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Abstract. On the unit tangent bundle of a compact Riemannian surface, we consider
a natural sub-Riemannian Laplacian associated with the canonical contact structure. In
the large eigenvalue limit, we study the escape of mass at infinity in the cotangent space
of eigenfunctions for hypoelliptic selfadjoint perturbations of this operator. Using semi-
classical methods, we show that, in this subelliptic regime, eigenfunctions concentrate on
certain quantized level sets along the geodesic flow direction and that they verify invari-
ance properties involving both the geodesic vector field and the perturbation term.

1. Introduction

Let (M, g) be a smooth, compact, oriented, and boundaryless Riemannian surface and
denote by K(m) its sectional curvature at a given point m ∈M . The unit tangent bundle
of M is defined by

M := SM =
{
q = (m, v) ∈ TM : ‖v‖g(m) = 1

}
.

There are two natural vector fields on SM : the geodesic vector field X and the vertical
vector field V , i.e. the vector field corresponding to the action by rotation in the fibers
of SM . One can then define X⊥ := [X, V ] and these vector fields verify the following
commutation relations [PSU22, §3.5.1]:

(1) [X,X⊥] = −KV, [X, V ] = X⊥, and [X⊥, V ] = −X,

where K is understood as a function on SM (via pullback). The manifoldM is naturally
endowed with a Riemannian metric gS (the Sasaki metric) which makes (X,X⊥, V ) into
an orthonormal basis. The corresponding volume form that we will denote by dµL makes
these three vector fields divergence free and we can define the sub-Riemannian Laplacian
associated with this geodesic frame:

−∆sR := X∗⊥X⊥ + V ∗V = −X2
⊥ − V 2.

More precisely, we consider the Friedrichs extension of this formally selfadjoint opera-
tor (see Appendix A for a brief reminder) which is hypoelliptic by Hörmander’s Theo-
rem [Hor67, Th. 1.1]. In the context of contact geometry, −∆sR is referred as the Rumin
Laplacian for the Sasaki metric [Rum94]. See also §1.4 for a discussion on the case of
general Hörmander (contact) operators in dimension 3.
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We now let Q,W ∈ C∞(M,R). Our goal is to study, in the semiclassical limit h→ 0+,
the eigenfunctions of the following (formally selfadjoint) operator:

(2) P̂h := −h2∆sR − ih2QX −
ih2X(Q)

2
+W, h ∈ (0, 1].

Under the assumption ‖Q‖C0 < 1, one can again consider the Friedrichs extension of
this operator and, from the Rothschild-Stein Theorem [RS76, Th. 16], this still defines
an hypoelliptic operator. Combining this last Theorem with classical tools from spectral
theory [RS80, RS75], one can find h0 > 0 such that, for all 0 < h ≤ h0, there exists a
nondecreasing sequence

min W +OQ(h) ≤ λh(0) ≤ λh(1) ≤ . . . ≤ λh(j) . . .→ +∞, as j → +∞,

and an orthonormal basis (ψjh)j≥0 of L2(M) verifying, for all j ≥ 0,

(3) P̂h ψ
j
h = λh(j)ψ

j
h.

We refer to Lemma A.4 in Appendix A for details. Moreover, any solution ψjh to this
eigenvalue problem belongs to the space C∞(M) and, thanks to Lemma A.5, it satisfies
the a priori estimate for h > 0 small enough:

‖hX⊥ψjh‖
2
L2 + ‖hV ψjh‖

2
L2 + ‖h2Xψjh‖

2
L2 ≤ CQ,W (1 + |λh(j)|)2,

where CQ,W > 0 is a constant depending only on (Q,W ). Here, the fact that there is
a factor h2 in front of the derivatives of X is a manifestation of the lack of ellipticity of
the operator along the X direction. In the following, we aim precisely at analyzing the
structure of the eigenfunctions in the subelliptic regime where formally speaking one has
h−1 � |X| . h−2.

1.1. Quantum limits and semiclassical measures. We are interested in describing the
asymptotic properties of the semiclassical eigenmodes satisfying1:

(4) P̂h ψh = λh ψh, ‖ψh‖L2 = 1, λh → λ0 ∈ R, as h→ 0+.

When W ≡ 0, a natural choice is to pick λh = 1 that would correspond to studying the

large eigenvalue limit for the hypoelliptic operator L = ∆sR + iQX + iX(Q)
2

. Yet, as we
want to emphasize the semiclassical nature of this spectral problem, we keep a general W
and thus some general value λ0 ≥ minW . Still from Lemma A.5, one finds that, for any
sequence λh → λ0, there exists some h0 > 0 such that, for all 0 < h ≤ h0 and for any
solution to (4),

(5) ‖hX⊥ψh‖2L2 + ‖hV ψh‖2L2 + ‖h2Xψh‖2L2 ≤ CQ,W (1 + 2|λ0|)2.
One says that a probability measure ν is a quantum limit for this spectral problem if,

for every a ∈ C0(M),

lim
h→0+

∫
M
a|ψh|2dµL =

∫
M
a dν,

1All along the article, we use the standard conventions from semiclassical analysis to write h → 0+

instead of writing a sequence hn → 0 as n→∞.
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where (ψh)h→0+ is a sequence verifying (4). Up to extraction of a subsequence, one can
always find such an accumulation point. Given λ0 ≥ minW , we denote by Nλ0 the set of
quantum limits associated with the spectral parameter λ0. In view of describing the regu-
larity properties of ν, one lifts the problem to the cotangent bundle T ∗M by introducing

wh : a ∈ C∞c (T ∗M) 7→ 〈Oph(a)ψh, ψh〉L2 ,

where Oph(a) is a h-pseudodifferential operator with principal symbol a [Zwo12, Th. 14.1]
and (ψh)h→0+ is the sequence used to generate ν. Thanks to the Calderón-Vaillancourt
Theorem [Zwo12, Th. 5.1], (wh)h→0+ is a bounded sequence in D′(T ∗M). Hence, up to
extraction, it converges to some limit w which is referred as a semiclassical measure for
the sequence (ψh)h→0+ . The theory of semiclassical pseudodifferential operators allows to
prove that any such w is a finite nonnegative measure on T ∗M that is supported on

E−1(λ0) := {(q, p) ∈ T ∗M : E(q, p) := H2(q, p)
2 +H3(q, p)

2 +W (q) = λ0},
and that satisfies the following invariance property{

H2
2 +H2

3 +W,w
}

= 0,

where
H2(q, p) := p(X⊥), and H3(q, p) := p(V ).

See for instance [Zwo12, §5.2] for proofs of these facts in the case of R2d. We emphasize
that, contrary to the case of eigenvalue problems of elliptic nature, the energy layer E−1(λ0)
is not compact and there may be some escape of mass at infinity. In particular, w could
be equal to 0. See for instance §8 for concrete examples in the case of the flat torus. Due
to this escape of mass at infinity, it is natural to study the measure

ν∞ := ν − π∗w,
where π : (q, p) ∈ T ∗M→ q ∈M, and this is the main purpose of the present work.

1.2. Decomposition of the measure ν∞ and invariance properties. In [CdVHT18,
Thm. B], Colin de Verdière, Hillairet and Trélat proved that X(ν∞) ≡ 0 when Q ≡ 0 and
W ≡ 0. Our results generalize this Theorem in two directions. First, we will provide a
refined description of ν∞, showing that the measure ν∞ decomposes into a discrete sum
of non-negative Radon measures covering different asymptotic regimes h−1 � |X| . h−2

across the non-compact part of E−1(λ0). Second, we will prove that each of these measures
satisfies a new invariance property, different from each-other, as soon as ∇(Q) does not
vanish. In view of formulating our results, we associate to each smooth function f on M
a natural vector field lying in the contact plane D := Span(X⊥, V ) given by

Ωf := V (f)X⊥ −X⊥(f)V.

Our main Theorem then reads:

Theorem 1.1. Let Q,W ∈ C∞(M,R) such that ‖Q‖C0 < 1, let λ0 > maxq∈MW (q) and
set

(6) YW := X + Ωln(λ0−W ).
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Then, for every ν ∈ Nλ0, the measure ν∞ decomposes as

(7) ν∞ = ν∞ +
∞∑
k=0

(
ν+k,∞ + ν−k,∞

)
,

where ν∞ and ν±k,∞ are non-negative Radon measures on M verifying, for all a ∈ C1(M)
and for all k ∈ Z+,

(8)

∫
M
YW (a) dν∞ = 0, and

∫
M
Y ±W,Q,k(a) dν±k,∞ = 0,

with

Y ±W,Q,k :=
(
± (2k + 1) +Q

)
YW − ΩQ.

Remark 1.2. Condition λ0 > maxq∈MW (q) ensures that the classical forbidden region is
empty. In the case minW ≤ λ0 ≤ maxW , the support of ν∞ becomes confined inside the
compact set Mλ0,W := {q ∈ M : λ0 −W ≥ 0}, while the support of ν±k,∞ is contained in
the open subset Uλ0,W := {q ∈ M : λ0 −W > 0}. This more general situation is covered
by the more precise description of semiclassical measures stated in Theorem 7.1.

Remark 1.3. In Section 8, by working on the flat torus M = T2, we show examples of
sequences (ψh, λh) satisfying (4) for which the measures ν∞ or ν±k,∞ we construct carry the
total mass of ν.

Decomposition (7) reflects the stratification of the asymptotic phase-space distribution
of a given sequence (ψh, λh) satisfying (4). Indeed, in Section 7 below, we will provide a
more general description of ν∞ by lifting the analysis to the phase-space via introducing
an adapted semiclassical measure µ∞ on M× R such that, by projection2:

ν∞(q) =

∫
R
µ∞(q, dE).

The extra variable E ∈ R parameterizes the phase-space escape of mass along the degen-
erate direction of X as h → 0+. We refer to (49) below for the explicit construction of
the measure µ∞ using semiclassical tools and we just give here some informal explana-
tion. Letting H1(q, p) = p(X), we will study precisely two different asymptotic regimes
generating a splitting of the measure µ∞ into two parts

µ∞ = 1E 6=0µ∞ + 1E=0µ∞

of qualitatively different nature:

2Letting µ be a finite Radon measure on M× R, the measure ν(q) =
∫
R µ(q, dE) is defined by

〈ν, a〉 :=

∫
M×R

a(q)dµ(q, E),

for all a ∈ C0(M).
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• The critical subelliptic regime h|H1| � 1, captured by 1E 6=0µ∞, displays a quan-
tum behavior which manifests as a decomposition of this measure into a discrete
sum of Radon measures (µ±k,∞)k∈N supported on quantized level sets H−1± (2k+ 1) ⊂
M× R∗± for the energy functions

(9) H±(q, E) := ±
(
λ0 −W (q)

E
−Q(q)

)
, (q, E) ∈M× R∗±.

These measures project on the manifold M and give the measures ν±k,∞:

ν±k,∞(q) =

∫
R
µ±k,∞(q, dE).

• The subcritical subelliptic regime 1 � |H1| � h−1, captured by the measure
µ∞ = 1E=0µ∞, which is supported on M× {0}. This measure projects on M so
that:

ν∞(q) =

∫
R
µ∞(q, dE).

Besides this distinction between the different oscillation regimes, our analysis will show the
influence of the hypoelliptic perturbations of −∆sR given by (2) in the previous description
by obtaning new invariance properties of µ∞ in terms of Q and W . Among other things,
it illustrates that the introduction of the new variable E = hH1 becomes essential for this
description even in the non-semiclassical set-up where W ≡ 0.

1.3. More related results and questions. The fine analysis of these regimes h �
|E| = h|H1| . 1 in the subelliptic region of T ∗M is reminiscent of the analysis made by
Burq and Sun for the semiclassical measures of Baouendi-Grushin operators in [BS22] (see
also [LS23, AS23] for related works). More precisely, Theorem 7.1 below can be compared
with the results obtained by the first author and Sun in [AS23] where a detailed study of
semiclassical measures in the subelliptic regime for quasimodes of the Baouendi-Grushin
operator was performed. In these references, the operator is ∂2x +a(x)∂2y , where (x, y) ∈ T2

and a(x) ≥ 0 is a smooth function that may vanish at finitely many isolated points (with
nondegenerate tangencies). The role of H1 is then played by the cotangent variable η
that is dual to y and [AS23, §3] gives a full description of the eigenmodes in the regime
1 � |η| . h−1 through their semiclassical measures. In particular, the invariance of
these measures through the vector field ∂y is shown and it replaces the geodesic vector
field X in that context. The result is actually stronger as they introduce operator-valued
measures lifting the analogue of the measure ν∞ and describe completely these lifted objects
involving the full cotangent variables. Here, we only focus on the behaviour along the
variables (q, hH1(q, p)). Introducing the full cotangent variables would require some extra
and delicate work (especially in the critical regime h|H1| � 1) that is not necessary to
prove the results we are aiming at.

