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ABSTRACT. We consider nonselfadjoint perturbations of semiclassical harmonic oscilla-
tors. Under appropriate dynamical assumptions, we establish some spectral estimates
such as upper bounds on the resolvent near the real axis when no geometric control
condition is satisfied.

1. INTRODUCTION

Motivated by earlier works of Lebeau on the asymptotic properties of the damped wave
equation [22], Sjostrand initiated in [31] the spectral study of this partial differential equa-
tion on compact Riemannian manifolds. He proved that eigenfrequencies verify a Weyl
asymptotics in the high frequency limit [31, Th. 0.1] — see also [25, 26] for earlier related
contributions of Markus and Matsaev. Moreover, he showed that eigenfrequencies lie in
a strip of the complex plane which can be completely determined in terms of the average
of the damping function along the geodesic flow [31, Th. 0.0 and 0.2] — see also [22, 28].
Following [31], showing these results turns out to be the particular case of a more system-
atic study of a nonselfadjoint semiclassical problem which has since then been the object
of several works. More precisely, it was investigated how these generalized eigenvalues are
asymptotically distributed inside the strip determined by Sjostrand and how the dynamics
of the underlying classical Hamiltonian influences this asymptotic distribution. Mostly
two questions have been considered in the literature. First, one can ask about the precise
distribution of eigenvalues inside the strip and this question was addressed both in the
completely integrable framework [12, 13, 14, 19, 15, 16, 17, 18] and in the chaotic one [1].
Second, it is natural to focus on how eigenfrequencies can accumulate at the boundary of
the strip and also to get resolvent estimates near the boundary of the strip. Again, this
question has been explored both in the integrable case [4, 13, 6, 2, 5] and in the chaotic
one [7, 30, 27, 8, 29, 20].

The purpose of this work is to consider the second question for simple models of com-
pletely integrable systems. Via these models, we aim at illustrating the influence of the
subprincipal symbol of the selfajoint part of our semiclassical operators on the asymptotic
distribution of eigenvalues but also on resolvent estimates near the real axis. As briefly
reminded below, this is related to the decay of the corresponding semigroup [22]. Among
other things, our study is motivated by earlier results due to Asch and Lebeau [4, Th. 2.3].
In that reference, they indeed showed how a selfadjoint pertubation of the principal sym-
bol of the damped wave operator on the 2-sphere can create a spectral gap inside the
spectrum in the high frequency limit. Theorem 2 below shows how this result can be
extended to our context!. A major ingredient in the proof of [4] but also in the works of
Hitrik-Sjostrand [13, 14, 19, 15, 16, 17, 18] is the analyticity of the involved operators.
One of the novelty of the present article compared with these references is Theorem 1
where we only suppose that the operators are smooth, i.e. quantizing C* symbols. This
Theorem shows what can be said under these lower regularity assumptions and how this

LObserve that, compared with [4], our operators are not necessarily associated with a periodic flow.
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is influenced by the subprincipal symbols of the selfadjoint part as it was the case in [4].
This will be achieved by building on the dynamical construction used by the first author
and Macia for studying Wigner measures of semiclassical harmonic oscillators in [3] — see
also [23, 24] in the case of Zoll manifolds. As in [3], we restrict ourselves to the case of
nonselfadjoint perturbations of semiclassical harmonic oscillators on R?. Yet it is most
likely that the methods presented here can be adapted to deal with semiclassical opera-
tors associated with more general completely integrable systems, including damped wave
equations on Zoll manifolds.

1.1. Nonselfadjoint harmonic oscillators. Let us now describe the spectral framework
we are interested in. We fix w = (w1, ..., wy) to be an element of (R% )% and we set Hj to
be the semiclassical harmonic oscillator given by

d
(1) Hy = %ij( — h28§j +17).
j=1

We want to understand the spectral properties of nonselfadjoint perturbations of f[h.
Before being more precise on that issue, let us recall that the symbol H of Hy is given by
the classical harmonic oscillator:

d
2) H,&) =33 (@ +a2), (,6) €Y,
j=1

whose induced Hamiltonian flow will be denoted by ¢. A brief account on the dynamical
properties of this flow is given in paragraph 2. For any smooth function a € C*°(R??), we
define its average (a) by the Hamiltonian flow ¢ as

(3) (a)(z,€) := lim %/OTaO(be(x,f) dt € C™(R*),

T—o00

whose properties are related to the Diophantine properties of w — see paragraph 2 for
details.

Fix now two smooth functions A and V in C*(R?? R) all of whose derivatives (at any
order) are bounded. Following [32, Ch. 4], one can define the Weyl quantization of these
smooth symbols:

Ay = Opy(A), and Vi = Opy (V).
These are selfadjoint operators which are bounded on L?*(R?) thanks to the Calderén-

Vaillancourt Theorem. We aim at describing the asymptotic properties of the following
nonselfadjoint operators in the semiclassical limit & — 0%:

ﬁh = ]T.lh + 6h‘7h + ihzzl\h,

where §;, — 0 as h — 0%. More precisely, we focus on sequences of (pseudo-)eigenvalues
\n = ap + ihf3;, such that there exist 8 € R and (vp)5_0+ in L?(R?) for which

(4) (an, Br) — (1,8), ash— 0", and Pyop=Nevp+rm  |losllze = 1.

