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Abstract. In this note, we review our recent works devoted to the spectral analysis of
Morse-Smale flows. Then we give applications to differential topology and to the spectral
theory of Witten Laplacians.

1. Introduction

Let M be a smooth (C∞), compact, oriented and boundaryless manifold of dimension
n ≥ 1. Given a smooth vector field V on M , its integration defines a flow ϕt : M → M ,
and maybe one of the most basic question in dynamical systems is to understand the long
time behaviour of such a flow. Let us formulate more precisely the meaning of the above
statement. Given some smooth differential k–form ψ1 ∈ Ωk(M), one can ask if the pulled-
back differential form ϕ−t∗(ψ1) has a weak limit in the sense of currents when times t goes
to +∞. For such a limit to exist, the dynamical system (ϕt : M 7→M)t under study must
have some particular structure. In order to study the weak limit limt→+∞ ϕ

−t∗(ψ1), it is
natural to introduce the correlation function of the flow:

(1) ∀t ≥ 0, Cψ1,ψ2(t) :=

∫
M

ϕ−t∗(ψ1) ∧ ψ2,

where ψ1 is a k-form and ψ2 a (n− k)−form.
Let us now observe that ϕ−t∗(ψ1) is the solution of the following transport equation:

(2) ∂tψ = −LV ψ, ψ(t = 0) = ψ1,

where LV is the Lie derivative along the vector field V . Recall that Cartan’s formula allows
us to write LV under the following supersymmetric form:

(3) LV = (d+ ιV )2,

that can be thought as an analogue of the formula for the Hodge–De Rham Laplacian1 :
∆g = (d + d∗)2. This formal analogy with Hodge theory will turn out to be central for
applications to differential topology that will be described at the end of these proceedings.
Equation (2) shows how the study of the limit of (ϕt)t→+∞, which is nonlinear in nature,
can be turned into a linear PDE problem2. More precisely, one may try to find out some
appropriate Banach space B on which −LV has good spectral properties. Then, we would
prove some kind of convergence to equilibrium result like what one would do in the case of

1Here, d∗ denotes the adjoint of d with respect to a Riemannian metric g.
2This is of course at the expense of working in infinite dimension.
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the heat equation associated to ∆g. To understand this formal analogy, replacing LV in the
transport equation (2) by the Laplacian ∆g yields the heat equation : ∂tψ = −∆gψ, ψ(t =
0) = ψ1. However, unlike Hodge theory, one cannot work with L2 spaces since it does not
give interesting spectral properties for LV . Still, a lot of progresses have been made towards
this question in the last fifteen years, and the purpose of this report is to present these
problems in the a priori simple framework of Morse-Smale gradient flows. We refer the
reader to the introduction of our articles [8, 10, 11] for a brief overview of the literature.

There are many ways to construct appropriate spaces adapted to the dynamical prop-
erties of the flow and all of them give in the end the same objects. Equivalently, we will
get the same eigenvalues and the same eigenmodes. Here, we choose to adopt a microlocal
approach to this problem and it is most likely that we could get similar results by following
other strategies such as the one developped by Liverani et al. [3, 23, 5]. This microlocal
point of view was introduced for dynamical systems with hyperbolic behaviour by Bal-
adi, Dyatlov, Faure, Sjöstrand, Tsujii, Zworski, etc [1, 30, 16, 31, 14]. In the microlocal
approach, we start by the observation that the principal symbol of −iLV is given by the
Hamiltonian function

(4) ∀(x, ξ) ∈ T ∗M, HV (x, ξ) := ξ(V (x)).

The dynamical properties of the corresponding Hamiltonian flow acting on cotangent space
T ∗M , denoted by :

(5) Φt(x, ξ) :=
(
ϕt(x),

(
dϕt(x)T

)−1
ξ
)
.

must be studied in order to construct the appropriate anisotropic Sobolev spaces of currents
adapted to the dynamics. A crucial feature of this flow is the hyperbolicity at the critical
points. Moreover, a particular role will be played by the stable and unstable sets of the
Hamiltonian flow in T ∗M which are conical Lagrangians in T ∗M .