In [CdVHT18], the hypoelliptic model is closer to ours but this extra variable did not
appear in the description of ν∞ because of the use of microlocal methods. The reason for
introducing this new variable E = hH1 is that, in the regime E 6= 0, the term h2QX is
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not negligible anymore compared with −h2∆sR and it has to be taken into account in the
description of the quantum limit. It results in new invariance properties as in Theorem 1.1.
The fact that the eigenfunctions are localized on specific levels is a manifestation of the
fact that our hypoelliptic operators are modeled locally on the 3-dimensional Heisenberg
group (and thus related to the 1-dimensional harmonic oscillator). More specifically, our
proof of this support property will only rely on the fact that the sub-Riemannian Laplacian
can be written as

(10) ∆sR = Z∗Z − iX = ZZ∗ + iX, [Z,Z∗] = 2iX,

where Z = X⊥ + iV .
This quantization of the level sets can be thought as an analogue in our (non-algebraic)

set-up of the decomposition appearing in the results of Fermanian-Kammerer and Fis-
cher [FKF21, Th. 1.1, Th. 2.10]. See also [FKL21] for related results in the compact
setting. In these references, the decomposition of the semiclassical measures along these
quantized levels shows up because there is a natural way to diagonalize the sub-Riemannian
Laplacian along the elliptic variables. This is exactly where the harmonic oscillator ap-
pears in these references and the subelliptic variable H1 corresponds exactly to the center
direction of the Lie algebra setting from [FKF21, FKL21]. In these works, the proof of this
decomposition required the introduction of operator-valued semiclassical measures. In the
case of more general contact manifolds, we can also mention the works of Taylor [Tay20] re-
garding the question of microlocal Weyl laws for operator-valued symbols. Here, our proof
of these support properties will not rely on the introduction of such analytical objects. It
will simply follow from a careful use of the relation (10) where Z and Z∗ will play the
role of ladder operators, in a similar way to the proof that the eigenvalues of the harmonic
oscillator are given by {2k + 1, k ≥ 0}. In the general 3-dimensional contact case, we note
that the quantum normal form from [CdVHT18] as formulated in [CdV23, §6.2] should
in principle allow to get as in [FKF21] a natural decomposition of the measure ν∞ using
the spectral decomposition of the harmonic oscillator. Yet, due to its microlocal nature,
it would not distinguish the various subelliptic regimes 1 � |H1| . h−1 involved in our
problem as we are doing here.

As our semiclassical analysis of eigenfunctions for hypoelliptic operators is inspired by the
fine analysis performed for the Baouendi-Grushin operator in [BS22, AS23], it is natural
to expect that such results would remain true for similar hypoelliptic perturbations of
the Baouendi-Grushin operator. Similarly, the analysis presented here should in principle
allow to deal with the controllability of the Schrödinger equation as in [BS22] and with
the stabilization of the wave equation as in [AS23]. Yet, this would require more work
that is beyond the scope of the present article. Another natural question would be to
study more precisely the regularity of quantum limits when the geodesic vector field X
enjoys specific dynamical structure, e.g. on Zoll surfaces, on flat tori or on negatively
curved surfaces. Among the natural questions to explore is whether one can always find
sequences of eigenfunctions concentrating on a given levet set H−1± (2k+1). Related to this,
it would be interesting to describe semiclassical Weyl laws for symbols involving the extra
variable E = hH1. In that direction, we refer one more time to [Tay20] for microlocal
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Weyl laws with operator-valued symbols (including the case where Q is not identically
equal to 0) on contact manifolds of dimension ≥ 3. Finally, these hypoelliptic models are
naturally related to semiclassical magnetic Schrödinger operators. For instance, in view of
the works [RVN15, HKRVN16, Mor22, Mor20], it would be natural to compare how the fine
structure of eigenfunctions of these models could be understood following the lines of the
present work. Recall that rather precise descriptions of the low-energy eigenfunctions were
already given via WKB and normal form methods in [BR20, GBRVN21, GBNRVN21].

1.4. A few words on more general sub-Riemannian contact Laplacians in dimen-
sion 3. The simple geometric model considered in this article ensures that we have globally
defined vector fields (X⊥, V ) generating the contact structure and that [X⊥, X] = KV and
[V,X] = −X⊥. It makes some aspects of the exposition somewhat lighter (e.g. regarding
the normal form procedure) but it is not essential in our analysis. In fact, one would only
need to have two locally defined generating vector fields (X2, X3) on a 3-dimensional man-
ifold N so that the operator ∆sR writes down locally as X∗2X2 +X∗3X3 (modulo some order
0 operator) where the adjoint is taken with respect to a smooth (nonvanishing) volume
form and where one has (locally)

(11) TqN = Span(X2(q), X3(q), [X2, X3](q)).

This last condition ensures that D = Span(X2, X3) is non-integrable and thus a contact
structure. The Hörmander type condition (11) is in fact the only ingredient needed to
perform our normal form procedure in Section 5. For the sake of exposition and as ge-
odesic vector fields form a natural and rich family of Reeb vector fields, we refrain from
considering the most general case and we focus on the somehow simplest example of con-
tact structure3 that is not already in normal form. In fact, we emphasize that, contrary to
the flat Heisenberg case [CdVHT18, FKF21, FKL21], the brackets [X⊥, X] and [V,X] do
not identically vanish. This implies that we do not have a nice algebraic structure at hand
and that we have to take them into account in our analysis as it is the case in the general
contact set-up treated in [CdVHT18]. In fact, as we shall see below, the way we deal
with the normal form procedure slighlty differs from the one in [CdVHT18] by avoiding
an “explicit” construction of symplectic coordinates and thus the use of Fourier integral
operators. Yet this simplified method does not rely on the specific form of our operator.
It would work as well for more general sub-Riemannian contact Laplacians in dimension
3 modulo dealing with more cumbersome cohomological equations and modifying conve-
niently the various functions and vector fields in the subelliptic direction. In particular,
if we write −ihX2 and −ihX3 as Oph(H2) and Oph(H3) (modulo terms of order 0), then
we could set H1 := {H3, H2} to measure the escape of mass at infinity. When studying
the measure ν∞ (i.e. the regime 1 � |H1| . h−1), the geodesic vector field X would be
replaced as in [CdVHT18] by the Reeb vector field X1 + αX2 + βX3 with

X1 := [X3, X2], [X2, X1] = βX1 mod D, and [X1, X3] = αX1 mod D.

3Another nice class of examples would be given by the operator X2 + X2
⊥ on negatively/positively

curved surfaces.
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1.5. Organization of the article. In Section 2, we fix the geometric and semiclassical
conventions that are used all along the article. Then, in Section 3, we microlocalize our
eigenfunctions in the region |H1| � 1 and we introduce microlocal lifts of our measures
that capture the escape of mass at infinity. This is where we introduce the new variable
E = hH1. In Section 4, we show that these microlocal lifts are concentrated on certain
quantized layers along the E-variable. In Section 5, we introduce a simple normal form
procedure that is well adapted to the geometry of our problem and we implement it in
Section 6 to derive the invariance properties of our lifted measure. Section 7 summarizes
the main results of the article and show how they can be used to derive Theorem 1.1 from
the introduction. Section 8 treats the simple example of the flat torus in view of illustrating
our analysis in a concrete example. Finally, the article contains two appendices: one
devoted to the spectral properties of our hypoelliptic operators (Appendix A) and another
one collecting a few standard facts from semiclassical analysis (Appendix B).

Acknowledgements. We thank G. Carron, B. Chantraine, C. Fermanian-Kammerer,
B. Helffer, L. Hillairet, F. Macià and C. Sun for discussions related to various aspects of
this work. Both authors are supported by the Agence Nationale de la Recherche through
the PRC grant ADYCT (ANR-20-CE40-0017), the first author is partially supported by
the projects MTM2017-85934-C3-3-P and PID2021-124195NB-C31 (MINECO, Spain) and
the second author acknowledges the support of the Institut Universitaire de France.

2. Semiclassical conventions

In this section we introduce the conventions from differential geometry and semiclassical
analysis required for our study. We first recall the existence of local isothermal coordinates
to write down the differential objects appearing in our framework. This will be particu-
larly useful (although not essential) to describe the normal form procedure of Section 5.
This local framework also allows us to define the necessary semiclassical pseudodifferential
calculus, working from a fixed chart of M .

2.1. Local isothermal coordinates. Near any given point m0 ∈ M , one can find a
system of local coordinates (x, y) ∈ U0 ⊂ R2 (with (0, 0) being the image of m0) such that
the metric g writes down in a conformal way [PSU22, Th. 3.4.8]:

g(x, y) := e2λ(x,y)
(
dx2 + dy2

)
.

We denote this neighborhood inside M by U in the sequel.
To write down the geometrical objects involved in the problem in terms of local isother-

mal coordinates, we follow the presentation of [PSU22, §3.5] and we refer to it for more
details. If we denote by z the angle between a unit vector p ∈ SqU0 and ∂

∂x
, then we have

the following expressions for our vector fields [PSU22, Lemma 3.5.6]:

(12) X := e−λ(cos z∂x + sin z∂y) + e−λ (−∂xλ sin z + ∂yλ cos z) ∂z,

(13) X⊥ := e−λ(sin z∂x − cos z∂y) + e−λ (∂xλ cos z + ∂yλ sin z) ∂z,
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and

(14) V := ∂z.

These expressions are obtained by solving the Hamilton-Jacobi equation for the Hamilton-
ian function e2λ(x,y)(ξ2 + η2) on T ∗R2. The Sasaki metric is not conformal in the system of
coordinates (x, y, z). Yet, the volume form has a simple expression

(15) dµL(x, y, z) = e2λ(x,y)dxdydz.

Remark 2.1. As the results we are aiming at are local, it will be sufficient to work in
such a local chart. We use this chart for the sake of concreteness and for simplicity of
exposition. Yet, our dynamical and semiclassical arguments would work as well for more
general contact flows for which such a nice chart does not exist.

Remark 2.2. Without loss of generality, we can extend these operators on U0 := SU0 =
U0×S1 to operators on R2×S1 by extending λ into a smooth compactly supported function
on R2.

2.2. Hamiltonian formulation. In the following, we will make use of different tools of
semiclassical pseudodifferential calculus. This leads to define the symbols corresponding to
the operators of interest. To this aim, we introduce the Hamiltonian functions associated
with the orthonormal frame (X,X⊥, V ). Namely, we define the following symbols on
T ∗(R2 × S1):

(16) H1(x, y, z, ξ, η, ζ) := e−λ(x,y) (ξ cos z + η sin z + ζ (−∂xλ sin z + ∂yλ cos z)) ,

(17) H2(x, y, z, ξ, η, ζ) := e−λ(x,y) (ξ sin z − η cos z + ζ (∂xλ cos z + ∂yλ sin z)) ,

and

(18) H3(x, y, z, ξ, η, ζ) := ζ.

Notice, in particular, that there exists a positive constant C0 (depending only on our
local isothermal coordinates and on our extension of λ to R2) verifying

(19) C−10 (ξ2 + η2 + ζ2) ≤ H2
1 +H2

2 +H2
3 ≤ C0(ξ

2 + η2 + ζ2).

The commutator relations (1) can then be translated into the following Poisson bracket
commutation formulas:

(20) {H1, H3} = H2, {H1, H2} = −KH3, and {H2, H3} = −H1,

where we recall that K(x, y) is the scalar curvature. We also collect a few useful relations
involving H1, H2, H3, and λ in the next lemma, whose proof is immediate:
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Lemma 2.3. The following identities hold:

∂xH3 = ∂yH3 = ∂zH3 = 0,(21)

∂zH2 = H1, ∂zH1 = −H2,(22) (
∂xH1

∂yH1

)
= −

(
∂xλ e−λ

(
∂2xλ cos z + ∂2xyλ sin z

)
∂yλ e−λ

(
∂2xyλ cos z + ∂2yλ sin z

) )( H1

H3

)
,(23)

(
∂xH2

∂yH2

)
= −

(
∂xλ e−λ

(
∂2xλ sin z − ∂2xyλ cos z

)
∂yλ e−λ

(
∂2xyλ sin z − ∂2yλ cos z

) )( H2

H3

)
.(24)

2.3. Semiclassical Weyl quantization. With the above conventions, we can next rewrite
the geometrical objects introduced in §2.1 in terms of pseudodifferential operators by mak-
ing use of the Hamiltonian formulation of §2.2. Precisely, we have:

h

i
X = Opwh (H1 − ihX(λ)),

h

i
X⊥ = Opwh (H2 − ihX⊥(λ)), and

h

i
V = Opwh (H3),

where Opwh stands for the semiclassical Weyl quantization on R2 × S1 (see Appendix B).
In particular,

(25) −h2∆sR = Opwh
(
H2

2 +H2
3 − 2ihX⊥(λ)H2 − h2rλ

)
,

where rλ(x, y, z) is a smooth compactly supported function that is independent of h (but
depending on the choice of local coordinates). It will be slightly more convenient to work in
the local chart with the operator −h2eλ∆sRe

−λ due to the following conjugation formula:

Lemma 2.4. The following holds on U0:

(26) −h2eλ∆sRe
−λ = Opwh (H2

2 +H2
3 + h2rλ),

where rλ(x, y, z) is a smooth compactly supported function that is independent of h (but
depending on the choice of local coordinates).

Proof. One has

eλ
h

i
X⊥e

−λ =
h

i
X⊥ + ihX⊥(λ) = Opwh (H2),

from which we infer that

−h2eλ∆sRe
−λ = Opwh (H2)

2 + Opwh (H3)
2.

The conclusion of the Lemma follows then from the composition rule (94) for pseudodif-
ferential operators. �

We are now in position to obtain the expression of the full operator P̂h. To do that, we
first use the Weyl pseudodifferential calculus to write

−ih2QX − ih2X(Q)

2
= Opwh (hQH1 + h2W1),
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where W1 ∈ C∞c (R2× S1,C) is independent of h. Using the composition rules for the Weyl
quantization, we obtain

(27) P̂h = e−λ Opwh (H2
2 +H2

3 + hQH1 +W + h2W1,λ)e
λ,

where W1,λ ∈ C∞c (R2 × S1,C) is independent of h. Regarding this expression, it is natural
to set

(28) uh = eλψh,

and thanks to (27), uh solves locally in U0 the eigenvalue equation

(29) P̂h,λ uh = λh uh,

where

P̂h,λ := Opwh (H2
2 +H2

3 + hQH1 +W + h2W1,λ).