Here 7 should be understood as a small remainder term which will be typically of or-
der o(h). This remainder term allows us to encompass the case of quasimodes which is
important to get resolvent estimates.

Remark 1. All along this work, we shall consider subsequences h,, — 0% so that the above
convergence property holds. In order to alleviate notations, we will omit the index n
and just write A — 07, A\, = Ap,, vp = vy, , ete. For a similar reason, we do not relabel
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subsequences. This kind of conventions is standard when working with semiclassical
parameters.

Recall from the works of Markus-Matsaev [25, 26] and Sjostrand [31, Th. 5.2] that true
eigenvalues exist and that, counted with their algebraic multiplicity, they verify Weyl
asymptotics as h — 0. It also follows from the works of Rauch-Taylor [28], Lebeau [22]
and Sjostrand [31, Lemma 2.1] that

Proposition 1. Let (A = oy + ihf3s)n—0+ be a sequence verifying (4) with By — 3 and
rp = o(h). Then, one has

5) ge | in (G, _max ()]
Note that one always has
in A(z) < A_ = i A <A, = A < A
A s A= min (WE) S A= mex (@) < pax AR,

where the inequalities may be strict. For the sake of completeness and as it will be

instructive for our proof, we briefly recall the proof of this proposition? in paragraph 3.1.
itPy
One can verify that the quantum propagator e defines a bounded operator on
t>0

L?(R%) whose norm is bounded by et OPa(Dliz 2 Moreover, if we suppose in addition
that (A) > ap > 0 on R?? we say that the damping term is geometrically controlled and
one gets exponential decay of the quantum propagator in time [22, 11]. More generally,
controlling the way pseudo-eigenvalues accumulate on the real axis provides informations
on the decay rate of the quantum propagator [22, 11|, and this is precisely the question
we are aiming at when (A) may vanish.

1.2. The smooth case. Let us now explain our main results which show how the selfad-
joint term V}, influences the way that the eigenvalues may accumulate on the boundary of
the interval given by Proposition 1. In the smooth case, our main result reads as follows:

Theorem 1. Suppose that A > 0 and that, for every (z,&) € H (1) N (A)~1(0), there
exists T' > 0 such that

(6) (A) 0 o1 (2,€) > 0,

where ¢§V> is the Hamiltonian flow generated by (V). For every R > 0, there exists®
er > 0 such that, for

5?1 > 513173,2,
and, for every sequence (N = oy, + ihf) o+ verifying (4) with ||r|| < erhdp,

lim inf & > R.
h—0t  Op

Remark 2. If 6, > h? and ||| < hdp, then this Theorem shows that

%In the case where the nonselfadjoint perturbation is > % and where the symbols enjoy some extra
analytical properties, this proposition remains true (after a proper renormalization) when r; = 0 and
when w satisfies appropriate diophantine properties as (9) below.

3The (more or less explicit) constant €z coming out from our proof verifies limg 1o, g = 0.
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In other words, under the geometric control condition (6), eigenvalues cannot accumu-
late too fast on the real axis as & — 07. We emphasize that, compared with the analytic
case treated in [4], our result applies a priori to quasimodes. Hence, it also yields the fol-
lowing resolvent estimate in the smooth case. For every R > 0, there exists some constant
er > 0 such that, for A > 0 small enough and for d, > 5;21712,

Im A <135—)\)_1

(7) 5 < Rop = ‘
which is useful regarding energy decay estimates and asymptotic expansion of the corre-
sponding semigroup — see e.g. [11].

Note that the assumption that A > 0 makes the proof a little bit simpler but we could
deal with more general functions by using the (nonselfadjoint) averaging method from [31]
and by making some appropriate Diophantine assumptions — see e.g. paragraph 4. Our
proof will crucially use the Fefferman-Phong inequality (hence the Weyl quantization)
and this allows us to reach perturbations of size §; > h%. If we had used another choice
(say for instance the standard one), we would have only been able to use the Garding
inequality and it would have lead us to the stronger restriction o, 2 h.

In the case where V' = 0 and under some analyticity assumptions in dimension 2, it was
shown by Hitrik and Sjostrand [13, Th. 6.7] that one can find some eigenvalues such that
By is exactly of order A provided that ¢f! is periodic and that (A) vanishes on finitely many
closed orbits. Hence, our hypothesis (6) on the subprincipal V' is crucial here. Note that
this geometric condition is similar to the one appearing in [3] for the study of semiclassical
measures of the Schrédinger equation — see also [23, 24] in the case of Zoll manifolds. As
we shall see, ensuring this dynamical property depends on the Diophantine properties of
w. Recall that, to each w, one can associate the submodule

(8) A, ={keZ: w k=0}.