2. A brief reminder on Morse-Smale gradient flows

Let us now focus on the particular case of gradient flows. For that purpose, we fix a
smooth (C∞) function of Morse type. In other words, f has only finitely many critical
points, all of them being nondegenerate. We denote by Crit(f) the set of critical points.

2.1. Definition and first properties. Let g be a smooth Riemannian metric. Then we
define the gradient of f with respect to the metric g as the following vector field :

(6) ∀(x, v) ∈ TM, dxf(v) = 〈Vf (x), v〉g(x).

Such a vector field generates a complete flow on M that we denote by (ϕtf )t∈R and it is
called the gradient flow. The nonwandering set of this flow is equal to the set of critical
points of f [26]. The critical points being non degenerate, we say that the nonwandering
set of the flow is hyperbolic. Hence, given a in Crit(f), one can define its stable manifold
(resp. unstable) as :

W s/u(a) :=

{
x ∈M : lim

t→+/−∞
ϕtf (x) = a

}
.
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It can be proved that these are embedded submanifolds inside M [28, 32, 22]. However, as
we will later see, the submanifolds W s/u(a)a∈Crit(f) are not necessarily properly embedded.
We set 0 ≤ r ≤ n (resp. n− r) to be the dimension of W s(a) (resp. W u(a)), and we note
that r is also the Morse index of the critical point a. Observe also that W u(a) ∩W s(a) =
{a}. A notable feature of these submanifolds is that they form a partition of M [29], i.e.

M =
⋃

a∈Crit(f)

W s(a), and ∀a 6= b, W s(a) ∩W s(b) = ∅.

The same of course holds for the unstable manifolds once we observe that unstable mani-
folds of Vf are stable manifolds of V−f . This “cellular” decomposition plays an important
role in the applications to topology as was observed by Thom [29]. For applications to
topology, Smale introduced another requirement that, for every critical points a and b
in Crit(f), the submanifolds W s(a) and W u(b) intersect transversally3. This assumption
turns out to be crucial in our analysis and it can be formulated in an equivalent manner
by saying that the forward and backward trapped set of the Hamiltonian flow Φt defined
by (5) intersect only along the zero section 0 ⊂ T ∗M . The Morse function being fixed, this
transversality assumption is satisfied by an open and dense subset of metrics [19]. Once
these properties are verified, we say that the flow ϕtf is a Morse-Smale gradient flow.

2.2. Correlation function of a gradient flow. Let us now come back to the study of
the correlation functions

Cψ1,ψ2(t) :=

∫
M

ϕ−t∗f (ψ1) ∧ ψ2

of the gradient flow. In that direction, Laudenbach and Harvey-Lawson showed that the
following holds [2, 22, 20]:

Theorem 2.1 (Laudenbach, Harvey-Lawson). Let f be a smooth Morse function.
Then, there exists an “adapted” Morse-Smale metric g such that :

• (Laudenbach) for every a in Crit(f), W u(a) and W s(a) define integration
currents in the sense of De Rham that we denote by [W u(a)] and [W s(a)],
• (Harvey-Lawson) for every 0 ≤ k ≤ n and for every (ψ1, ψ2) in Ωk(M) ×

Ωn−k(M),

(7)

∫
M

ϕ−t∗f (ψ1) ∧ ψ2 −→
∑

a:dimW s(a)=k

(∫
W s(a)

ψ1

)(∫
Wu(a)

ψ2

)
, as t→ +∞.

The second part of the Theorem can also be reformulated in terms of weak limits in
the space of currents as follows :

ϕ−t∗(ψ1) ⇀
∑

a:dimW s(a)=k

(∫
W s(a)

ψ1

)
[W u(a)].