The a priori estimate (5) from the introduction then reads

(30)
‖Opwh (H2)uh‖L2(K) + ‖Opwh (H3)uh‖L2(K) + ‖Opwh (hH1)uh‖L2(K)

≤ 2CQ,W,K(1 + |λ0|),

where K is any compact subset of U0 and the L2 norm is now taken with respect to the
standard Lebesgue measure dxdydz on K ⊂ R2 × S1.

2.4. Class of symbols in the region |H1| �
√
H2

2 +H2
3 . In Section 5 below, we will

describe a normal form procedure that will naturally involve functions in the spaces:

PN(R2 × S1) :=

{ ∑
α=(α2,α3)∈Z2

+ : |α|≤N

aα

(
H2

H1

)α2
(
H3

H1

)α3

: ∀α, aα ∈ C∞(R2 × S1)

}
.

Notice that as a consequence of (21), (22), (23) and (24), one can verify the following:

Lemma 2.5. Let P be an element in P(R2×S1) :=
⋃
N PN(R2×S1). Then, ∂xP, ∂yP and

∂zP belong to P(R2 × S1). Similarly, letting p = (ξ, η, ζ), one has that, for every γ ∈ Z3
+,

H
|γ|
1 ∂γpP belongs to P(R2 × S1).

Proof. The first part of the Lemma is direct consequence of (21), (22), (23) and (24). For
the second part, we proceed by induction on |γ| and use the fact that H1, H2 and H3 are
linear functions in (ξ, η, ζ). �

To make the necessary estimates in the sub-elliptic regime arising from our problem, we
will be naturally led to work in the “conic” region

(31) Cε(K) :=

{
(q, p) ∈ T ∗(K) : ε|H1(q, p)| ≥

√
1 +H2

2 (q, p) +H2
3 (q, p)

}
,

where K is a compact subset of R2 × S1 and where ε ∈ (0, 1] is some small parameter that
is intended to tend to 0 in the end. We record the following corollary of Lemma 2.5:
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Corollary 2.6. Let P in P(R2× S1) and let K be a compact subset of R2× S1. For every
0 < ε ≤ 1 and for every (α, β) ∈ Z6

+, one can find a constant Cε,P,K,α,β such that, for every
(q, p) = (x, y, z, ξ, η, ζ) in Cε(K), one has∣∣∂αq ∂βpP ∣∣ ≤ Cε,P,K,α,β〈p〉−|β|,

where 〈p〉 := (1 + ξ2 + η2 + ζ2)
1
2 .

In particular, elements in P(R2 × S2) satisfy the properties of the class of (Kohn-
Nirenberg) symbols S0

cl(T
∗(R2× S1)) defined in Appendix B inside Cε(K) for any compact

subset K of R2 × S1.

3. Reduction to the region 1� |H1| . h−1

Since our results on quantum limits and semiclassical measures in the subelliptic regime
are essentially local, we will restrict ourselves to study the following measures on U0:

νh : a ∈ C∞c (U0) 7→
∫
U0
a(x, y, z)|ψh(x, y, z)|2e2λ(x,y)dxdydz,

where U0 is a bounded open subset of R2 × S1 given by local isothermal coordinates and
where (ψh, λh) is a sequence satisfying (4). As the sequence (ψh) is normalized, this defines
a sequence of measures on U0 that are of finite mass ≤ 1. In fact, up to an extraction, one
can suppose that νh ⇀ ν as h → 0+ and the limit measure is supported in U0 with total
mass ≤ 1. We fix this converging subsequence for the rest of the article.

Using the convention from (29), this can be rewritten as

νh : a ∈ C∞c (U0) 7→
∫
U0
a(x, y, z)|uh(x, y, z)|2dxdydz,

which allows us to work with the standard Lebesgue measure. Before trying to prove our
main Theorem, we will first show in this Section how to reduce these integrals to the region
of the phase space where 1� |H1| . h−1 and thus how to define the mesure µ∞ from the
introduction. We remark that the measures νh can be rewritten as

(32) 〈νh, a〉 = 〈Opwh (a)uh, uh〉L2 .

More generally, as anticipated in the introduction, we consider the associated Wigner
distribution

(33) ∀a ∈ C∞c (T ∗U0), 〈wh, a〉 := 〈Opwh (a)uh, uh〉L2 ,

and, up to another extraction, we can suppose that it converges to some (finite) limit
measure w on T ∗U0.

Remark 3.1. As usual when working with coordinate charts, we make a small abuse of
notations and write ψh for the image of ψh in the coordinate system. As we always
suppose a to be compactly supported in the chart, this causes no difficulties (up to O(h∞)
remainders) and we may view ψh as a smooth compactly supported function on R2 × S1.
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In the rest of the article, we fix a smooth function χ : R→ [0, 1] which is equal to 1 on
[−1, 1] and to 0 outside [−2, 2]. Moreover, we make the assumption that χ′ ≥ 0 on R− and
χ′ ≤ 0 on R+. For such a function, we also set

(34) χ̃ = 1− χ.

For the description of the limit measure ν∞ = ν − π∗w and for the definition of µ∞, we
reduce the analysis of the sequence νh to the subelliptic regime 1� |H1| . h−1. To do so,
we proceed in three steps.

3.1. Reduction to the region at infinity. First, we split the measure νh into two parts
corresponding to the compact and non-compact distribution of the sequence (uh)h→0+ in
phase space. It leads respectively to the definition of the weak limits π∗w and ν∞. Let
R > 1, we introduce the cut-off functions

(35) χBR := χ

(
H2

1 +H2
2 +H2

3

R

)
, χ̃BR = 1− χBR.

These cut-offs allow us to split νh = νh,R + νRh where

∀a ∈ C∞c (U0), 〈νh,R, a〉 = 〈wh, aχBR〉, and 〈νRh , a〉 = 〈wh, aχ̃BR〉.

Notice moreover that the cut-offs χBR and χ̃BR belong to the admissible class of symbols
S0
cl(T

∗(R2× S1) defined in Appendix B. Letting h→ 0+ and R→ +∞ (in this order), one
finds

lim
R→+∞

lim
h→0+
〈νh,R, a〉 = 〈π∗w, a〉,

where π : T ∗U0 3 (q, p) 7→ q ∈ U0, and

(36) 〈ν∞, a〉 = lim
R→+∞

lim
h→0+
〈νRh , a〉.

Remark 3.2. Again we implicitely consider sequences Rn → +∞ (say 2n) but we just write
R→ +∞ for simplicity.

3.2. Reduction to the cones Cε(U0). We next introduce a further cut-off restricting the
measure νh to a conic region containing the semiclassical wave-front set of the sequence
(uh)h→0+ in the subelliptic regime 1� |H1| . h−1. We set, for 0 < ε < 1,

(37) χCε := χ

(
εH1√

H2
2 +H2

3 + 1

)
, χ̃Cε = 1− χCε .

Before including these cut-offs in our analysis of the sequence νRh , we show the following
result:

Lemma 3.3. For every 0 < ε < 1, the symbols χCε and χ̃Cε belong to the admissible class
of symbols S0

cl(T
∗(R2 × S1) defined in Appendix B.

Remark 3.4. The corresponding seminorms of χCε and χ̃Cε in S0
cl(T

∗(R2 × S1) depend on ε.
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Proof. From the definition of χCε and χ̃Cε , it is sufficient to verify that all the derivatives of

g :=
H1√

H2
2 +H2

3 + 1

are bounded (with some further decay for the derivatives with respect to (ξ, η, ζ)) in the
region where εg ∈ supp(χ′), i.e.

(38)
1

ε

√
1 +H2

2 +H2
3 ≤ |H1| ≤

2

ε

√
1 +H2

2 +H2
3 .

Thanks to (21), (22), (23) and (24), we can verify by induction that, for every α ∈ Z3
+,

∂αxyzg =

|α|∑
j=0

Pj,α(H1, H2, H3)

(1 +H2
2 +H2

3 )j+
1
2

,

where, for every 0 ≤ j ≤ |α|, (u, v) 7→ Pj,α(u, v) is a polynomial of degree ≤ 2j + 1. In
particular, using (38), all these derivatives are bounded (with a constant depending on ε).
It now remains to deal with the derivatives with respect to (ξ, η, ζ). To this aim, we recall
that H1, H2 and H3 are linear functions in these variables. Arguing by induction as for
the derivatives with respect to (x, y, z), we can then conclude that, for every (α, β) ∈ Z6

+,

∂αxyz∂
β
ξηζg is uniformly bounded by Cε(1 +H2

2 +H2
3 )−

|β|
2 under the assumption (38). Using

the upper bound in (38), we deduce that this is bounded by Cε(1 + H2
1 + H2

2 + H2
3 )−

|α|
2 ,

for some slighlty larger constant Cε > 0. This concludes the proof of the Lemma thanks
to (19). �

The next step of our analysis consists of inserting these two cutoffs in the construction
of νRh . This produces the splitting:

〈νRh , a〉 =
〈
Opwh (aχ̃BRχ

C
ε )uh, uh

〉
L2 +

〈
Opwh (aχ̃BRχ̃

C
ε )uh, uh

〉
L2 .

By the same arguments as the ones used in the proof of Lemma 3.3, we observe that the
function

aχCε χ̃
B
R

1 +H2
2 +H2

3

belongs to the class of symbols S−2cl (T ∗(R2×S1)). In particular, from the composition rules
for pseudodifferential operators and the Calderón-Vaillancourt Theorem, one has

Opwh (aχCε χ̃
B
R) = Opwh

(
aχCε χ̃

B
R

1 +H2
2 +H2

3

)
Opwh

(
1 +H2

2 +H2
3

)
+OL2→L2(h).

Combining this composition rule with (29) and (30), one obtains the estimate

(39)
∣∣〈Opwh (aχ̃BRχ

C
ε )uh, uh

〉
L2

∣∣ ≤ ∥∥∥∥Opwh

(
aχCε χ̃

B
R

1 +H2
2 +H2

3

)∥∥∥∥
L2→L2

+Oε,R(h).
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Moreover, by construction of our cutoff functions and by using Calderón-Vaillancourt The-
orem one more time, one gets∣∣〈Opwh (aχ̃BRχ

C
ε )uh, uh

〉
L2

∣∣ ≤ CM,g,a

Rε2
+Oε,R(h

1
2 ).

Hence, one ends up with

(40) 〈νRh , a〉 =
〈
Opwh (aχ̃BRχ̃

C
ε )uh, uh

〉
L2 +O((Rε2)−1) +Oε,R(h

1
2 ),

and we can introduce the object of interest for our analysis:

(41) 〈νR,εh , a〉 :=
〈
Opwh (aχ̃BRχ̃

C
ε )uh, uh

〉
L2 .

In conclusion, we have shown:

Lemma 3.5. With the above conventions, one has, for every 0 < ε < 1,

〈ν∞, a〉 = lim
R→+∞

lim
h→0+
〈νR,εh , a〉.

Remark 3.6. Note that, so far, the parameter ε > 0 does not play any particular role.
However, it will become important when analyzing the invariance and support properties
of ν∞ where we will need to take the limit ε→ 0.

Finally, we record the following useful Lemma that follows from the proof of Lemma 3.3:

Lemma 3.7. Let K be a compact subset of R2×S1. For every 0 < ε ≤ 1, for every N0 ≥ 2,
and for every (α, β) ∈ Z6

+, one can find a positive constant Cε,N0,K,α,β such that, for every
(q, p) = (x, y, z, ξ, η, ζ) in C2N0ε(K) \ C2−N0ε(K), one has∣∣∣∣∣∂αq ∂βp

(
H1√

1 +H2
2 +H2

3

)∣∣∣∣∣ ≤ Cε,N0,K,α,β〈p〉−|β|,

where 〈p〉 := (1 + ξ2 + η2 + ζ2)
1
2 .

In other words, the function H1√
1+H2

2+H
2
3

belongs to an amenable class of symbols inside

the “cone” C2N0ε(K) \ C2−N0ε(K).

3.3. Reduction to the region 1 � |H1| . h−1. We will now localize the phase-space
distribution of the sequence (uh) in the sub-elliptic region 1� |H1| . h−1. To do that, we
introduce the cutoff functions, for R1 > 1,

ρR1 := χ̃

(
hH1

R1

)
, and ρ̃R1 := 1− ρR1 .

The cut-off ρ̃R1 localizes the sequence (uh) in the region of interest to us. Let us first show
that this last localization keeps the analysis in the admissible symbol class.

Lemma 3.8. Let a ∈ C∞c (U0). The functions aχ̃BRχ̃
C
ε ρR1 and aχ̃BRχ̃

C
ε ρ̃R1 belong to the

admissible symbol class S0
cl(T

∗(R2 × S1)) with seminorms that are uniformly bounded for
0 < h ≤ 1.
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Proof. We already know from Lemma 3.3 that aχ̃Cε belongs to S0
cl(T

∗(R2 × S1)) and we
have observed that χ̃BR belongs to S0

cl(T
∗(R2 × S1)). Thus, we need to show that ρR1(hH1)

belongs to this class when restricted to the region of phase space given by the support of
aχ̃Cε χ̃

B
R. Among other constraints, in this region we have that (x, y, z) in U0 and

(42)
ε|H1|√

1 +H2
2 +H2

3

≥ 1.

In other words, we need to show that the derivatives of hH1 verify the properties of
the class S0

cl(R2 × S1) under these support properties and the additional assumption that
ρ′R1

(hH1) 6= 0, which leads to the additional constraint

(43) R1 ≤ h|H1| ≤ 2R1.