1

_ —7
22 ErNOp

When the resonance module A, = {0}, we will see in paragraph 2 that our geometric
control condition (6) can only be satisfied if (A) > 0. A typical case in which our
dynamical condition holds is when H~(1)N{A)~'(0) consists in a disjoint union of a finite
number of minimal ¢f-invariant tori (7;)x=1.. . In this case, our dynamical condition is
equivalent to say that the Hamiltonian vector field Xy satisfies

d
VISESN, YeeTi Xp(s) == (¢§V>(z))|t_o ¢ T,

1.3. The analytic case. We now discuss the case where the functions A and V' enjoy
some analyticity properties. To that aim, we follow a method introduced by Asch and
Lebeau in the case of the damped wave equation on the 2-sphere [4]. We will explain how
to adapt this strategy in the framework of harmonic oscillators which are not necessarly
periodic. The upcoming results should be viewed as an extension of Asch-Lebeau’s cons-
truction to semiclassical harmonic oscillators and as an illustration on what can be gained
via analyticity compared with the purely dynamical approach used to prove Theorem 1.
We emphasize that the argument presented here only holds for true eigenmodes, i.e. r; =0
in (4). In particular, it does not seem to yield any resolvent estimate like (7) which is
crucial to deduce some results on the semigroup generated by ]3;3.

We now assume some extra conditions on the symbols H, V and A. First, given the
vector of frequencies w := (wy,...,wy) of the harmonic oscillator H, we shall say that
w € RY is partially Diophantine [9, Eq. (2.19)] if one has:

(9) lw- k|7t < Clkl", VkeZ\A,.
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This restriction is due to the fact that, in the process of averaging, we will deal with the
classical problem of small denominators in KAM theory. To keep an example in mind,
note that w = (1,...,1) is obviously partially Diophantine®.

We will make use of some analyticity assumptions on the symbols V' and A in the
following sense:

Definition 1. Let s > 0. We say that a € L'(R??) belongs to the space A, if

lall, :=/ () e duw < oo,
R2d

where @ denotes the Fourier transform of a and ||w|| the Buclidean norm on R,
Let p,s > 0, we introduce the space A, of functions a € L'(R*?) such that

1
o k|
(10) lallos = G > Hlalls e < oo,
kezd

where

ap(z) = / ao®(2)e *dr, ke
Td
with ®2 defined by (15).

Remark 3. Observe that, for any a element in A, and for every multi-index o € Z<, oo
belongs to L!. Hence, a is smooth and one has 9% € L™ for every a € Zi. Hence, any
element in A belongs to the class S(1) of symbols that are amenable to semiclassical
calculus on R¢. In particular, by [32, Lemma 4.10], one has

(11) VaeAs, [Opy(a)lcwz < Casllalls.
As a consequence of (30), one can show that: ||alls; < ||all,s, Vp > 0.
Our next result reads:

Theorem 2. Suppose that A and V belong to the space A, for some fized p,s > 0
and that (A) > 0. Assume also that w is partially Diophantine and that, for every
(z,&) € H (1) N (A)~1(0), there exists T > 0 such that

(4) 0 0} (,€) > 0.
Then there ezists € :== €(A, V) > 0 such that, for
op = h,
and for any sequence of solutions to (4) with r, =0,

(12) B >e.

This Theorem shows that eigenvalues of the nonselfadjoint operator ﬁh cannot accu-
mulate on the boundary of the strip given by Proposition 1. Compared with Theorem 1,
it only deals with the case of true eigenvalues and it does not seem that a good resolvent
estimate can be easily deduced from the proof below. Finally, for the sake of simplicity,
we also supposed that o, = A but it is most likely that the argument can be applied when
0 does not go to 0 too slowly.

“In that example, the flow is periodic and we are in the same situation as in [4].
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2. THE CLASSICAL HARMONIC OSCILLATOR
The Hamiltonian equations corresponding to H are given by
(13) ' 353 |
Sj:—wjxj, ]:1,7d

Hence, we can write the solution to this system as a superposition of d-independent
commuting flows as follows:

(I‘(t),g(t)) = ¢f{(x7£) = Qﬁfjt ©-+-0 ¢£lt(x7§)7 (13,5) € R2d7 le R,

where H;(x,§) = 3(27+&2) and where 617 (x,€) denotes the associated Hamiltonian flow.
In other words, the solution to (13) can be written in terms of the unitary block matrices

z;(t) cos(wjt)  sin(w;t) T .
(14) < 1) ) ( sin(wst) cos(w) ) ( c ), i=1...,

Observe that each flow qbflj is periodic with period 27. We now introduce the transfor-
mation:

(15) @f::¢gdo---o¢gl, 7= (ty,...,tq) € R%

Note that 7 — ® is 27Z%-periodic; therefore we can view it as a function on the torus
T? := R?/2rZ?. Considering now the submodule

Aw::{kEZd:k:~w:0},
we can define the minimal torus
T, := AL/(2nZ N AL),

where Aj denotes the linear space orthogonal to A,,. The dimension of T, is d,, = d—rk A,,.
Kronecker’s theorem states that the family of probability measures on T? defined by

1 T
Iy

converges (for the weak- topology) to the normalized Haar measure v, on the subtorus
T, C T