3Note that if dimW s(a) + dimWu(b) < n then transversality means that the intersection is empty
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By an “adapted” metric, we mean that the metric is euclidean in a Morse chart [22] near
each critical point. In particular, it means that g is flat near Crit(f). However, Minervini
showed [24] similar results on integration currents and the convergence of correlators under
relaxed assumptions on the metric g. The main difficulty regarding the first part of the
Theorem is that we can easily integrate a differential form whose support is included in
a compact part of W u(a) but it is not clear that we can integrate a form whose support

intersects ∂W u(a) := W u(a) \ W u(a). To justify this point, one needs to analyse care-
fully the structure of W u(a) near its boundary and this is where the “adapted” condition

comes in. Indeed, Laudenbach proves something more precise, namely that W u(a) is a

submanifold with conical singularities. This in particular implies that W u(a) defines a
current of finite mass in the sense of geometric measure theory. Observe now a remarkable
thing about the second part of the Theorem : ϕ−t∗f (ψ1) converges weakly to a limit current

which can be decomposed as
∑

a∈Crit(f)

(∫
W s(a)

ψ1

)
[W u(a)] in the basis (W u(a))a∈Crit(f)

of unstable currents. This is highly reminiscent of Thom’s partition of M as a union of
unstable manifolds. In other words, if we study the convergence to equilibrium to solutions
ψ of the transport equation (2), then we recover at the limit some linear combination of
currents which appear in the cellular decomposition of the manifold. In particular, we can
deduce from this Theorem classical results from differential topology such as the finiteness
of Betti numbers or the Morse inequalities [20]. At the end of this lecture, we will explain
how to recover these topological results from a spectral perspective.

2.3. Lyapunov exponents and linearization assumptions. In order to state our re-
sults, we need to introduce two more definitions. First of all, for every a in Crit(f), we
define Lf (a) as the unique matrix verifying

(8) ∀ξ, η ∈ TaM, d2
af(ξ, η) = ga(Lf (a)ξ, η).

As a is a nondegenerate critical point, the matrix Lf (a) is invertible and symmetric with
respect to ga. Its eigenvalues are the Lyapunov exponents of the critical point a and we
denote them by

χ1(a) ≤ . . . ≤ χr(a) < 0 < χr+1(a) ≤ . . . ≤ χn(a),

where r is the index of the critical point a. For l ≥ 0, the flow ϕtf is said to be Cl-linearizable

if, for every critical point a of f , there exists a Cl-chart near a such that the flow can be
written locally, for t small enough,

(9) ϕtf (x1, . . . , xn) =
(
etχ1(a)x1, . . . , e

tχn(a)xn
)
.

Actually, thanks to the Hartman-Grobman Theorem, we can always find a C0-linearizing
chart. The Sternberg-Chen Theorem [25] states that the chart can be chosen of class
Cl as soon as a certain (finite) number of nonresonance assumptions are satisfied by the
Lyapunov exponents. We emphasize that the metrics of Laudenbach and Harvey-Lawson
generate by construction C∞-linearizable flows with all the Lyapunov exponents equal to
±1.
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3. Statement of the main results

Our first main result is the following refinement of Theorem 2.1 [8, 9]:

Theorem 3.1. Suppose that ϕtf is a C1-linearizable Morse-Smale gradient flow. Fix
0 ≤ k ≤ n. Then, for every a ∈ Crit(f) of index k, there exists a pair of currents

(Ua, Sa) ina D′,k(M)×D′,n−k(M) such that the support of Ua is equal to W u(a) and
such that

LVf (Ua) = 0 and Ua = [W u(a)] on M − ∂W u(a).

Moreover, for every

0 < χ < min {|χj(a)| : 1 ≤ j ≤ n, a ∈ Crit(f)} ,
one has, for every (ψ1, ψ2) ∈ Ωk(M)× Ωn−k(M),∫

M

ϕ−t∗f (ψ1) ∧ ψ2 =
∑

a:dimWu(a)=n−k

(∫
M

ψ1 ∧ Sa
)(∫

M

Ua ∧ ψ2

)
+Oψ1,ψ2(e

−χt).

aD′,k(M) denotes the space of currents of degree k.