In view of (21), (22), (23) and (24), one can verify that all the derivatives of ρR1 of order
l with respect (x, y, z) are linear combinations of functions of the form

P (hH1, hH2, hH3)χ
(k)(hH1/R1),

where P is a polynomial of degree k with coefficients in C∞(R2 × S1) and with k ≤ l. In
particular, thanks to the support properties (42) and (43), these quantities are bounded
as expected. It now remains to differentiate these quantities with respect to (ξ, η, ζ). As
H1, H2, H3 are polynomials of degree 1 in (ξ, η, ζ), it has the effect to lower the degree
of the polynomial and to get a bound of order hl

′
where l′ is the number of derivatives

with respect to these variables. Using (42) and (43) one more time together with (19), this
yields the expected decaying properties of the class S0

cl(T
∗(R2 × S1)) with constants that

are independent of 0 < h ≤ 1. �

We next include these cutoff functions in (41). The goal is to verify that the contribution
of the term

(44)

〈
Opwh

(
aχ̃Cε χ̃

B
Rχ̃

(
hH1

R1

))
uh, uh

〉
L2

is small as R1 → +∞. Notice, to this aim, that on the support of aχ̃Cε χ̃
B
R, the function

1/H1 belongs to the class of symbols S0
cl(T

∗(R2 × S1)). Hence, by the composition rules
for pseudodifferential operators, one has〈

Opwh

(
aχ̃Cε χ̃

B
Rχ̃

(
hH1

R1

))
uh, uh

〉
L2

=

〈
Opwh

(
aχ̃Cε χ̃

B
Rχ̃ (hH1/R1)

hH1

)
Opwh (hH1)uh, uh

〉
L2

+OR,R1,ε(h).

Using then the a priori estimate (30) together with the Calderón-Vaillancourt Theorem,
we find 〈

Opwh

(
aχ̃Cε χ̃

B
Rχ̃

(
hH1

R1

))
uh, uh

〉
L2

= O(R−11 ) +OR,R1,ε(h).
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Therefore, by another application of pseudodifferential calculus rules, we get finally that

(45) 〈νR,εh , a〉 =
〈
Opwh (aρ̃R1(hH1)χ̃

C
ε χ̃

B
R)uh, uh

〉
L2(U0)

+O(R−11 ) +OR,R1,ε(h).

3.4. Adding a new variable E = hH1. To complete the preliminaries concerning the
phase-space localization of the measure νR,εh , we lift slightly our analysis by introducing
more general distributions in terms of a new variable hH1 for the symbols a considered
above. Namely, we set

(46) µR,εh : b ∈ C∞c (U0 × R) 7→
〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )uh, uh

〉
L2(U0)

.

The same argument as in the proof of Lemma 3.8 shows that b(x, y, z, hH1)χ̃
C
ε χ̃

B
R belongs to

S0
cl(T

∗(R2×S1)). In particular, this defines a bounded sequence in D′(U0×R). Thus, up to

another extraction, we may suppose that µR,εh converges (for the weak-? topology) to some
distribution µR,ε. Thanks to the Garding inequality (96), this is a positive distribution,
thus a finite measure. Moreover, since the sequence (ψh) is normalized (and hence (uh) is
bounded), this defines a finite measure. Up to another extraction, we can suppose that
µR,ε weakly converges to some limit measure µε as R → +∞. Coming back to (45), we
find that

(47) 〈ν∞, a〉 = lim
R→+∞

lim
h→0+
〈νR,εh , a〉 = 〈µε, aρ̃R1(E)〉+O(R−11 ).

Applying the dominated convergence Theorem, one finds that, for all ε > 0 (small enough),

(48) ∀a ∈ C∞c (U0), 〈ν∞, a〉 = 〈µε, a〉,

so that our analysis boils down to the description of the measure µε. Finally, up to another
extraction as ε → 0+, we can suppose that µε converges to some (finite) Radon measure
on U0 × R, i.e.

(49) ∀b ∈ C∞c (U0 × R), 〈µ∞, b〉 = lim
ε→0+

lim
R→+∞

lim
h→0+
〈νR,εh , b〉.

From (47), one has

(50) ∀a ∈ C0c (U0),
∫
U0
a(q)dν∞(q) =

∫
U0×R

a(q)dµ∞(q, E),

and our analysis thus boils down to the properties of the extended measure µ∞.

Remark 3.9. As explained in Remark 3.6, the fact that we take ε → 0+ is not important
so far but will turn to be later on.

4. Support of the limit measure

Before describing the propagation and invariance properties of ν∞, we discuss first the
support properties of µ∞ along the new variable E ∈ R. More precisely, the goal of this
section is to prove the following:
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Proposition 4.1. The measure µ∞ defined in (49) decomposes as

µ∞(q, E) = µ∞(q, E) +
∞∑
k=0

(
µ+
k,∞(q, E) + µ−k,∞(q, E)

)
,

where µ∞ and (µ±k,∞)k≥0 are finite non-negative Radon measures on M× R satisfying the
following concentration properties:

(S.1) suppµ∞ ⊂Mλ0,W × {0};

(S.2) for every k ∈ Z+, suppµ±k,∞ ⊂ H
−1
± (2k + 1) ⊂ Uλ0,W × R∗±.

Recall thatMλ0,W := {λ0−W ≥ 0} is the classical allowed region, Uλ0,W = {λ0−W >
0}, and that H± was defined in (9). Even if we do not explicitly use it, the proof of
this result relies implicitely on the fact that our operators are locally modeled on the 3-
dimensional Heisenberg group. In particular, the presence of the quantum levels 2k + 1
is just a manifestation that the Heisenberg group is associated with the one-dimensional
harmonic oscillator.

4.1. Preliminary lemmas. We first define the following creation and annihilation type
operators (ladder operators):

Ah := Opwh (H2 + iH3) and A∗h := Opwh (H2 − iH3),

so that

(51) Opwh (H2
2 +H2

3 ) = A∗hAh + hOpwh (H1) + h2c0 = AhA
∗
h − hOpwh (H1) + h2c0,

where c0 is a smooth compactly supported and real-valued function on R2 × S1 (recall
that λ ≡ 0 outside a compact set containing the isothermal neighborhood U0) which is
independent of h. Notice that, by (20),

(52) [Ah, A
∗
h] = 2hOpwh (H1).

We begin with the following lemma:

Lemma 4.2. Let k ≥ 1. Then

Akh = Opwh

(
(H2 + iH3)

k +
k∑
j=1

Pj,k,h(hH1, hH2, hH3)(H2 + iH3)
k−j

)
,

where Pj,k,h(u, v, w) is a polynomial with coefficients depending polynomially on h and
smoothly on (x, y, z) ∈ R2 × S1 (with uniformly bounded derivatives).

In fact, modulo some extra work, we could be slightly more precise on the nature of the
polynomials as we know that the full symbol is a polynomial of degree k in the cotangent
variables (ξ, η, ζ). Yet, as it is not necessary for our analysis, we do not try to be more
precise and we just keep track of the informations that are relevant for our proofs.
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Proof. Recall that

Ah = Opwh (H2 + iH3) =
h

i
X⊥ + hV + ihX⊥(λ).

In particular, Akh is a differential operator of order k for every k ≥ 1, and its symbol is
polynomial of degree ≤ k in the cotangent variables (ξ, η, ζ). We now proceed by induction
and suppose that the lemma is true for a given k ≥ 1. Using the composition rule from
Theorem B.1, we can write

Ak+1
h = Opwh

(
(H2 + iH3)

k +
k∑
j=1

Pj,k,h(hH1, hH2, hH3)(H2 + iH3)
k−j

)
Opwh (H2 + iH3)

= Opwh

(
(H2 + iH3)

k+1 +
k∑
j=1

Pj,k,h(hH1, hH2, hH3)(H2 + iH3)
k+1−j

)

+ Opwh (Rk(h)) ,

where

Rk(h) =
k+1∑
`=1

k∑
j=1

h`

`!
A(D)`

((
Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j) (H2 + iH3)
)
.

Here the sum stops at ` = k+ 1 as each symbol is a polynomial of respective degree k and
1 in the (ξ, η, ζ) variables. Recall that A(D) = 1

2i
(∂p1 · ∂q2 − ∂q1 · ∂p2) so that the symbols

of interest for the remainder take the form

A`(D)
((
Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j) (H2 + iH3)
)
,

with A`(D) = (∂p1 · ∂q2)` − `(∂q1 · ∂p2)(∂p1 · ∂q2)`−1. By induction, we get the expected
expression for the terms of order hl in the asymptotic expansion. �

As a corollary of this lemma and of the composition rule for pseudodifferential operators,
we also find:

Corollary 4.3. Let k ≥ 1. Then

Opwh ((H2 + iH3)
k) = Akh +

k∑
j=1

Opwh

(
P̃j,k,h(hH1, hH2, hH3)

)
Ak−jh ,

where P̃j,k,h(u, v, w) is a polynomial with coefficients depending polynomially on h and
smoothly on (x, y, z) ∈ R2 × S1 (with uniformly bounded derivatives).

We now turn to the commutation properties of Akh with the operators of interest for our
analysis:



20 VÍCTOR ARNAIZ AND GABRIEL RIVIÈRE

Lemma 4.4. Let Q and W be two smooth functions on R2 × S1 whose derivatives are
uniformly bounded. Then, for every k ≥ 1,

[Akh,Opwh (hQH1)] = h
k−1∑
j=0

Opwh (Pj,k,h(hH1, hH2, hH3))A
k−1−j
h ,

and

[Akh,Opwh (W )] = h
k−1∑
j=0

Opwh (P̃j,k,h(hH1, hH2, hH3))A
k−1−j
h ,

where Pj,k,h(u, v, w) and P̃j,k,h(u, v, w) are polynomials whose coefficients depend polynomi-
ally on h and smoothly on (x, y, z) ∈ R2×S1 (with derivatives that are uniformly bounded).

Proof. First, we observe that, thanks to Lemma 4.2, one has

Akh = Opwh

(
(H2 + iH3)

k +
k∑
j=1

Pj,k,h(hH1, hH2, hH3)(H2 + iH3)
k−j

)
,

where Pj,k,h are polynomials verifying the properties of the present Lemma. The second
bracket formula is then a direct consequence of the composition rule for pseudodifferential
operators (see Theorem B.1) together with Corollary 4.3. In fact, since W depends only on
(x, y, z), the terms in the asymptotic expansion will only involves derivatives of the symbol
of Akh with respect to the variables (ξ, η, ζ).

We now turn to the first bracket which can be rewritten as

[Akh,Opwh (hQH1)] =
k∑
j=0

[
Opwh

(
Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j) ,Opwh (QhH1)
]
,

with P0,k,h = 1. Given 0 ≤ j ≤ k, one can apply the composition rule from Theorem B.1
to each term, i.e.[

Opwh
(
Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j) ,Opwh (QhH1)
]

= 2
∑

0≤2`≤k

h2`+1

(2`+ 1)!
Opwh

(
A(D)2`+1

(
(Pj,k,h(hH1, hH2, hH3)(H2 + iH3)

k−j)(QhH1)
))
.

Here, the sum over ` is bounded as we are only considering polynomials symbols in the
variables (ξ, η, ζ) (with the total degree being bounded by k + 1). Recalling the exact
expression of A(D) from Theorem B.1 and Corollary 4.3 (together with several applications
of the composition formula), we find the expected result. �

Remark 4.5. Similar statements as those of Lemmas 4.2, 4.4 and Corollary 4.3 hold for A∗h
replacing Ah.
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4.2. Inductive argument: proof of Proposition 4.1. In order to prove the localization
properties (S.1) and (S.2) for the measure µ∞, we start from the following semiclassical
estimates. For every k ≥ 0,〈

Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )2Akh(P̂h,λ − λh)uh, Akhuh

〉
= O(h∞),(53) 〈

Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )2(A∗h)

k(P̂h,λ − λh)uh, (A∗h)kuh
〉

= O(h∞).(54)

Using estimates (53) and (54) together with (51) and the symbolic calculus developed
in Section 4.1, we aim at deriving inductively suitable concentration properties for the
distributions %±k,ε,R,h defined by

%+k,ε,R,h : b 7→
〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )Akhuh, A

k
huh
〉
,

%−k,ε,R,h : b 7→
〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )(A∗h)

kuh, (A
∗
h)
kuh
〉
.

Remark 4.6. Note that, in order to make sense of the limit measures for k ≥ 1, one needs
to have an a priori upper bound on∥∥Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )Akhuh

∥∥
which will be part of the argument below. For k = 1, such an upper bound follows
for instance from the a priori estimate (30) but, for k ≥ 2, this does not longer work
immediately.

We will show along the process that, up to additional extractions, the weak limits of
these distributions are well defined as non-negative Radon measures:

〈%±k , b〉 := lim
ε→0+

lim
R→+∞

lim
h→0
〈%±k,ε,h, b〉,

and we will deduce from these measures the desired support properties of µ∞. For the sake
of exposition, we start with the first step k = 0 which is slightly easier to handle:

Lemma 4.7. The measure µ∞ = %±0 satisfies:

supp(µ∞) ⊂
{

(q, E) ∈M× R : −λ0 −W
1−Q

≤ E ≤ λ0 −W
1 +Q

}
.

In particular, the support of the measure µ∞ is compact in the E variable and disjoint with
the classical forbidden region {W > λ0}. Moreover,

(55) supp(µ∞) ⊂ H−1+ (1) ∪H−1− (1) ∪
(

supp %+1 ∩ supp %−1
)
,

and

supp %±1 ⊂ supp(µ∞),

where we recall that H±(q, E) = ±E−1(λ0 −W − EQ).

Remark 4.8. Recall also from Appendix A that condition ‖Q‖C0 < 1 was initially imposed

to ensure the hypoellipticity (and the semiboundedness) of the operator P̂h.
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Proof. Given b ∈ C∞c (U0 × R), one has

(56)
〈

Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )(P̂h,λ − λh)uh, uh

〉
= O(h∞).