For any function a € C*°(R??), ao ¢! = a o ®L. Thus, we can write the average (a) of
a by the flow ¢ as

1 /7

(16)  {a)(z,§) = lim f/ ao Py (z,&)dt = / ao & (z,&)v,(dr) € C*(R™).
—00 0 y

Recall that the energy hypersurfaces H '(E) C R?? are compact for every £ > 0. For E >

0, due to the complete integrability of H, these hypersurfaces are foliated by the invariant

tori: {®f(z,&) : 7 € T,}. Note that some invariant tori of the energy hypersurface
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H YE), E > 0, may have dimension less than d,. For instance, if w = (1,7) then
d, = 2, but the torus {®(0,1,0,1) : 7 € T, } € H~!(x) has dimension 1.

Observe also that 1 < d,, < d. In the case d,, = 1 and w = w;(1,...,1), the flow ¢ is
2 Jwy-periodic. On the other hand, if d,, = d, then, for every a € C®(R??), there exists
Z(a) € C*°(R?) such that {(a)(z) = Z(a)(H,(2),..., Hy(z)). In particular, for every a and
b in C>(R??), one has {(a), (b)} = 0 whenever d,, = d.

To conclude this section, we prove the following lemma:
Lemma 1. If a € A, then {(a) € A, and ||{a)||s < ||al|s-
Proof. By (16), we can write the Fourier transform of (a) as

@ (. ¢) = / 0o BF (2, v, (dr).

w

—

Moreover, since a/oaf(m, £) =ao®(z, &) thanks to (14), we have that (a) = (@). Thus,
using (14) one more time, one finds

@)« —/ (@) (2)]eldz

// @ o ®H(2)|e*dz v, (dr)
Tw ]de

= [ E@Ieds = fall.

3. PROOF OF THEOREM 1

We now give the proof of our main result in the C* case. Before doing that, we
briefly recall the proof of Proposition 1 in order to make the proof of Theorem 1 more
comprehensive. Note that we use the following convention for the scalar product on R%:

(1, v) g2 = /R ().

3.1. Proof of Proposition 1. Let \; = ay +ihf3; be a sequence of (pseudo-)eigenvalues
verifying (4). Denote by (v;)n_s0+ the corresponding sequence of normalized quasimodes.
Introduce the Wigner distribution W/ € D'(R*?) associated to the function vy:

W) C2(R*) 5 a— W] (a) :== (Opj (a)vn, Un) 2(ra)-

According to [32, Ch. 5] and modulo extracting a subsequence, there exists a probability
measure 4 carried by H~!(1) such that th — . The measure p is called the semiclassical
measure associated to the (sub)sequence (vp)n_s0+. Note that these properties of the limit

points follow from the facts that vy is normalized and that )] nvp = v + or2(1). We will
now make use of the eigenvalue equation (4) to derive an invariance property of u. Using
the symbolic calculus for Weyl pseudodifferential operators [32, Ch. 4], we have, for every
a € C®(R* R),

L h
([Hp + 64Vi, Opy (a)]v, Uﬁ>L2(Rd) =

;< Opy ({H,a})vy, Uﬁ>L2(Rd) + O(h(dy, + h)).

On the other hand, using that vy is a quasimode of ﬁh and the composition rule for the
Weyl quantization [32, Ch. 4], we also have

([ + 52V, O} (@)]on, U)o oy = 208 ( OPR(alA = B1))0ns V) 12 gy + OUllrall) + O(R®).
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Note that there is no O(h?) term due to the fact that a is real valued and to the symmetries
of the Weyl quantization. Passing to the limit & — 0 and recalling that ||r|| = o(h),
one finds that u({H,a}) = 2u((8 — A)a) for every a in C>°(R?). This is equivalent to the
fact that, for every t € R and for every a € C°(R??), one has

(1 [ a@ntd) = [ aoafie) e Gy,
R2d R2d
Taking a to be equal to 1 in a neighborhood of H~'(1), identity (17) implies

(18) e2Pt = / e2lo Ao‘z’f(z)dsu(dz), vVt € R,
R2d

from which Proposition 1 follows thanks to (3). In the case, where § = 0 and A > 0, one
can deduce from (18) that

Vvt € R, supp(u) C H (1) N{z: Ao ¢l (z) =0}.
Hence, we can record the following useful lemma:

Lemma 2. Suppose that A > 0. Let u be a semiclassical measure associated to the
sequence (vn)no+ Satisfying (4) with 5 =0 and r, = o(h). Then

(19) suppp C {z € H'(1) : (A)(z) =0}.