The proof we gave of this result is of purely spectral nature and is completely indepen-
dent of the Theorem by Laudenbach and Harvey–Lawson. Note that our proof yields an
exponential rate of convergence towards equilibrium under rather general assumptions on
the metric. Our Theorem also establishes the existence of the extension to M of the germ
of current [W u(a)]. However, we emphasize that the main drawback compared to Theo-
rem 2.1 is that the extended currents are not a priori of finite mass while the construction
from [19, 22] allows to establish that Ua is a standard current of integration. It is plausible
that the rate of convergence in this Theorem could be recovered by techniques from geo-
metric measure theory à la Federer but we are not aware of such proof in the literature.
Yet, we emphasize that this result is just the first term of an asymptotic expansion that
our analysis allows to compute at any order. To state a general statement, we introduce
the following notation:

|χ(a)| = (|χ1(a)|, . . . , |χn(a)|).
Then we have [8]:

Theorem 3.2. Suppose that ϕtf is a Morse-Smale gradient flow all of whose Lyapunov
exponents are rationally independent. Let 0 ≤ k ≤ n.

Then, for every a in Crit(f) and for every α in Zn+, there exists a continuous linear
map:

π
(α)
a,k : Ωk(M)→ D′k(M),

such that, for every (ψ1, ψ2) ∈ Ωk(M)× Ωn−k(M) and for every χ > 0, one has∫
M

ϕ−t∗f (ψ1) ∧ ψ2 =
∑

a∈Crit(f)

∑
α∈Zn+:α.|χ(a)|≤χ

e−tα.|χ(a)|
∫
M

π
(α)
a,k (ψ1) ∧ ψ2 +Oψ1,ψ2(e

−χt),

as t tends to +∞. Moreover, for every a in Crit(f) and for every α in Zn+, one has
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• 0 ≤ rk(π
(α)
a,k ) ≤ 2n,

• for every ψ1 in Ωk(M), the support of π
(α)
a,k (ψ1) is contained in W u(a),

• rk(π
(0)
a,k) = δk,dim(W s(a)),

• for every α in (Z∗+)n, rk(π
(α)
a,k ) = n!

k!(n−k)!
.

The assumption on the rational independence of the Lyapunov exponents allows us
to state the result in a simpler manner but our method allows in fact to deal with C1-
linearizable flows at the expense of having polynomial factors in the asymptotic expan-
sion [9]. In the terminology of dynamical systems theory, this Theorem shows that the
Pollicott-Ruelle resonances of a gradient flow are of the form −α.|χ(a)| with α a multi-
index in Zn+. If we are only interested in observables ψ1 and ψ2 supported near a critical
point, we will verify below that this result can be obtained as an application of the Taylor
formula – see paragraph 4.1 below. Here, the main point is that this is a result on the
global dynamics of the gradient flow and not necessarily on the local dynamics near a crit-
ical point. We emphasize that, in the case of the height function on the 2-sphere endowed
with its canonical metric, a similar result was obtained by Frenkel, Losev and Nekrasov via
Witten Laplacian methods [17]. We shall come back to this issue later in this note. Finally,
even if we do not describe this here, our analysis extends to more general Morse-Smale
flows that may have closed orbits and that we couple with a flat connection [10, 11].

4. About the proofs

In this review, we shall focus for the sake of simplicity on the case k = 0 and just outline
the main ideas. We will hide many technical issues and refer to the original papers–
see [8, 10, 11] for details. Moreover, we will suppose that the flow is smoothly-linearizable.
The extension to the C1-linearizable case can be found in [9].