Recalling that

(57) Opwh (H2
2 +H2

3 ) = A∗hAh + hOpwh (H1) + h2c0,

one can use the composition rule for pseudodifferential operators together with the a priori
estimate (30). This yields〈

Opwh (b(x, y, z, hH1)(hH1 + hQH1 +W − λh)χ̃BRχ̃Cε )uh, uh
〉

= −〈%+1,ε,R,h, b〉+O(h).

Thanks to (30) and to the Calderón-Vaillancourt Theorem, the right-hand side defines a
bounded sequence in D′(U0 × R). Moreover, the Garding inequality (96) ensures that the
limit distribution is a nonnegative Radon measure. Hence, letting h → 0+ and R → +∞
(in this order), one finds that, for every b compactly supported in U0 × R,

µε (b(x, y, z, E)(E(1 +Q) +W − λ0)) = −%+1,ε(b).
From this, one infers that, on the support of µε, (1 + Q)E + W − λ0 ≤ 0, and moreover
that

(58) supp(µε) \ H−1+ (1) = supp %+1,ε.

Similarly, using now the identity

(59) Opwh (H2
2 +H2

3 ) = AhA
∗
h − hOpwh (H1) + h2c0

instead of (57), and using again (56), one finds〈
Opwh (b(x, y, z, hH1)(−hH1 + hQH1 +W − λh)χ̃BRχ̃Cε )uh, uh

〉
= −〈%−1,ε,h, b〉+O(h),

and thus
µε (b(x, y, z, E)(−E(1−Q) +W − λ0)) = −%−1,ε(b).

This implies that −E(1−Q) +W − λ0 ≤ 0 on the support of µε and moreover that

(60) supp(µε) \ H−1− (1) = supp %−1,ε.

Putting together (58) and (60) and, letting ε→ 0+ this concludes the proof. �

We now turn to the general case for which we cannot make use of the a priori esti-
mate (30) directly:

Lemma 4.9. For every k ≥ 0 and for every R > 1 and ε > 0, the family (%±k,R,ε,h)0<h≤h0 is

bounded in D′(U0×R) and any accumulation point (as h→ 0+) %±k,R,ε is a finite nonnegative

Radon measure. Moreover, (%±k,R,ε)R,ε is bounded and any accumulation point as R→ +∞
and ε→ 0+ (in this order) is a finite nonnegative Radon measure verifying

supp %±k ⊂ {(q, E) ∈M× R : ±E(2k + 1±Q) +W − λ0 ≤ 0},
Moreover, for every k ≥ 0, supp %±k+1 ⊂ supp %±k and

supp %±k \ supp %±k+1 ⊂ H
−1
± (2k + 1).
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Proof. The case k = 0 follows by Lemma 4.7. Assume that the claim holds for every
0 ≤ j ≤ k and moreover that the following a priori estimates hold, for any b ∈ C∞c (U0×R)
and for any h > 0 small enough,

(61)
∥∥Opwh (b(x, y, z, hH1)χ̃

B
2j−(k+1)Rχ̃

C
2k+1−jε)A

j
huh
∥∥
L2 ≤ C

(
‖b‖∞ +OR,ε,b(h

1
2 )
)
,

for 0 ≤ j ≤ k and for some constant C > 0 that is independent of ε and R and that
depends on the support of b (and also on W and Q). Moreover, the constant in the
remainder depends on a finite number of derivatives of b. Let us prove the claim for k+ 1.

Remark 4.10. We change the parameters in our cutoff functions at each stage but it does
not hurt the argument as bounds like (61) holds for any choice of R, ε and do not depend
on the choice of subsequence. In the end, recall that we are aiming in the end at taking
the limit h → 0+, R → +∞ and ε → 0+ (in this order). For instance, all along the
analysis, one could take the sequences (Rn)n≥1 and (εm)m≥1 to be of the form Rn = 2n and
εm = 2−m in view of matching the inductive process chosen here. We keep the notations
R→ +∞ and ε→ 0+ to alleviate notations.

We begin by proving the same a priori estimate on

‖Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )Ak+1

h uh‖L2 ,

which is the main technical point of the analysis. To do that, we begin with equality (53)
which can be expanded as follows〈

Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )2Akh Opwh (hH1 + hQH1 +W + h2(W1,λ + c0)− λh)uh, Akhuh

〉
= −

〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )2AkhA

∗
hAhuh, A

k
huh
〉

+O(h∞).

Applying Lemma 4.4 together with (52) k times, we can deduce from the support properties
of our symbol and from (61) that〈

Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )2 Opwh ((2k + 1)hH1 + hQH1 +W − λh)Akhuh, Akhuh

〉
= −

〈
Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )2A∗hA

k+1
h uh, A

k
huh
〉

+OR,ε(h).

Here, the fact that we can control the remainder terms at each step by (61) follows from
elliptic estimates for pseudodifferential operators as in [DZ19, Th. E.33] and from the fact
that we schrink the support of our cutoffs functions at each stage of the induction.

Applying the composition rule for pseudodifferential operators together with the induc-
tion hypothesis, we find that〈

Opwh ((b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )2((2k + 1)hH1 + hQH1 +W − λh)Akhuh, Akhuh

〉
= −

∥∥Opwh (b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε )Ak+1

h uh
∥∥2 +OR,ε(h).

By induction, the left-hand side is bounded from which we deduce the expected upper
bound at step k + 1.



24 VÍCTOR ARNAIZ AND GABRIEL RIVIÈRE

We note that the upper bound (61) allows to verify by induction that any accumulation
point %±k,ε,R (as h→ 0+) is a finite nonnegative Radon measure whose total mass is indepen-

dent of ε and R. We can thus take the limit R→ +∞ and ε→ 0+ in this order. We obtain
the expected limit measure %±k+1 and we can now derive its support properties. Repeating
the same argument with Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε ) instead of Opwh (b(x, y, z, hH1)χ̃

B
Rχ̃

C
ε )2

(and with (A∗h)
k instead of Akh) and taking the limits h→ 0+ and R→ +∞ (in this order),

we can prove that

(62) %±k (b(x, y, z, E)(±E(2k + 1±Q) +W − λ0)) = −%±k+1(b).

Finally, from (62), we get the first statement of the lemma and moreover:

supp %±k \ H
−1
± (2k + 1) = supp %±k+1.

This concludes the proof. �

Finally, Lemma 4.9 implies that:

suppµ∞ ⊂ (Mλ0,W × {0}) ∪
∞⋃
k=0

(
H−1+ (2k + 1) ∪H−1− (2k + 1)

)
.

Defining, for k ∈ Z+,

µ±k,∞ := 1H−1
± (2k+1)µ∞, and µ∞ := 1Mλ0,W

×{0}µ∞,

we obtain the proof of Proposition 4.1.

5. Normal form reduction

In order to study the invariance properties of the measure µ∞, we will require a nor-
mal form procedure in the subelliptic regime 1 � |H1| . h−1. This will allow us to
work with functions that are adapted to the geometry of the problem. Roughly speaking,
it amounts to work in a system of asymptotically symplectic coordinates as |H1| → ∞.
This normal form approach was pioneered in Melrose’s works [Mel85] and recently revis-
ited in the context of sub-Riemannian Laplacians associated with 3-dimensional contact
flows [CdVHT18, CdVHT21] as we are dealing here. See also [RVN15] for earlier related
normal forms procedure in the context of 2-dimensional magnetic semiclassical Schrödinger
operators and [HKRVN16, Mor22, Mor20] regarding higher dimensional normal forms for
magnetic operators.

Compared with [CdVHT18], we will simplify some aspects of the normal form procedure.
Rather than making a symplectic change of variables at each step of the iterative scheme
and using the machinery of Fourier integral operators, we will just encode a slightly simpler
change of variables (close to but not necessarily symplectic) into a small deformation of
the test function

b = b+O
(
|H2|+ |H3|
|H1|

)
for the Wigner distribution µR,εh defined by (46). This deformation makes the remainder
term in {H2

2 +H2
3 ,b} as small as possible in the regime H2

2 +H2
3 � H2

1 . We will need as well
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to introduce an auxiliary function H1 that behaves asymptotically as H1 and that ensures
{H2

2 +H2
3 ,H1} to be small in that same regime. This simplified version of the normal form

method is in fact sufficient to obtain the desired invariance properties of the semiclassical
measure µ∞ = limε→0 µ

ε. We emphasize that Wigner type distributions enjoy somehow
more flexibility regarding change of variables than Fourier integral operators (since many
negligible terms disappear in the limit h → 0), and we will crucially exploit this fact to
avoid the use of cumbersome symplectic changes of coordinates that in the end match with
ours in the semiclassical limit (see [AS23, Sect. 3.1] for a related construction involving
two-microlocal semiclassical measures).

Remark 5.1. In this section, the fact that we have simple bracket formulas as (20) will
make the proof slightly simpler and more explicit regarding the terms appearing in the
normal form. Yet, the strategy would remain the same if {H1, H2} and {H1, H3} were
more general linear combinations of H1, H2 and H3 (as in the general contact case). In
any case, the fact that these brackets do not exactly vanish is exactly where the situation
is more involved than in the flat Heisenberg case [FKF21, FKL21] like when considering
varying magnetic fields rather than constant ones.

5.1. Solving polynomial cohomological equations. We first recall the algebraic rela-
tions given by (20) and producing the subelliptic structure of our problem:

(63) {H1, H2} = −KH3, {H1, H3} = H2, {H2, H3} = −H1.

In some sense the pair (H2, H3) behaves like a system of coordinates in T ∗R for the classical
harmonic oscillator, at least in the region H2

2 +H2
3 � H2

1 . With that observation in mind,
it is convenient to introduce complex notations:

Z := H2 + iH3 and Z := H2 − iH3,

so that
H2

2 +H2
3 = |Z|2.

In particular, a direct calculation shows that, for every k 6= l in Z+, one has

(64)

{
|Z|2, ZkZ

l

2i(l − k)

}
= H1Z

kZ
l
,

and the relations (63) now become

(65) {H1, Z} = iK+Z + iK−Z, {H1, Z} = −iK−Z − iK+Z, {Z,Z} = 2iH1,

where

K+ :=
1 +K

2
and K− =

1−K
2

.

In particular, one has

(66) {|Z|2, H1} = iK−(Z2 − Z2
).

Remark 5.2. In the rest of this Section, we will always suppose that we work in the region
H1 6= 0. In the end, the formulas will only be used in the regime |H2|, |H3| � |H1|.
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5.2. A small deformation of H1. We start with the deformation of the variable H1.

5.2.1. Normal form procedure. In view of (66) and (64), we set

P2 :=
K−
2

((
H2

H1

)2

−
(
H3

H1

)2
)
.

By construction, one has

{|Z|2, H1(1 + P2)} =
(Z2 + Z

2
)

4

{
|Z|2, K−

H1

}
.

Iterating this procedure one more time, one can find P3 in P(R2 × S1) of the form

P3 =
∑
|α|=3

P3,α(x, y, z)

(
H2

H1

)α2
(
H3

H1

)α3

and such that, if we set

(67) H1 := H1 (1 + P2 + P3) ,

then one has

(68) {H2
2 +H2

3 ,H1} = H2
2R1 +H3

3R2 +H2H3R3,

with Rj belonging in P(R2 × S1) and being of the form

Rj =
∑
|α|≥2

Rj,α(x, y, z)

(
H2

H1

)α2
(
H3

H1

)α3

.

Hence, in the regime H2
2 + H2

3 � H2
1 , this Poisson bracket is somehow of smaller order

than the one appearing in (66).

We finally state the following analogue of Lemma 3.7:

Lemma 5.3. Let K be a compact subset of R2 × S1. For every 0 < ε ≤ 1, for every
N0 ≥ 2 and for every (α, β) ∈ Z6

+, one can find a constant Cε,N0,K,α,β such that, for every
(q, p) = (x, y, z, ξ, η, ζ) in C2N0ε(K) \ C2−N0ε(K), one has, for every j ∈ {2, 3},∣∣∣∣∣∂αq ∂βp

(
H1√

1 +H2
2 +H2

3

)∣∣∣∣∣ ≤ Cε,N0,K,α,β〈p〉−|β|,

where 〈p〉 := (1 + ξ2 + η2 + ζ2)
1
2 .

Proof. This is a direct consequence of Corollary 2.6 and Lemma 3.7. �
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5.2.2. Rewriting µR,εh using H1. We now come back to the distribution µR,εh that was intro-
duced in (46) and defined using H1. We next show that we can replace H1 by H1 modulo
small remainders in h and ε.

Lemma 5.4. For b in C∞c (U0 × R), we set

(69) 〈µR,ε
h , b〉 :=

〈
Oph(b(x, y, z, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R)uh, uh

〉
L2 ,

where

χ̃B
R := χ̃

(
H2

1 +H2
2 +H2

3

4R

)
, and χ̃C

ε := χ̃

(
εH1

4
√
H2

2 +H2
3 + 1

)
.

Then, one has, as h→ 0+, R→ +∞ and ε→ 0 (in this order),

〈µR,ε
h , b〉 = 〈µR,εh , b〉+Ob,ε,R(h) +Oε(R−1) +Ob(ε2).

Remark 5.5. Note that, on the support of χ̃Cε , one has H1 = H1(1 +O(ε2)) so that χ̃Cε = 1
on the support of χ̃Cε χ̃

C
ε if ε > 0 is chosen small enough. We just keep the function χ̃Cε to

ensure that H1 is well defined. The same holds for χ̃BRχ̃
B
R .

Proof. Let b(x, y, z, E) be an element in C∞c (U0 × R∗). One has

〈µR,εh , b〉 =
〈
Oph(b(x, y, z, hH1)χ̃

C
ε χ̃

B
R)uh, uh

〉
L2 ,

where χ̃Cε was defined in (35) as

χ̃Cε := χ̃

(
εH1√

H2
2 +H2

3 + 1

)
.