3.2. Proof of Theorem 1. Let us now reproduce the same argument but suppose now
that a = (a), implying in particular that {H, (a)} = 0. From this, we get

PO héu
<[Hh + 5)‘1‘/717 Oph (<a>>]vh7 Uﬁ>L2(Rd) - Th< Oph ({V7 <a>})vh,7 Uﬁ>L2(Rd) + O(h3>

As before, recalling that a is real valued, one still has
<[f[h+(5h17h, Opy ((a))]vn, vh>L2(Rd) = 2ih < Opy ({a)(A—Br))vp, Uﬁ>L2(Rd) +O(||ra) +O(R?).
Hence, one gets

(ODY ((2(A = B) + 1X0) (@) s 1) 2y = OClrall i) + O2),

where Xy is the Hamiltonian vector field of V. Suppose now that A > 0 and (a) > 0. From
the Fefferman-Phong inequality [32, Ch. 4], one knows that there exists some constant
C > 0 such that

261 Opy, (@) v, Un) o gy = 05 OP; (Xv(@)) v, ) o gy — C(R* + [Iral| A7),

where the constant C' depends only on A, V and a. Now, we fix R > 0 and we would
like to show that liminf, .o+ 55/d; > R provided that d; > 6}}1h2 and that ||| < erhdy
for some small enough € > 0 (to be determined later on). To that end, we proceed
by contradiction and suppose that, up to an extraction, one has 2?—2 — ¢ € [0,2R] (in

particular 5 = 0). One finally gets after letting h — 0*:
(20) cop ({a)) = p(Xv(a)) — Cer,

for some C' > 0 depending on A, V' and a. Using one more time Lemma 2, one can also
deduce that p is invariant by ¢7. Hence,

p({Vi{a)}) = n({{V), (a)}),

which implies

(21) con ({a)) = (X (a)) — Cen.
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By our geometric control condition (6) and since H—'(1) N (A)~(0) is compact, there
exist 77 > 0 and 9 > 0 such that

/T1<A> ooV (2)dt > g9, Vze€ H (1) N (4A)71(0),

where ¢§V> is the flow generated by X(y. Up to the fact that we may have to increase the
value of C' > 0 (in a way that depends only on T3, A, V and a), we can suppose that (21)

holds uniformly for every function (a) o ¢§V> with 0 <t < T, i.e. for every t € [0, T}],
con ((a) o6} = u ({(V), (@} 0 6)) = Cen.

This is equivalent to the fact that £ (e‘cOt Jgoala) o ¢§V>du) < Cere ! for every t €
[0,T}]. Hence, if ¢y # 0, one finds that, for every ¢ € [0, 7],
Cep(et —1
@ [ wedEu < [ @i + CHEZ
R2d R2d Co

We now apply this inequality with @ = A and integrate over the interval [0, 73]. In that
way, we obtain

T T tco __ Tico
go < / / <CL> o ¢§V>(Z)M(d2’)dt < / CgR(e 1)dt < C€RT1(6 1)
0 R2d

0 Co Co

Observe that, for cg = 0, we would get the upper bound CegT?. In both cases, this yields
the expected contradiction by taking g small enough (in a way that depends only on R,
A and V) and it concludes the proof of Theorem 1.

Remark 4. Note that we could get the conclusion faster under the stronger geometric
assumption

(23) vz e H (1) N (A)7(0), {(4),(V)}(z) #0,

which implies (but is not equivalent to) the geometric control condition (6) of Theorem 1.
Together with (21), this yields the following upper bound

(X (A4)) < Cer.

Hence, provided eg > 0 is chosen small enough in a way that depends only on A and V'
(but not R), we get a contradiction. This shows that, for a small enough choice of eg > 0,
one has in fact 8, > 6, under the geometric condition (23).

4. THE AVERAGING METHOD
From this point on of the article, we will make the assumption that
o = h.

This will slightly simplify the exposition and it should a priori be possible to extend the
results provided i < d;; does not go to 0 too slowly. In this paragraph, we briefly recall how
to perform a semiclassical averaging method in the context of nonselfadjoint operators
following the works of Sjostrand [31] and Hitrik [12]. For that purpose, we define

F\h = Op%}(Fl + iFg),

where F and F, are two real valued and smooth functions on R?? that will be determined
later on. We make the assumption that all the derivatives (at every order) of F; and F
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are bounded. For every t in [0, 1], we set Fy(t) = eitfh By 21, Thm. II1.1.3.], the family
Fi(t) defines a strongly continuous group (note that F is invertible) on L?*(R?) such that
24 Pt ey < 1O,

For simplicity, we shall denote F, = F(1) and we will study the properties of the conju-
gated operator

Qn = FubnF;
for appropriate choices of Fy and Fy. Using the conventions of [32, Ch. 4], symbols of
order m € R are defined by

S(<Z>m) = {(ah)gsﬁgl € COO(]RQd,C) : Vo € NQd, |6°‘a(2)| < Ca(z>m} ,
where (z) = (1 + ||2[%)2. We shall denote by ¥7" the set of all operators of the form
Opy(a) with a € S ((z)™).
4.1. Semiclassical conjugation. Writing the Taylor expansion, one knows that, for

every a in S ((z)™),
FiOp}(a)F, ' = Opj(a) + 1 | By, O} (a)]

- / (1—t)Fn(t) [ﬁh, [ﬁh, Op%’(d)” Fu(—t)dt.