4.1. A preliminary calculation. We first localize the study of the dynamics near critical
points since this is the first natural places to look at for gradient flows. Let us start by
proving Theorem 3.2 near a critical point a whose index will be denoted by r. We choose
some neighborhood U of a on which there exists a smooth chart where the dynamics is
linearized as in equation (9). Then, we fix two test forms ψ1(x) ∈ Ω0

c(U) and ψ2(x, dx) ∈
Ωn
c (U) compactly supported in U . Then, we write∫

M

ϕ−t∗f (ψ1) ∧ ψ2 =

∫
Rn
ψ̃1(e−tχ1(a)x1, . . . , e

−tχn(a)xn)ψ̃2(x1, . . . , xn)dx1 ∧ . . . ∧ dxn

where (ψ̃1, ψ̃2) denotes the test forms in the linearizing chart. Then, we make the following
change of variables (x1, . . . , xn) 7→ (etχ1(a)x1, . . . , e

tχr(a)xr, xr+1, . . . , xn) inside the integral :∫
M

ϕ−t∗f (ψ1) ∧ ψ2 = et
∑r
j=1 χj(a)

∫
Rn
ψ̃1(x1, . . . , xr, e

−tχr+1(a)xr+1, . . . , e
−tχn(a)xn)

×ψ̃2(etχ1(a)x1, . . . , e
tχr(a)xr, xr+1, . . . xn)dx1 ∧ . . . ∧ dxn.
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Writing down the Taylor formula, we obtain the following formal asymptotic expansion :∫
M

ϕ−t∗f (ψ1) ∧ ψ2 ∼ et
∑r
j=1 χj(a)

∑
(α,β)∈Zr+×Z

n−r
+

Cα,βe
−t(α,β).|χ(a)|

×
〈
x(α,0)δ

(β)
0 (xr+1, . . . , xn), ψ̃1

〉〈
x(0,β)δ

(α)
0 (x1, . . . , xr), ψ̃2

〉
,

where Cα,β are universal constants i.e. independent of (ψ1, ψ2). Hence, for every α in Zn+,
one has, in a neighborhood of a in Crit(f), a germ of eigendistribution uα,a that can be
written in local coordinates as :

(10) uα,a(x1, . . . , xr) := δ
(α1,...,αr)
0 (x1, . . . , xr)x

αr+1

r+1 . . . xαnn .

The distribution uα,a satisfies the following equation in a neighborhood of a :

(11) LVf (uα,a) = −

(
α.|χ(a)|+

r∑
j=1

χj(a)

)
uα,a.

The above differential equation should be understood in the weak sense where both sides
are distributions in D′(U). Note that the eigenvalue 0 only shows up at critical points of
index 0 (i.e. local minima). Similarly, in degree k, the eigenvalue 0 shows up at critical
points of index k.

The strategy of the proof is then as follows:

(1) extend the germ of eigenmode into a globally defined generalized eigenmode,
(2) use these extended eigenmodes to write down the asymptotic expansion of the global

correlation function.

For the first point, it is natural to use the integrated version of equation (11),

ϕ−t∗f uα,a = e−t(α.|χ(a)|+
∑r
j=1 |χj(a)|)uα,a,

in order to extend the local germ of distribution uα,a into a distribution defined over the

open set M \ ∂W u(a) where ∂W u(a) = W u(a) −W u(a). The eigenvalue equation allows
to propagate the germ of distribution from the neighborhood U of a to M \ ∂W u(a). This
new distribution still satisfies the eigenvalue equation (11) and we need to extend it into
a distribution globally defined over M . This is related to the problem of renormaliza-
tion in quantum field theory [7] and also naturally appears in the proofs of Laudenbach
and Harvey-Lawson. The analogy between the construction of eigenmodes by distribu-
tional extension and Epstein–Glaser renormalization was first noted by Frenkel–Losev–
Nekrasov [17]. However, our approach to this problem is of completely different nature
and it is based on spectral theory. More precisely, for every χ > 0, we construct in a first
stage an anisotropic Sobolev space Hmχ(M) containing our germs of distributions and for
which the operator −LVf has a discrete spectrum in the half plane {Re(z) > −χ}. Then,
we use the spectral projector to prove both points (1) and (2).
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4.2. Hamiltonian dynamics and anisotropic Sobolev spaces. Our spectral construc-
tion is very much inspired by the microlocal approach developped by Faure and Sjöstrand
to study the correlation spectrum of Anosov flows [16], e.g. geodesic flows on negatively
curved manifolds. We briefly describe the general strategy. For a given function m(x, ξ)
in S0(T ∗M), we define the following Sobolev space of variable order :