Arguing as in the proof of Lemma 3.3, one knows that

χ̃Cε χ̃

(
εH1

4
√
H2

2 +H2
3 + 1

)
b(x, y, z, hH1)

belongs to S0
cl(T

∗(R2 × S1)) with all seminorms uniformly bounded in terms of 0 < h ≤ 1
(but not on ε a priori).

Set now χC
ε = 1− χ̃C

ε . On the support of b(x, y, z, hH1)χ̃
C
ε χ

C
ε , one has

1 ≤ ε|H1|√
1 +H2

2 +H2
3

≤ 10,

for small enough ε > 0. In particular, we can argue as in (32) and write

b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε χ

C
ε =

b(x, y, z, hH1)χ̃
B
Rχ̃

C
ε χ

C
ε

1 +H2
2 +H2

3

(1 +H2
2 +H2

3 ),

where the first term of the product on the right-hand side belongs to S−2cl thanks to the
above support properties. Using the Calderón-Vaillancourt Theorem together with (29)
and (30), we find that

〈µR,εh , b〉 =
〈
Oph(b(x, y, z, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
R)uh, uh

〉
L2 +OR,ε(h) +Oε(R−1).
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Similarly, we can insert the cutoff function χ̃B
R if we note that, on the support of χB

Rχ̃
B
R,

one has
1

10
R ≤ H2

1 +H2
2 +H2

3 ≤ 10R,

hence the involved symbol is compactly supported. We can then apply the exact same
argument and show that

〈µR,εh , b〉 =
〈
Oph(b(x, y, z, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R)uh, uh

〉
L2 +OR,ε(h) +Oε(R−1).

We are now left with replacing H1 by H1 in the last component of b. We write

b(x, y, z, hH1) = b(x, y, z, hH1) + h(H1 −H1)

∫ 1

0

∂Eb(x, y, z, hH1 + th(H1 −H1))dt.

Hence, applying Corollary 2.6 together with (30) and (67), the composition rule for pseu-
dodifferential operators and the Calderón-Vaillancourt Theorem, one finds the expected
conclusion. �

5.3. A small deformation of a. We now proceed similarly and introduce a small defor-
mation of a whose Poisson bracket with H2

2 + H2
3 is small in the regime H2

2 + H2
3 � H2

1 .
Let a be a smooth function compactly supported on U0, we write

{|Z|2, a} = Z{Z, a}+ Z{Z, a}.
In the region H1 6= 0 and in view of (64), we can set

a1 :=
Z

2iH1

{Z, a} − Z

2iH1

{Z, a}.

We then find

{|Z|2, a+ a1} =
Z

2i

{
|Z|2, {Z, a}

H1

}
− Z

2i

{
|Z|2, {Z, a}

H1

}
.

Recalling that a is a function on U0, one has

{Z, {Z, a}} − {Z, {Z, a}} = (X⊥ + iV )(X⊥ − iV )(a)− (X⊥ − iV )(X⊥ + iV )(a)

= 2i[V,X⊥](a) = 2iX(a).

Hence, letting XZ (resp. XZ) be the (complex) vector field generated by Z (resp. Z) the
above expression can be simplified as

{|Z|2, a+ a1}

=
|Z|2

H1

X(a) +
(Z2X2

Z
− Z2

X2
Z)(a)

2iH1

− Z2XZ(a)

2iH2
1

{Z,H1}+
Z

2
XZ(a)

2iH2
1

{Z,H1} .

We would now like to eliminate the terms of magnitude 1/H1 that can be averaged via our
cohomological equations. Namely, we set

a2 = −
(Z2X2

Z
+ Z

2
X2
Z)(a)

8H2
1

.



QUANTUM LIMITS OF PERTURBED SUB-RIEMANNIAN LAPLACIANS IN DIMENSION 3 29

This allows us, after defining a := a+ a1 + a2, to get

(70) {H2
2 +H2

3 , a} =
H2

2 +H2
3

H1

X(a) +
1

H1

Ra

where Ra is an element of the form

Ra =
∑
|α|≥2

Ra,α(x, y, z)

(
H2

H1

)α2
(
H3

H1

)α3

,

with Ra,α that is compactly supported in U0.
For simplicity of exposition, we will use more compact notations for a:

(71) a =
∑
|α|≤2

aα

(
H2

H1

)α2
(
H3

H1

)α3

,

where the functions aα are also defined on U0 and explicitely given by

(72) a(0,0) := a, a(1,0) := −V (a), a(0,1) := X⊥(a),

and

(73) a(2,0) := −a(0,2) := −(X2
⊥ − V 2)(a)

4
, a(1,1) := −(X⊥V + V X⊥)(a)

2
.

6. Invariance properties

In view of Lemma 5.4, we are left to study the Wigner type distribution µR,ε
h given by

(69). Our goal is to prove that any accumulation point µ∞ of this sequence as h → 0,
R→ +∞ and ε→ 0 (in this order) verifies certain invariance properties:

Proposition 6.1. Let (ψh, λh) be a sequence satisfying (4) and set

H1(q, E) := λ0 −W (q)− EQ(q),

and

(74) XW,Q := (λ0 −W )X + ΩH1 + EX(H1)∂E.

Let µ∞ be any semiclassical measure obtained as a weak limit for the sequence of distribu-
tions µR,ε

h defined from the sequence (ψh, λh). Then, for every b ∈ C1c (U0 × R),∫
U0×R

(
XW,Q(b) +X(H1)b

)
dµ∞ = 0.(75)

In order to prove Proposition 6.1, we start by fixing an element b in C∞c (U0×R). Rather
than looking at b directly, we will consider test functions based on the normal form b
from (71), that is,

(76) b(x, y, z, E) =
∑
|α|≤2

bα(x, y, z, E)

(
H2

H1

)α2
(
H3

H1

)α3

,

where bα is given by (72) and (73) with b instead of a (the variable E plays the role of a
parameter). One then has
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〈[
P̂h,λ,Opwh

(
H1b(·, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R

)]
uh, uh

〉
= O(h∞).

On the other hand, we know that H1b(·, ·, ·, hH1)χ̃
C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R belongs to S1

cl while the

symbol of P̂h,λ lies in S2
cl. Then, by the composition rules for the Weyl quantization (see

Appendix B), one finds

(77)
〈

Opwh
({
Ph,H1b(·, hH1)χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R

})
uh, uh

〉
= O(h2),

where Ph = H2
2 + H2

3 + hQH1 + W . Recall that, as before, the measure in the L2 scalar

product is the standard Lebesgue measure thanks to our conventions for P̂h,λ and uh (see
(27), (28) and (29)).

6.1. Removing the derivatives of the cutoff function. Before exploiting the normal
form procedure, we start with the following Lemma in view of removing the cutoff functions
χ̃Cε χ̃

C
ε χ̃

B
Rχ̃

B
R from the Poisson bracket:

Lemma 6.2. With the above conventions, one has:

(78)
〈
Opwh

(
{Ph,H1b(·, hH1)}χR,ε

)
uh, uh

〉
L2(Leb)

= O(ε2) +OR,ε(h1/2),

where χR,ε := χ̃Cε χ̃
C
ε χ̃

B
Rχ̃

B
R.

Proof. In light of (77), proving this equality amounts to show that〈
Opwh

(
H1b(·, hH1){H2

2 +H2
3 ,χR,ε}

)
uh, uh

〉
L2(Leb)

= O(ε2) +OR,ε(h1/2).

The main observation is that, when considering {H2
2 + H2

3 ,χR,ε}, the symbol becomes
either compactly supported in (ξ, η, ζ) (if one differentiates χ̃B

R), or supported in a region
where

1

10

√
1 +H2

2 +H2
3 ≤ ε|H1| ≤ 10

√
1 +H2

2 +H2
3

(if one differentiates χ̃C
R). In the first case, one ends up with the bracket 1

R
{H2

2 +H3
3 ,H1}

multiplied by b(·, hH1)H1. Modulo multiplication by H2 or H3, this is a bounded symbol
whose supremum is of order O(ε2) (with the constant being independent of R) thanks
to (68) and to the compact support property. Applying the composition rule one more
time and the Calderón-Vaillancourt Theorem together with the a priori estimate (30), it
yields the expected upper bound for these terms.

It remains to deal with the case where one differentiates χ̃C
R . In that case, we cannot

exploit the fact that the support is bounded but we can remark that we end up with terms
that are of the form

εb(·, hH1)H1√
1 +H2

2 +H2
3

{H2
2 +H3

3 ,H1}.

Using Lemma 3.7, the first term lies in the class of symbol S0
cl inside the support of our

symbol (recall that we have differentiated χ̃C
ε ) and is uniformly bounded in terms of ε and

R (but not small a priori). Hence, we are left with showing that the term resulting from
the Poisson bracket is indeed small. Again, we apply (68) together with the semiclassical a
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priori estimate (30) and we conclude thanks to the composition rule for pseudodifferential
operators and the Calderón-Vaillancourt Theorem. �

6.2. Proof of Proposition 6.1. Let b ∈ C∞c (U0 × R), we consider as before the small
deformation b(x, y, x, E) of b given by (76). Thanks to Lemma 6.2, one has

(79)
〈

Opwh
(
{Ph,H1b(·, hH1)} χ̃Cε χ̃C

ε χ̃
B
Rχ̃

B
R

)
uh, uh

〉
= O(ε2) +OR,ε(h

1
2 ).

Hence, we need to understand

{Ph,H1b} = {H2
2 +H2

3 ,H1b}+ {W,H1b}+ {hH1Q,H1b}.(80)

Recalling (68) and (70), one has

{H2
2 +H2

3 ,H1} = R1H
2
2 +R2H

2
3 +R3H2H3,

and

{H2
2 +H2

3 ,b} =
H2

2 +H2
3

H1

X(b) +
1

H1

Rb + h{H2
2 +H2

3 ,H1}
∑
|α|≤2

∂Ebα

(
H2

H1

)α2
(
H3

H1

)α3

,

where Rb and (Rj)j≥3 belongs to the class of symbol S0
cl inside the support of our cutoff

functions with supremum that is of order O(ε2). Hence, using the eigenvalue equation (29)
and the semiclassical a priori estimates (30) together with the composition rule for pseudo-
differential operators and the expressions for b and H1 given in (76) and (67), equation (79)
becomes

(81)
〈

Opwh
(
X(b) (λh −W − hQH1) χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R

)
uh, uh

〉
+
〈

Opwh
(
{W + hH1Q,H1b(·, hH1)} χ̃Cε χ̃C

ε χ̃
B
Rχ̃

B
R

)
uh, uh

〉
= O(ε2) +OR,ε(h

1
2 ).

Hence, it remains to analyze the terms

{W + hH1Q,H1b(·, hH1)} .
To do that, we recall that, from the exact expressions for H1 and b given in (67), (72)
and (76), one has

H1 = H1

1 +
∑

|α|∈{2,3}

Pα(x, y, z)

(
H2

H1

)α2
(
H3

H1

)α3

 ,

and

b(·, hH1)H1 = b(·, hH1)H1 +X⊥(b)(·, hH1)H3 − V (b)(·, hH1)H2

+
∑
|α|≥2

Qα(x, y, z, hH1)
Hα2

2 Hα3
3

H
|α|−1
1

,

where Qα are smooth compactly supported functions. We also observe that, in the support
of our cutoff functions, one has

{W + hH1Q, hH1} = {W + hH1Q, hH1}+O(ε).
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For similar reasons, the terms of order |α| ≥ 2 in the expression of b(., hH1)H1 yields a
contribution of order O(ε) and (81) can be rewritten as

(82)
〈

Opwh
(
X(b) (λh −W − hQH1) χ̃

C
ε χ̃

C
ε χ̃

B
Rχ̃

B
R

)
uh, uh

〉
+O(ε) +OR,ε(h

1
2 )

= −
〈

Opwh
(
{W + hH1Q,H1b+X⊥(b)H3 − V (b)H2} χ̃Cε χ̃C

ε χ̃
B
Rχ̃

B
R

)
uh, uh

〉
.

As one has, on the suport of our functions,

{W,H1b+X⊥(b)H3 − V (b)H2}

= −X(W )b− hH1X(W )∂Eb−X⊥(b)V (W ) + V (b)X⊥(W ) +O(ε)

and

{hH1Q,H1b+X⊥(b)H3 − V (b)H2} = −hH1X(Q)b− (hH1)
2X(Q)∂Eb+ hH1QX(b)

− hH1X⊥(b)V (Q) + hH1V (b)X⊥(Q) +O(ε),

we finally obtain the expected result by letting h → 0+, R → +∞ and ε → 0+ (in this
order) in (82).

7. Summary of the properties of µ∞

In this short section, we summarize our description of the semiclassical measures µ∞ ob-
tained as weak limits of the Wigner distributions µR,ε

h given by (69) (or equivalently (49)).
More precisely, as a consequence of Propositions 4.1 and 6.1, one has the following Theo-
rem:

Theorem 7.1. Let Q,W ∈ C∞(M,R) such that ‖Q‖C0 < 1 and let λ0 ≥ min W . Given
a sequence (ψh, λh) satisfying (4) then any measure µ∞ obtained from the sequence (49)
decomposes as:

(83) µ∞(q, E) = µ∞(q, E) +
∞∑
k=0

(
µ+
k,∞(q, E) + µ−k,∞(q, E)

)
,

where µ∞ and (µ±k,∞)k≥0 are finite non-negative Radon measures satisfying the following
concentration properties:

(S.1) suppµ∞ ⊂Mλ0,W × {0}, with Mλ0,W := {q ∈M : λ0 −W (q) ≥ 0},
(S.2) for every k ∈ Z+,

suppµ±k,∞ ⊂ H
−1
± (2k + 1) ⊂ Uλ0,W × R∗±.