0
Observe from the composition rules for semiclassical pseudodifferential operators [32,

Ch. 4] that |:ﬁﬁ, [ﬁh, Op%“(a)” is an element of h?¥™. Moreover, a direct extension of

the Egorov Theorem [32, Th. 11.1] to the nonselfadjoint framework shows that the third
term in the righthand side is in fact an element of A*U}". Then one can verify from the
composition rules for pseudodifferential operators that

F3Op}!(a)Fy, ' = Opj(a) + hOpy! ({F1,a}) + ih Opy ({Fy,a}) + W Ry,
where ﬁh is an element in U}". Applying this equality to the operator ﬁﬁ, one finds
(26) Qn= P+ hOpy ({Fy, H}) +ih Opyl ({Fy, H}) + * Ry,
where Eh is now an element in \If% We now aim at choosing I and F; in such a way that
(27) {FiI,H} +V =(V) and {F, H}+ A= (A).
If we are able to do so, then we will have

(28) FuByFt = Hy + ROpY (V) + ik OpY ((A)) + K2Ry

(25)

4.2. Solving cohomological equations. In order to solve cohomological-type equations
like (27), we need to make a few Diophantine restrictions on w. Let g € C*®°(R??) be
any smooth function such that (g) = 0 and all of whose derivatives (at any order) are
bounded. We look for another function f € C*®(R??) all of whose derivatives (at any
order) are bounded and which solves the following cohomological equation:

(29) {H, [} =g
We then apply this result with g = V' — (V) (resp. A—(A)) in order to find f = F} (resp.
Fy).

For any f € C*(R?*®) all of whose derivatives (at any order) are bounded, we can write
f o ® as a Fourier series in 7 € ’IFd'

B0 o)=Y A OGm filed):= [ foel @t

d
kezd T
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Notice that fy o ® = f; ¢*™ and that, for 7 =0, f = (2m)™>", fi. Recalling (16) and
the definition (8) of A, one has

1 .
(fy o ®H(x, &) = Z fe(z,€) (TETOO T(@n) /o el’“'(”t“)dt)

kezd

'LkT

kEA

In particular, as (g) o ®7 = 0 for every 7 € T?, one finds that g, = 0 for every k € A,
and thus

1 .
d H o ik-T
vreT ) goq)f (l’,f)— (27]_)(1 Z gk<1’,£)€ :
keZN\ A,
Observe also that, if f is a solution of (29), then so is f + A(f) for any A € R, since
{H,{f)} = 0 thanks to (16). Thus, we can try to solve the cohomological equation (29)
by supposing f o ® to be of the form
Z fk T g 'LkT

fo®(x,6) =
keZd\A

and write down

(H ol =%

1 ,
: (fo®liw) limo = y Z ik - w fre®T.

(27T) keZa\ A,

Hence, if we set

(31) foled) =G Y et

d
(27T) keZMNA,, !

then f will solve (29) (at least formally). It is not difficult to see that, unless we impose
some quantitive restriction on how fast |k -w|™! can grow, the solutions given formally by
(31) may fail to be even distributions — see for instance [9, Ex. 2.16]. On the other hand, if
w is partially Diophantine, and g € C*°(R?) has all its derivatives (at any order) bounded
and is such that (g) = 0, then (31) defines a smooth solution f € C*®(R??) of (29) all
of whose derivatives (at any order) are bounded. As a special case, we observe that, if
w=(1,...,1), then an explicit solution of (29) is given by

(32) /%/goqﬁ ds dt.

4.3. Proof of Theorem 2. We now turn to the proof of Theorem 2 and to that aim, we
should exploit the analyticity assumptions on A and V' in order to improve the result of
Theorem 1 when r; = 0 in (4). It means that we are not considering anymore quasimodes
but true eigenmodes. Hence, from this point on of the article,

T‘h:O.

The point of using analyticity is that the symbolic calculus on the family of spaces A, is
extremely well behaved — see appendix A for a brief review. This will allow us to construct
a second normal form for the operator P; via conjugation by a second operator so that

the nonselfadjoint part of the operator is averaged by the two flows ¢ and gbév)
Recall from (28) that

(33) FubpFit = Hy + hOpy (V) 4+ ihOpY ((A)) + h*Ry,.

Let us now make a few additional comments using the fact that A and V' belong to some
space Ay. First of all, according to Lemma 1, we know that, as soon as A and V' belongs
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to the space A,, both (A) and (V) belong® to the space A,. Moreover the functions F}
and F, used to define Fj, are constructed from A and V using (31). In particular, by (9)
and for every 0 < o < p, the following inequalites hold:

IFulls < N[Fillp-os Sps (Vs and ([ F2lls < [[F2llp-os Spos (1Al

We can make use of this regularity information to analyse the regularity of the remainder
term Ry in (33). Recall that part of this term comes from the remainder term when
we apply the composition formula to [Op;’(A), Opy' (F;)] and to [Opy (V), Opy (F;)] for
j = 1,2. In that case, Lemma 6 from the appendix tells us that the remainder is a
pseudodifferential operator whose symbol belongs to A,_, for every 0 < o < s. There
is another contribution coming from the integral term in the Taylor formula (25) with

Opy (a) replaced by ]35. For that term, we first make use of Lemma 6 and of the fact
that Fj solve cohomological equations® (27) in order to verify that the double bracket is a
pseudodifferential operator whose symbol belongs to A,_, for every 0 < o < s. Then, an
application of the analytic Egorov Lemma from the appendix (point (1) of Lemma 3 with
G = h(F) + iFy)) shows that this remainder term is still a pseudodifferential operator
whose symbol now belongs to A,_, for every 0 < o < s. To summarize, we have verified
that Ry, = OpY(Ry) with ||Rylls—0 < Cs0,p for every 0 < 0 < s and uniformly for
0 < h<hy.

