = a(Xk−1)

and
b(ek) = E(Xk − a(Xk−1)|ek, . . . , e1)

1.2. Estimation. This is a good reason to propose the following estimates:
63
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ân(x) =

∑n−1
j=1 Xj+1K

(
Xj−x

hn

)
∑n−1

j=1 K
(

Xj−x

hn

)(48)

b̂n(e) =

∑n−1
j=1 (Xj+1 − ân(Xj))K

(
ej+1−e

hn

)
∑n−1

j=1 K
(

ej+1−e

hn

) .(49)

2. Assumptions and first consequences

We first gather all the assumptions made in Chapters 4 and 5. They will not be repeated
here.

For the sake of identifiability, we suppose also (see the introduction of the present
chapter)

(50) E(b(e1)) = 0.

This means that (as in the pure autoregressive scheme) a possibly non zero mean for the
stationary solution (Xn) is such that

E(X1) = E(a(X1)).

Notice that since the noise and the exogeneous sequence are independent and both i.i.d,
the model is formally

Xk+1 = a(Xk) + ηk+1

where (ηk)k is a zero mean white bounded noise having a positive marginal density, obtained
by convolution of the density of b(ek) with the density of εk.

Then, since a is bounded there exists a stationary solution to this functional autore-
gressive model, and this solution has the same mixing properties as in Chapter 5.

3. Convergence results

Two basic facts explain why Proposition 19 below holds. The details are left to the
reader

• Denoting Uj+1 = Xj+1−a(Xj), the model Uk+1 = b(ek+1)+εk+1 is a pure regression
satisfying all hypotheses of Theorem 4. Hence, with

b̃n(e) =

∑n−1
j=1 (Xj+1 − a(Xj))K

(
ej+1−e

hn

)
∑n−1

j=1 K
(

ej+1−e

hn

)
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if hn ∼ c
(

ln n
n

)−β

sup
e
|b̃n(e)− b(e)| = Oas

(
lnn

n

)−2β

+Oas

(
lnn

n

)(1+β)/2

• The autoregression Xk+1 = a(Xk) + ηk+1 satisfies all the assumptions of Theorem
16 and, for ân(x) defined in (47), if hn ∼ nβ1hβ2

n ,

sup
x
|ân(x)− a(x)| = Oas

(
n(1−β1)/2 lnn(1+β2)/2

)
+Oas(n

2β1 lnn2β2).

It remains to mix these two results an to introduce estimator b̂n defined in (48).

Proposition 19. With the assumptions of the introduction,
(i) if hn ∼ c

(
ln n
n

)−β

sup
x
|ân(x)− a(x)|+ sup

e
|b̃n(e)− b(e)| = Oas

(
lnn

n

)−2β

+Oas

(
lnn

n

)(1+β)/2

,

(ii) The optimal rate, reached for hn ∼ c
(

ln n
n

)1/5 is

sup
x
|ân(x)− a(x)|+ sup

e
|b̃n(e)− b(e)| = Oas

(
lnn

n

)2/5

.

Remark 17. While a two variable model such as
Xn+1 = A(Xn, en+1) + εn

would have given a rate of convergence n−1/3, up to a multiplicative logarithmic factor
(there is no such result in this document, but see 35 and 46 to understand why this claim
should be correct), the present additive model permits the same rate n−2/5 as in the case
of one variable. This is the advantage of using additive models.

4. Illustration

We only consider the case of the Gaussian kernel and we evaluate the effects of the
bandwidth hn. According to the theoretical result we take hn of the form C(log(n)/n)1/5

for different values of C.
The following pictures provide
• The sets of points (Xi, Xi+1) and (ei, Xi)
• The kernel estimates of a and b for the constant C = 0.1, 0.5, 1, 2. and the

sample size 500 and 5000

In the three examples, the random variables (en) are iid from a uniform distribution on
(−1, 1) and the noise is a Gaussian noise N (0, 1)

• Figures 1, 2 : the model is defined by a(x) = sin(x), b(e) = eI[−1,1](e).
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• Figures 3, 4 : the model is defined by a(x) = 1/(x2 + 1), b(e) = e3I[−1,1](e).
• Figures 5, 6 :The model is defined by a(x) = sign(x)I[0,1](|x|), b(e) = e3I[−1,1](e).
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Figure 1. The model is defined by a(x) = sin(x), b(e) = eI[−1,1](e), (en)
are iid from a uniform distribution on (−1, 1) and a Gaussian noise N (0, 1).
The sample size is n = 5000
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Figure 2. The same model as Fig 1 n = 500
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Figure 3. The model is defined by a(x) = 1/(x2 + 1), b(e) = e3I[−1,1](e),
(en) are iid from a uniform distribution on (−1, 1) and a Gaussian noise
N (0, 1). The sample size is n = 5000
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Figure 4. The same model as Fig. 3. n = 500
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Figure 5. The model is defined by a(x) = sign(x)I[0,1](|x|), b(e) =
e3I[−1,1](e), (en) are iid from a uniform distribution on (−1, 1) and a Gaussian
noise N (0, 1). The sample size is n = 5000
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Figure 6. The same Fig. 5. n = 500
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5. Forecasting

The one step ahead predictor is

X̂n+1 = ân(Xn) + b̂n(en+1)

and the same remarks as in Chapters 4 and 5 can be repeated here.

6. Other methods

The model and the method presented in this chapter are too particular to be interesting
for practical purposes.

We mention here two widely used procedures (see [8], [10] and [11] among others).

6.1. Backfitting methods. They are introduced in exercise 22 above. For the mo-
ment, theoretical developments are missing in the literature. But these methods are easy
to implement and seem rather successful.

6.2. Projection. These methods consist in changing the non-parametric problem of
estimating functions in a parametric problem.

• Expand a and b on bases of functions (Gk) and (Lk) (possibly the same)

a(x) =
∑
j≥1

λjGj(x)

b(e) =
∑
j≥1

νjLj(e)

• Choose two truncation values In and Jn

• Use (for example) a LMS method to estimate the parameters λ1, . . . , λIn and
ν1, . . . , νJn in the model

Xn+1 =
In∑

j=1

λjGj(Xn) +
Jn∑
j=1

νjLj(en+1) +Rn + εn+1

where Rn is the remainder of the two expansions.
See [3] where this method is used to treat the case where the exogeneous variables are not
i.i.d.

7. Exercises

Exercise 23. Give the details of the proof of Proposition 19. ?
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Exercise 24. Consider the model of Figures 1 and 2 and suppose that the statistician
knows that the second function is linear. In this case he shall estimate the function a()
and the parameter b in the model

Xk+1 = a(Xk) + bek+1 + εk+1.

Try to propose a method to perform this estimation. ?

Exercise 25. Consider the partially linear model
Xk+1 = aXk + b(ek+1) + εk+1.

with the same hypotheses as in the previous chapters.
(1) Prove that a = Cov(Xn, Xn+1)
(2) Deduce a convergent estimator of a.
(3) Use this estimator to construct a kernel estimator of b(e).

?

Exercise 26. Try to use the same kind of method to estimate a1, a2 and the function
b() in the model

Xn+1 = a1Xn + a2Xn−1 + b(en+1) + εn+1.

?
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