Moreover, they verify the following invariance properties:

(P.1) for every a ∈ C1c (Uλ0,W ), ∫
M×{0}

YW
(
a
)
dµ∞ = 0,

with YW being defined in (6),
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(P.2) for every k ∈ N and every a ∈ C1c (M× R∗),∫
M×R∗±

XW,Q(a)

E
dµ±k,∞ = 0,

with XW,Q being defined in (74),
(P.3) for every a ∈ C1(M),∫

(Mλ0,W
\Uλ0,W )×{0}

(
ΩW (a) +X(W )a

)
dµ∞ = 0.

Notice that, in the last item, the vector field ΩW is “tangential” to the setMλ0,W \Uλ0,W .

Proof. The only remaining point compared with Proposition 6.1 is to verify that the invari-
ance properties restrict to each layerH−1± (2k+1) andM×{0}. To see this, we first work in-
side Uλ0,W×R and prove properties (P.1) and (P.2). We let k ∈ Z+ and a ∈ C∞c (Uλ0,W×R)
whose support does not intersect supp(µ∞) \H−1± (2k+ 1). For such a function, we deduce
the expected property (P.2). If we now consider a to be an element in C1c (M×R∗), then it
can be splitted as a sum of a function of the previous form and a function that is supported
away from H−1± (2k+1). Thus, we obtain property (P.2) for the expected class of functions.
Combining this with Proposition 6.1, we also find that, for every a ∈ C1c (Uλ0,W × R),∫

M×{0}
YW
(
(λ0 −W )a

)
dµ∞ = 0,

from which we infer (P.1). It now remains to discuss what happens on the critical set

Mλ0,W \ Uλ0,W := {q ∈M : W (q) = λ0}.
To do this, we rewrite the conclusion of Proposition 6.1 slightly more explicitely: for every
a ∈ C∞c (M× R),∫

M×R
((λ0 −W )X(a) + Ωλ0−W (a)− EΩQ(a) + EX(H1)∂Ea+X(H1)a) dµ∞ = 0.

If we take a to be of the form χ(E/δ)b(q) where b ∈ C∞(M) and where χ is the same cutoff
function as in the previous sections, we find using the dominated convergence Theorem
that, for every b ∈ C∞(M),∫

M×{0}
((λ0 −W )X(b)− ΩW (b)−X(W )b) dµ∞ = 0.

We now take the test function b to be of the form χ((W (q)− λ0)/δ)b̃(q) with χ a smooth
cutoff function (near 0) as above. Letting δ → 0 in the previous equality, we find thanks
to the dominated convergence Theorem∫

(Mλ0,W
\Uλ0,W )×{0}

(
ΩW (b̃) +X(W )b̃

)
dµ∞ = 0.

�
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Note that, compared with Theorem 1.1 from the introduction, this result holds without
any assumption on λ0. It also involves the more general measure µ∞ which describes
precisely how H1 escape at infinity.

Let us now explain that it directly implies Theorem 1.1. We also remark that, if λ0 >
maxW , then (P.1) reads equivalently as

∫
M×{0} YW (a)dµ∞ = 0 for every a ∈ C1(M). This

implies the property of ν∞ in Theorem 1.1 by letting

ν∞(q) =

∫
R
µ∞(q, dE).

Notice, since ΩH1(H1) = 0, that XW,Q(H±) = 0. This implies in particular that the
vector field E−1XW,Q is tangent to the level sets H−1± (2k + 1) and thus induces a well-
defined flow on these layers. Finally, we can derive from (S.2) and (P.2) that∫

M×R∗±
((±(2k + 1) +Q)YW (a)− ΩQ(a) +X(H1)∂Ea) dµ±k,∞ = 0,

which implies the last part of Theorem 1.1 by letting

ν±k,∞(q) :=

∫
R
µ±k,∞(q, dE).

8. The case of the flat torus

In this section, we briefly discuss the case where M = T2 = R2/2πZ2, Q = W = 0 and
g = dx2 + dy2 is the canonical Euclidean metric. Our aim is to show examples of different
sequences of eigenfunctions for the operator −h2∆sR which select any given choice among
the semiclassical measures µ∞ and µ±k,∞ by putting their total mass on them as h→ 0+.

In this particular example, the operators X, X⊥ and V can be written by global formulas
in the canonical coordinates (x, y, z) ∈ T3 ' ST2. Precisely:

X = cos z∂x + sin z∂y, X⊥ = sin z∂x − cos z∂y, and V = ∂z.

We restrict ourselves to search for solutions to (4) of the particular form

ψh(x, y, z) = uh(z)ein·(x,y), n = (n1, n2) ∈ Z2.

As we impose that ψh solves our eigenvalue problem, then uh must satisfy

h2(n1 sin z − n2 cos z)2uh(z)− h2u′′h(z) = uh(z),

or equivalently

− 1

‖n‖2
u′′h(z) + sin2(z − zn)uh(z) =

1

h2‖n‖2
uh(z),

with (cos zn, sin zn) = n/‖n‖. We recognize in this expression the semiclassical Mathieu
operator

M̂n := − 1

‖n‖2
∂2z + sin2(z − zn),
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on the circle S1 whose spectral analysis is a classical topic. Indeed, it is a one-dimensional
Schrödinger operator with a double well potential. Hence, we are led to the equation

(84) M̂nun = λ(n)un, λ(n) =
1

(hn‖n‖)2
.

Since M̂n has compact resolvent on L2(S1), for every n ∈ Z2 there is an increasing sequence
of eigenvalues (λk(n))k≥0 with corresponding (normalized) eigenfunctions (un,k(z))k≥0 of

M̂n. Note that, up to translation by zn, we can restrict ourselves to the case where zn = 0
which amounts to take a lattice point of the form n = (n, 0) with say n > 0. Under this
assumption, we first show the following standard fact:

Lemma 8.1. For every k ∈ N, there exists λk(n, 0) := λk(n) ∈ SpL2(S1)(M̂(n,0)) such that:

(85) λk(n) =
(2k + 1)

n

(
1 +Ok

(
1√
n

))
, as n→ +∞.

Remark 8.2. In principle, there could be other sequences of eigenvalues verifying different
asymptotic formulas, say λα(n) = α

n
+ o(n−1). Yet, one could show that this is not the case

by comparing eigenfunctions of M̂n with quasimodes of the harmonic oscillator

(86) Ĥn := − 1

n2
∂2z + z2,

on L2(R), whose spectrum is given explicitely by

SpL2(R)(Ĥn) =

{
2k + 1

n
: k ∈ N

}
.

However, since we are only interested in showing the existence of sequences of eigenfunc-
tions of −h2n∆sR which put positive mass on the semiclassical measures µ∞ and µ±k,∞, for
which we already know the concentration properties (S.1) and (S.2) of Theorem 7.1, we
omit this discussion.

Proof. The proof this lemma is classical and we just briefly recall it for the sake of complete-
ness. Recall that is sufficient to construct a sequence of (almost) normalized quasimodes
(vk,n, Ek(n))n→∞ satisfying

M̂nvk,n = Ek(n)vk,n +Ok
(

1

n
3
2

)
; Ek(n) =

2k + 1

n
.

To this aim, let δ > 0 small, and set vk,n(z) := χ(z/δ)ϕk,n where χ is a cutoff function
supported in a neighborhood of 0 and where

ϕk,n(z) = n1/4ϕk
(√

nz
)
,

and ϕk is the normalized Hermite function of degree k [Zwo12, Th. 6.2]. Observe that, for
any N ≥ 1 and for any ` ≥ 0,

(87)

∫
|z|≥δ

∣∣∣ϕ(`)
k,n(z)

∣∣∣2 dz = Oδ,`,k,N
(

1

nN/2

)
, as ‖n‖ → ∞.
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In particular, we get that ‖vk,n‖L2(T) = 1 + Ok(n−1) as n → ∞ as expected. Moreover,
using the Taylor expansion

sin2 z = z2 +O(|z|3), as z → 0,

and the fact that (∫
R
|z3ϕk,n(z)|2dz

) 1
2

= Ok
(

1

n3/2

)
, as n→∞,

the claim holds by using the eigenvalue equation combined with (87) and

Ĥnϕk,n = Ek(n)ϕk,n, z ∈ R.

�

Let us now fix, for every n > 0,

(88) hn :=
1√

(2k + 1 + ok(1))n
, as n→∞,

so that (84) and (85) hold. For this sequence, take a sequence of solutions to (4) that are
of the form

(89) ψn(x, y, z) = un(z)einx.

Proposition 8.3. Let (ψn)n≥1 be a normalized sequence of the form (89). Let us assume
that (ψn)n≥1 satisfy (4) with (hn)n≥1 given by (88). Then the total mass of µ+

k,∞ + µ−k,∞ is
equal to one.

Again, we will just make a rough analysis and a more careful work would show that the
sequences of eigenmodes put equal mass on µ±k,∞ due to tunneling effect. If we were looking

for quasimodes, then we could ensure that the full mass is put either on µ+
k,∞ or µ−k,∞.

Proof. Let us consider δ > 0 to be chosen sufficiently small along the proof. Let χδ = χ(·/δ)
where χ is still a small cutoff function near 0. We have, by the functional analysis of
pesudodifferential operators [Zwo12, Thm. 14.9], the localization property:

OpS1,w
1
‖n‖

(
χδ(sin

2(z) + ζ2)
)
un = χδ(M̂n)un +Oδ

(
1

n

)
= χδ

(
2k + 1

n
(1 + ok(1))

)
un +Oδ

(
1

n

)
= un +Oδ,k

(
1

n

)
.

On the other hand, we have:〈
Opwhn(χ(hnH1)χ̃

C
ε χ̃

B
R)ψn, ψn

〉
L2(T3)

=
〈

OpS1,w
hn

(κε,Rn )un, un
〉
L2(S1),
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where

κε,Rn (z, ζ) := χ(h2nn cos(z))χ̃

(
εhnn cos(z)√

1 + (hnn)2 sin2(z) + ζ2

)
χ̃

(
(hnn)2 + ζ2

R

)
.

Arguing as in Section 3, one finds that this symbol belongs to the class of symbols S0
cl(T

∗S1)
amenable to pseudodifferential calculus on the circle. Observe also that, for n large enough,
the last function in this product is identically equal to 1 Notice also that

OpS1,w
1
‖n‖

(
χδ((sin

2(z) + ζ2))
)

= OpS1,w
hn

(
χδ

(
sin2(z) +

(
ζ

hnn

)2
))

=: OpS1,w
hn

(σδn).

Thus, by using the previous localization property for un and the semiclassical pseudodif-
ferential calculus, we have the composition formula:〈

OpS1,w
hn

(κε,Rn )un, un
〉
L2(S1) =

〈
OpS1,w

hn
(κε,Rn ) OpS1,w

hn

(
σδn
)
un, un

〉
L2(S1) +Oδ,k

(
1

n

)
=
〈

OpS1,w
hn

(κε,Rn σδn
)
un, un

〉
L2(S1) +Oδ,ε,R (hn) .

In this expression, if we take δ sufficiently small (i.e. so that δ � ε2), we have

κε,Rn (z, ζ)σδn(z, ζ) = χ(h2nn cos(z))σδn(z, ζ),

since χ̃(x) = 1 for |x| ≥ 2. Moreover, for δ > 0 sufficiently small, we can also decompose
σδn as the sum of two functions σ1,δ

n and σ2,δ
n compactly supported respectively near z = 0

and z = π, that is:

σδn(z, ζ) = σ1,δ
n (z, ζ) + σ2,δ

n (z, ζ),

with suppσ1,δ
n ∩ suppσ1,δ

n = ∅. Using next that

h2nn cos(z) =
(−1)j−1

2k + 1
+O(δ), as δ → 0, j = 1, 2,

respectively on the support of σj,δn (z, ζ), we get thanks to the Calderón-Vaillancourt The-
orem:〈

OpS1,w
hn

(κε,Rn )un, un
〉
L2(S1)

=
∑

j∈{1,2}

χ

(
(−1)j−1

2k + 1

)〈
OpS1,w

hn
(σj,δn )un, un

〉
L2(S1) +O(δ) +Oδ,ε,R (hn) .

Therefore, taking limits in n→ +∞ through a subsequence, we obtain, for δ � ε2,

lim
hn→0

〈
Opwhn(χ(hnH1)χ̃

C
ε χ̃

B
R)ψn, ψn

〉
L2(M)

= αδ1χ

(
1

2k + 1

)
+ αδ2χ

(
−1

2k + 1

)
+O(δ),
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where αδj = limhn→0+
〈

OpT1,w
hn

(σj,δn )un, un
〉
L2(T1)

, and αδ1 +αδ2 = 1 (using one more time the

localization property of the sequence (un)n≥1). Finally, in view of the fact that

lim
ε→0

lim
R→∞

lim
hn→0

〈
Opwhn(χ(hnH1)χ̃

C
ε χ̃

B
R)ψn, ψn

〉
L2(T3)

=

∫
T3×R

χ(E) dµ∞(q, E),

we can take δ → 0 and use Theorem 7.1 (property (S.2)) to conclude the proof. �

We finally show the existence of sequences of eigenfunctions (ψn) satisfying (4) which
put positive mass on the semiclassical measure µ∞. To this aim, we note that, thanks to
Lemma 8.1 and for every k ≥ 1, we can find some nk ≥ 1 such that, for every n ≥ nk,

there is an eigenvalue Ek(n) of M̂(n,0) verifying

1

2
√

(2k + 1)n
≤ Ek(n) =

1

(hnn)2
≤

√
2√

(2k + 1)n
≤ 1√

k
.