We now perform a second conjugation whose effect will be to replace (A) in (33) by
a term involving V. Let F3 be some real valued element in A,_, for some 0 < 0 < s
verifying (F3) = F3. We set, for € > 0 small enough (independent of ),

Fat) = enlsn tel—e e,
where ﬁ&ﬁ = Opy ((F3)). We can define the new conjugate of Hy:
Fil =) BB Fale) = Hy+ hFi(—e) (Opf ((V) +i Opf ((A) + ARy ) Fale),

where we used that [Hj, Opy((F3))] = 0. In fact, as H is quadratic in (x,€) and as
we used the Weyl-quantization, the fact that H and (Fj5) (Poisson-)commute implies that

[Hy, Op((F3))] = 0. Suppose now that £||(F3)||,_s < "72 so that we can use the (analytic)
Egorov Lemma 3 with G = ¢F3. This tells us that

(34) Fi(—e)BrFi(e) = Opy (Ra(2)),

with Rp(e) belonging to As_, uniformly for A small enough. Using the conventions of
Appendix A, one also has

(35) Fi(e) (Opjy (V) + i Opy ((A))) Fa(—e) = Opy/ (WI"((V) +i(A))) .

Consider now a sequence (A = ay, +1h0)o<n<1 solving (4) with r, = 0 and ; — 5. In
particular, one can find a sequence of normalized eigenvectors (0p)o<n<1 such that

ﬁh(—E)FhﬁhJ—"{lj—:.}'L((‘E)ﬁh = )\h'&h-
Implementing (34) and (35), one obtains
; : I 1 ~ S 1 Ns -
Im (Opy, (P ((V) +i(A))) n, tn) + O(h) = ﬁlm <]:h(_5).7:hph.7:h L Fu(e)tn, Uh> = B
From point (3) of Lemma 3, one then finds
B = (Opy ((A) — e{(F3), (V)}) O, B) + O(?) + O(h).

Recall also that A, C S(1).
6This comment is to handle the contribution coming from Hp,.
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Up to another extraction, we can suppose that the sequence (95);>0 has an unique semi-
classical measure ji which is still a probability measure carried by H~(1). Letting i — 07,
one finds
B =i ((A) +e{(V), (F3)}) + O(7).

Given 0 < o < s, suppose now that we can pick Fj in As_, such that {(F3),(V)} <0
on (A)~1(0) N H~!(1). Then, one can find some ¢y > 0 such that cye + O(e?) < 5. In
particular, 5 cannot be taken equal to 0 which concludes the proof of Theorem 2 except
for the proof of the existence of F3.

Let us now show that the geometric control assumption (6) of Theorem 2 implies the
existence of F3. Since (A) and (V') belong to Ag, Remark 5 from the Appendix and the
compactness of the set H~1(1) N (A)~1(0) show that, for every 0 < o < s, there exists
some small enough ¢, > 0 such that

Fy(z) = /0 "’ ( /0 t(A) o ¢§V>(z)d7> dt

belongs to As_,. One has, for every z € H~(1) N (A)~1(0),

(V) F} (2) = / "4y o 6 (2)at.

It remains to verify that this quantity is positive for every zy in (A)~1(0) N H~*(1). Still
using Remark 5, one has the following analytic expansion:

O .
(36) ()00 (2) =D 5 Adpy, () (=),
j=0 "
uniformly for ¢ € [—tg,to] and z € H~(1). This implies that, if we fix some 2 in H (1),
then the map ¢ — (A) ogbiw(z) is analytic on R. Now, given some zy € (A)~1(0)NH (1),
there exists some z; in the orbit of zy such that (A)(z;) > 0 thanks to our geometric

control assumption(6). In particular, the analytic map ¢ — (A) o 6" (29) is nonconstant
and there exists some j > 1 such that Adj, ((A4))(20) # 0. Hence, {(V), F5} (20) > 0
which concludes the proof.