Hm(M) := Op
(

(1 + ‖ξ‖2
x)

m(x,ξ)
2

)−1

L2(M).

Studying the operator −LVf on that space is equivalent to study the non selfadjoint oper-
ator

ĤVf := Op
(

(1 + ‖ξ‖2
x)

m(x,ξ)
2

)
◦
(

1

i
LVf
)
◦Op

(
(1 + ‖ξ‖2

x)
m(x,ξ)

2

)−1

on L2(M). An application of the rules from pseudodifferential calculus shows that this
operator can be rewritten

ĤVf = Op

(
HVf + iXHVf

.

(
m(x, ξ)

2
ln(1 + ‖ξ‖2

x)

))
+O(Ψ0(M)) +Om(Ψ−1+0(M)),

where HVf is the Hamiltonian defined from the symbol of Vf by (4). We denote by XHVf
the

corresponding Hamiltonian vector field whose dynamics (5) lifts the gradient flow. Hence,
if, for every c > 0, we manage to find a function m(x, ξ) such that, for ‖ξ‖x large enough,

(12) XHVf
.

(
m(x, ξ)

2
ln(1 + ‖ξ‖2

x)

)
≤ −c,

then the imaginary part of the symbol of the operator will be “elliptic” in a region ‖ξ‖x ≥ R
with R > 0 large enough. Using Fredholm theory, we can then invert the operator “modulo
a compact operator” and deduce that the operator

−LVf : Hm(M)→ Hm(M)

has discrete spectrum in the region {Re(z) > −χ}, as soon as c > 0 is chosen large enough
in (12). In other words, if we follow the strategy of Faure-Sjöstrand, the main difficulty lies
in the construction of a function m satisfying (12), which is a purely dynamical question
on some Hamiltonian system. In order to understand how to construct such a function m,
we write

(13) XHVf
.

(
m(x, ξ)

2
ln(1 + ‖ξ‖2

x)

)
= XHVf

(m)× 1

2
ln(1 + ‖ξ‖2

x) +m(x, ξ)
XHVf

. (‖ξ‖2
x)

2(1 + ‖ξ‖2
x)
.

We can already remark that the second term on the right hand side is bounded. Hence,
one has to impose XHVf

(m) ≤ 0 in order to be able to ensure that inequality (12) holds

for ‖ξ‖ large enough. We can also note that −XHVf
(f) ≤ 0. Hence, if we set m(x, ξ) =

−f(x) + m0(x, ξ) with XHVf
(m0) ≤ 0, then the inequality will be satisfied away from

the critical points. Near a critical point a, we use the hyperbolicity of the flow to show

that
XHVf

.(‖ξ‖2x)
2(1+‖ξ‖2x)

≥ c0 > 0 (resp. ≤ −c0 < 0) along the unstable (resp. stable) direction

N∗(W u(a)) (resp. N∗(W s(a))). In particular, if we choose m0(x, ξ)� 0 along the unstable
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direction and m0(x, ξ) � 0 along the stable one, then inequality (12) will be proved in
this region of phase space. To summarize, it is sufficient to construct a function m0(x, ξ)
in S0(T ∗M) meeting the following requirements :

• XHVf
(m0) ≤ 0,

• near the critical points, m0(x, ξ)� 0 along the unstable direction and m0(x, ξ)� 0
along the stable one,
• still near critical points but away from the stable and unstable directions, XHVf

(m0) ≤
−c1 < 0.