Hence, we can take n = nk and pick a sequence (Knk)k≥1 such that Knk → +∞ and thus
the sequence (hnk)k≥1 satisfying now

(90)
1

nk
� hnk =

1√
Knknk

� 1
√
nk
, as k →∞.

Adapting the proof of Proposition 8.3 and using property (S.1) of Theorem 7.1, we obtain:

Corollary 8.4. Let (ψnk)k≥1 be a normalized sequence of the form (89). Let us assume
that ψnk satisfy (4) with hnk given by (90). Then the total mass of µ∞ is equal to one.

Appendix A. Spectral properties of P̂h

In this appendix, we briefly review the spectral properties of P̂h. A key ingredient of the
analysis is the following standard result [RS76, Cor. 17.14]:

Theorem A.1 (Rothschild-Stein). Let Q ∈ C∞(M,R) such that ‖Q‖C0 < 1. Set

L = −∆sR − iQX = −X2
⊥ − V 2 − iQ[V,X⊥].

Then, for every N ≥ 1, one can find continuous maps PN : Hs → H1+s and SN : Hs →
Hs+N

2 (for all s ≥ 0) such that

PNL = Id +SN .

In particular, there exists a constant CM,g > 0 such that

(91) ∀ψ ∈ C∞(M), ‖ψ‖H1 ≤ CM,g (‖Lψ‖L2 + ‖ψ‖L2) ,

and, for every s ≥ 0,

L(ψ) ∈ Hs, ψ ∈ L2 =⇒ ψ ∈ Hs+1.
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Let us now discuss the spectral properties of P̂h. For an introduction on the spectral
properties of unbounded operators, the reader is referred to [RS80, Ch. VIII] and [RS75,
Ch. X] that we closely follow for the terminology. For any ψ ∈ H2(M), we define

P̃h(ψ) :=

(
−h2∆sR +

h2

2i
(QX − (QX)∗) +W

)
ψ,

which induces an unbounded operator

P̃h : D(P̃h) := H2(M) ⊂ L2(M)→ L2(M).

One can define its adjoint P̃ ∗h by defining the domain

D(P̃ ∗h ) :=
{
ψ ∈ L2(M) : ∃u ∈ L2(M) such that ∀ϕ ∈ H2(M), 〈ψ, P̃hϕ〉 = 〈u, ϕ〉

}
,

or equivalently

D(P̃ ∗h ) :=
{
ψ ∈ L2(M) : P̃hψ ∈ L2(M)

}
The operator P̃ ∗h : ψ ∈ D(P̃ ∗h )→ P̃hψ ∈ L2(M) is closed and it is densely defined. Hence,

according to [RS80, Th. VIII.1], P̃h is closable and we denote its closure by P̃ h whose

domain is denoted by D
(
P̃ h

)
and equal to the set of ψ ∈ L2(M) such that

∃ψj ∈ H2(M), ∃v ∈ L2(M) such that ‖ψj − ψ‖L2 + ‖P̃hψj − v‖L2 → 0.

In general, one only has D
(
P̃
∗
h

)
= D(P̃ ∗h ) ⊂ D

(
P̃h

)
so that P̃ h is not necessarily selfad-

joint. In order to fix this problem, we can make some assumptions on the size of Q and
use positivity arguments.

More precisely, P̃h is associated with the real quadratic form

B̃(ψ) :=

∫
M

(P̃hψ)ψ dµL, ψ ∈ H2(M),

which, thanks to (1), is bounded from below by

B̃(ψ) ≥ ‖hX⊥ψ‖2L2 + ‖hV ψ‖2L2 − 2‖Q‖C0‖hX⊥ψ‖L2‖hV ψ‖L2

+ (minW − h2‖Q‖C1)‖ψ‖2L2

− h‖Q‖C1‖ψ‖L2

(
‖hX⊥ψ‖L2 + ‖hV ψ‖L2

)
≥
(

1− ‖Q‖C0 −
h‖Q‖C1

2

)(
‖hX⊥ψ‖2L2 + ‖hV ψ‖2L2

)
+
(
minW − (h2 + h)‖Q‖C1

)
‖ψ‖2L2 .

Hence, if ‖Q‖C0 < 1 (and h > 0 is small enough in a way that depends on Q), it follows
from [RS75, Th. X.23] that B̃ is a closable form whose closure B corresponds to a unique

selfadjoint operator P̂h referred as the Friedrichs extension of P̃h. Moreover, the spectrum
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of this selfadjoint extension is bounded from below by minW + OQ(h) and its domain
verifies

D(P̂h) ⊂ H1
sR(M) :=

{
u ∈ D′(M) : ‖ψ‖2L2 + ‖X⊥ψ‖2L2 + ‖V ψ‖2L2 <∞

}
.

In particular, P̂h : D(P̂h) ⊂ L2(M) → L2(M) is a closed selfadjoint operator and thus

(P̂h + C) has a bounded inverse for C > 0 large enough:(
P̂h + C

)−1
: L2(M)→ (D(P̂h), ‖.‖L2) ⊂ L2(M).

We would like to show that this defines a compact operator. To see this, recall from (91)
that

∀ψ ∈ C∞(M), ‖(P̂h + C)−1ψ‖H1(M) ≤ ch
(
‖ψ‖L2 + ‖(P̂h + C)−1ψ‖L2

)
so that, if (ψj)j≥0 is a bounded sequence in L2(M), then ((P̂h+C)−1ψj)j≥0 is also bounded
in H1(M).

Remark A.2. Along the way, this discussion shows that H2(M) ⊂ D(P̂h) ⊂ H1(M) (with
continuous inclusions).

As the inclusion H1(M) ⊂ L2(M) is compact, (P̂h+C)−1 : L2(M)→ L2(M) is indeed a

compact operator. As P̂h is selfadjoint, there exists an orthonormal basis of L2(M) made of

eigenmodes of P̂h. Moreover, if one has P̂hψh = λhψh with ψh ∈ D(P̂h), then Lψh ∈ H1(M)
and, according to Theorem A.1, one finds that ψh ∈ H2(M). By induction, we get that
these eigenmodes are smooth.

Remark A.3. If we let C > 0 be a large enough constant, then P̃h + C is a positive
symmetric operator and its adjoint is given by P̃ ∗h +C with domain D(P̃ ∗h ). In particular,

if ψ belongs to the kernel of P̃ ∗h + C, then, by the Rothschild-Stein Theorem, ψ belongs

to H1(M) (and by induction to C∞(M). Hence, it lies in the domain of P̂h and we can
deduce that ψ = 0. According to [RS75, Th. X.26], it implies that the Friedrichs extension
is the only (semibounded) selfadjoint extension of P̃h + C (hence of P̃h).

The spectral properties of P̂h that we have proved so far are summarized by the next
statement:

Lemma A.4. Suppose that ‖Q‖C0 < 1. Then, there exists h0 > 0 such that, for every
0 < h < h0,

P̂h : D(P̂h)→ L2(M)

is a selfadjoint operator whose spectrum consists in a discrete sequence of eigenvalues

minW +OQ(h) ≤ λh(0) ≤ λh(1) ≤ . . . ≤ λh(j) . . .→ +∞.
Moreover,

P̂hψh = λhψh, with ψh ∈ D(−P̂h) =⇒ ψh ∈ C∞(M).

We conclude this appendix with the following a priori estimates that are used all along
the article:
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Lemma A.5. Suppose that ‖Q‖C0 < 1. Then, one can find CQ,W > 0 and 0 < hQ ≤ 1,
such that, for all 0 < h ≤ hQ,

P̂hψh = λhψh, with ψh ∈ D(P̂h)

=⇒ ‖hX⊥ψh‖2L2 + ‖hV ψh‖2L2 + ‖h2Xψh‖2L2 ≤ CY,W (1 + |λh|)2‖ψh‖2L2 .

Proof. Let ψh ∈ D(P̂h) such that P̂h = λhψh. One has then

‖hX⊥ψh‖2L2 + ‖hV ψh‖2L2 = λh‖ψh‖2L2 − 〈Wψh, ψh〉 −
h2

i
〈(QX +

1

2
X(Q))ψh, ψh〉.

Hence, one has

‖hX⊥ψh‖2L2 + ‖hV ψh‖2L2 ≤ (‖W‖C0 + |λh|)‖ψh‖2L2 + h2|〈(QX +
1

2
X(Q))ψh, ψh〉|.

Recall that X = [V,X⊥] from which we infer

|〈(QX +
1

2
X(Q))ψh, ψh〉| ≤ 2‖Q‖C0‖hX⊥ψh‖L2‖hV ψh‖L2

+ h‖Q‖C1 (‖hX⊥ψh‖L2 + ‖hV ψh‖L2) ‖ψh‖L2 +
h2

2
‖Q‖C1‖ψh‖2L2 .

Then, we get

‖hX⊥ψh‖2L2 + ‖hV ψh‖2L2 ≤
1

1− ‖Q‖C0 −
h‖Q‖C1

2

(‖W‖C0 + |λh|+ 2h‖Q‖C1)‖ψh‖2L2 .

Hence, under the assumption that ‖Q‖C0 , there exists a constant CQ,W > 0 (depending
only Q and W ) and 0 < hQ ≤ 1 (depending only on Q) such that, for every 0 < h ≤ hQ,

(92) ‖hX⊥ψh‖2L2 + ‖hV ψh‖2L2 ≤ CQ,W (1 + |λh|)‖ψh‖2L2 .

Finally, using the Rothschild-Stein Theorem one more time, one finds that there exists a
constant CM,g > 0 such that

‖Xψh‖L2 ≤ ‖ψh‖H1 ≤ CM,g (‖Lψh‖L2 + ‖ψh‖L2) .

Multiplying this inequality by h2 and using the fact that P̂hψh = λhψh to control the upper
bound in terms of ‖ψh‖L2 , we obtain the expected upper bound. �

Appendix B. Reminder on semiclassical analysis on R2 × S1

In this appendix, we review a few facts about semiclassical analysis on T ∗(R2×S1) that
are used all along our analysis of the measure at infinity. A standard textbook is [Zwo12]
which treats the case of T ∗R3 in great details in Chapter 4. The case of T ∗(R2×S1) can be
handled similarly by proper use of Fourier series along the z-variable rather than Fourier
transform. See for instance [Zwo12, §5.3] for a detailed discussion in the case of T ∗T3.
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For a nice enough smooth function a on T ∗(R2× S1) (say compactly supported) and for
every h > 0, the Weyl (semiclassical) quantization of a is defined, for all u in u ∈ C∞c (R3),
by

(93) Opwh (a) (u) (q) :=
1

(2πh)3

∫
R6

e
i
h
(q−q′)·pa

(
q + q′

2
, p

)
u(q′)dq′dp.

Using the periodicity along the S1-variable, one can verify that this definition extends to
smooth test functions u ∈ C∞c (R2 × S1) [Zwo12, §5.3.1].

Regarding the regularity needed for a, this definition still makes sense when working
with smooth functions a belonging to the class of (Kohn-Nirenberg) symbols [Zwo12, §9.3]:

Smcl (T
∗(R2 × S1)) =

{
a ∈ C∞(T ∗(R2 × S1)) : ∀(α, β) ∈ Z6

+, Pm,α,β(a) < +∞
}
, m ∈ R,

where

Pm,α,β(a) := sup
(q,p)

{〈p〉−m+|β||∂αq ∂βp a(x, ξ)|}.

In other words, we gain some decay in p when differentiating in the p-variable. Even if
such a decay is not necessary to work in an Euclidean set-up, it is of crucial importance in
our analysis to have this extra decay in view of dealing with the escape at infinity in the
fibers.

A nice property of the Weyl quantization is that, for a real-valued a, Opwh (a) is a (for-
mally) selfadjoint operator [Zwo12, Th. 4.1]. Another property that we extensively use all
along this article is the composition rule for pseudodifferential operators4 [Zwo12, Th. 9.5,
Th. 4.12]

Theorem B.1. Let a ∈ Sm1
cl (T ∗(R2 × S1)) and b ∈ Sm2

cl (T ∗(R2 × S1)). Then, there exists
c ∈ Sm1+m2

cl (T ∗(R2 × S1)) (depending on h) such that

(94) Opwh (a) ◦Opwh (b) = Opwh (c).

Moreover,

c(q, p) =
N∑
k=0

hk

k!
(A(D))k (a(q1, p1)b(q2, p2))|q1=q2=q,p1=p2=p +OSm1+m2−N−1(hN+1),

where the constant in the remainder depends on a finite number of seminorms of a and b
(depending on N and on the seminorm in Sm1+m2−N−1), and where

A(D) :=
1

2i
(∂p1 · ∂q2 − ∂p2 · ∂q1) .

In particular, we can see from this result that c = OSm1+m2−N−1(hN+1) if a and b have
disjoint supports. We can also verify that, all the even powers in h in the asymptotic
expansion of [Opwh (a),Opwh (b)] cancels out and that the first term is given by h

i
{a, b}.

4Technically speaking, this reference deals with the Weyl quantization on T ∗R3 but the proof works as
well in our set-up.
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Another key property for us is the Calderón-Vaillancourt Theorem [Zwo12, Ch. 5] that
states the existence of constants C0, N0 such that, for every a ∈ S0

cl(T
∗(R2 × S1)),

(95) ‖Opwh (a)‖L2→L2 ≤ C0

∑
|α|≤N0

h
|α|
2 ‖∂αa‖∞.

Recall also the Garding property that is valid for elements in S0
cl(T

∗(R2× S1)). Given any
a in that class satisfying a ≥ 0, it ensures the existence of a constant Ca > 0 [Zwo12,
Th. 4.32] such that

(96) ∀u ∈ L2(R2 × S1), 〈Opwh (a)u, u〉 ≥ −Cah‖u‖2L2 .
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