APPENDIX A. SYMBOLIC CALCULUS ON THE SPACES A,

We collect some basic lemmas about the quantization of the spaces A,. We fix s > 0 all
along this appendix. Let a,b € A,. The operator given by the composition Opy’(a) Op}’ ()
is another pseudodifferential operator with symbol ¢ given by the Moyal product ¢ = afb,
which can be written by the following integral formula [10, Ch. 7, p. 79]:

1 -~ 2 * % * s %
(37) c(z) = atpb(z) = —/ a(w*)b(z" — w*)eThg(w W) 2y * d
(27T)4d R4d
where ¢(z,&,y,n) := & -y — x - n is the standard symplectic product and where

a(w) = /R e a(2)dz,

We set [a,b], := afpb — bipa. Given now a,G € A,, the following conjugation formula
holds formally:
¢t OP(G) Op (g)e i1 OPK (@) = Opv (wFq),

where

<1 fit)’ :
(38) Ty ::Zﬁ (g) Ad%7(a), teR,
j=0
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and

Ad%(a) = [G, AL (@)]n,  AdE (a) = a.
One of the aim of this appendix is to prove the following analytic version of Egorov’s
theorem:

Lemma 3 (Analytic Egorov’s Lemma). Let 0 < o < s. Consider the family of Fourier
integral operators {Gy(t) : t € R} defined by

Gi(t) = e 7O,

where G, = Opy(G) for some G € As. Assume
2

o
2[GIl
Then, there exists a constant C, > 0 (depending only on o) such that, for every a € As,
(1) Ui'a € As o
(2) [[v"a —al|_, < CoItIGlllall.;
(3) 109" a — a4+ t{G, a}||s—s < Co|t]2||G|ls||alls for some Cy > 0 depending only on o.

(39) It] <

Remark 5. With the hypothesis of Lemma 3, one also has that a o ¢¢ € A, ,. To see
this, it is enough to follow verbatim the proof of Lemma 3 noting that Lemma 5 below
remains valid for —ih{a, b} instead of [a, b]; and then using the formal expansion

aogf =Y —Adf(a),
— j!
j
where Ad(a) = {G,Ad} ' (a)} and Ad%(a) = a instead of the analogous quantities for

\Ilf .

A.1. Preliminary lemmas. Before proceeding to the proof, we start with some preli-
minary results.

Lemma 4. For every a,b € As, the following holds:
lablls < llalls[b]]s-

Proof. To see this, write

Jabll = [ labla]ed
R2d

- L.
S/ / la(w — w*)|eslv=vl
R2d JR2d

< llallsolls-

/ a(w — w*)b(w*)dw*| el dw
R2d

Z(w*)|es|“’*|dw* dw

We shall also need some estimates on the Moyal product of elements in A,:

Lemma 5. Let a,b € A,. Then, for every 0 < o1 + 02 < s, [a,b] € As_y,—0, and

2h
Ha“snbns—@'

b < 5—F——
H[av ]ﬁ||s—a1—02 — 620'1(01 _|_0-2)
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Proof. From (37), we have

. h 12"z
[a,b]n(2) = 21 /RM a(w*)b(z" — w*) sin (5 s(w*, 2" — w*)) ﬁdw* dz".
Then, using that
(40) [s(w?, 2% —w")| < 2Jw[|z" — w7,

we obtain:

||[a7b]h||8—01—02

2h R . -
< (2 )4d/ |a(w*)||w*||b(z* — w")||z* — w*ye(s—orag)(\z —w* ")) Jo* da*
™ R4d

2h

= (gmya (30 re ™) (suprem e fall 0l

2h

—_— ]| P
< artor Ty el Ml

Finally, one has:

Lemma 6. Let a,b € Ay and 0 < 0 < s. Then there exists a contant C, > 0 depending
only on o such that

0
(41) 7o ol —{a,0}| < CoP*alls[lblls—

§—0

Proof. First write:
la, b]r(2) + ih{a, b}(2)
= 22’/ a(w)b(z* — w*) (Sin (E s(w*, 2" — w*)> _n s(w*, 2" — w*)) i*‘Zdw* dz".
i 2 2 (27r)4d
Using (40) and sin(z) = = — ‘%2 fol sin(tz)(1 — t)dt, we obtain
[, bl + ih{a, b}||s—o

h3
<
— (27T)4d

<Cs h3||a||5||b||s—0'

/ |6(w*)||w*|3|/l;(z* o ’LU*)”Z* . w*|3€(5—J)(|z*—w*|+\w*\)dw* dz*
R4d

O

A.2. Proof of the analytic Egorov Lemma. We are now in position to prove Lemma 3.
Let us start with points (1) and (2). By definition (38), we have

e e

L 1 |t| g j
e = oo < 3 (F) 1A @l

j=1""
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Using Lemma 5, we also find that, for every j > 1,

; 2hj
I AdE (@)oo < — (@, u=ne 1G]l
22h2j3 42 )
< m“AdGﬁ (G)HS_@”GHS
2B %
< s m” alls|GIZ.
Then, using Stirling formula and as 2|t|”G”S < 1, one gets
0 .9j
G.h J Itl IIGII
(42) [W:"a — alls— < Z =llalls < Coltl[|Gllsllalls,

for some constant C, > 0 depending only on o. In order to prove point (3), we now write

19670~ 0t 1{Ga} s < I H%[aah—{@,a}

S§—0

" Z (Y naaa.-.

We can now reproduce the above argument and combining this bound to Lemma 6, we
can deduce point (3) of Lemma 3.
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