If we are able to gather all these ingredients, then we will be able to apply the strategy
of Faure and Sjöstrand described above. This is at this precise stage of the proof that we
need to understand the topological and dynamical properties of the unstable manifolds.
In particular, we prove the following Theorem which is almost sufficient to make the proof
works [8, 10]:

Theorem 4.1. Let ϕtf be a C1-linearizable Morse-Smale gradient flow. Then,

(1) Then the set

Σ :=

 ⋃
a∈Crit(f)

N∗(W u(a))

 ∩ S∗M
is compact. Equivalently, the union of Lagrangians

⋃
a∈Crit(f) N

∗(W u(a)) is a closed,
conical subset in T ∗M .

(2) For every ε > 0, there exists an ε-neighborhood O of Σ in S∗M such that, for every
t ≥ 0,

Φ̃t
Vf

(O) ⊂ O,

where Φ̃t
Vf

is the flow induced by the Hamiltonian HVf on S∗M .

The proof of this result is a microlocal extension of the seminal works of Smale [28]. This
Theorem allows us to avoid the delicate construction of Laudenbach in [2] – see also [19].
This is at the expense of having a much less precise information on the differentiable
structure of W u(a).

4.3. Construction of the generalized eigenmodes. Suppose that we have proved that
the spectrum of the operator −LVf (acting on Hm(M)) is discrete with finite multiplicity
in the region Re(z) > −χ. For every z0 in that complex half-plane, if z0 is an eigenvalue
then we can define a spectral projector :

Πz0 :=
1

2iπ

∫
Γz0

dz(
z + LVf

) ,
where Γz0 is a small circle surrounding a disk containing only z0 as eigenvalue in its interior.
In case where z0 is not an eigenvalue, this defines the zero operator. For any critical point a
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and any multiindex α ∈ Nn, we can extend the distribution uα,a defined by (10) as follows.
We fix a small cutoff function θα,a near a and we set

uα,a := Πz0(θα,auα,a),

where z0 := −
(
α.|χ(a)|+

∑r
j=1 χj(a)

)
. Using the spectral projector replaces the Epstein–

Glaser distributional extension argument used in [17]. Using [16, Th. 1.5], we can verify
that this extension is independent of the choice of order function m used to define the
anisotropic Sobolev space Hm(M). Moreover, we can show that uα,a coincides with uα,a
near the critical point and that the family (uα,a)α,a of distributions constructed in that
manner are linearly independent. They verify

−LVfuα,a = −

(
α.|χ(a)|+

r∑
j=1

χj(a)

)
uα,a on M − ∂W u(a)

but they only verify a priori that(
LVf −

(
α.|χ(a)|+

r∑
j=1

χj(a)

))N

uα,a = 0 on M,

for a large enough N depending on a ∈ Crit(f) and on α ∈ Nn. Hence, via this spectral
procedure, we have extended the germs of invariant distributions and the same analysis of
course holds in any degree k. This spectral definition allows to bypass the analysis made
in [2, 22] but, again, the difficulty has been displaced in the construction of a proper spectral
framework, and our construction gives a rather imprecise statement on the regularity of
these extensions. The microlocal character of the construction allows us to show that the
wave front set WF (uα,a) of the eigencurrent uα,a is contained in the union of Lagrangians⋃
a∈Crit(f) N

∗(W u(a)) [9, subsection 7.1].

4.4. Conclusion. It now remains to prove that these distributions allow to write down
the full asymptotic expansion of the correlation function. This can be achieved by verifying
that they generate all the generalized eigenmodes of the operator −LVf . Indeed, recall that

ϕ−t∗f (ψ1) is solution to the transport equation (2), i.e. ϕ−t∗f is formally equal to e−tLVf . To
prove this generation result, we fix a generalized eigenmode u0 and p ≥ 1 minimal such
that (

LVf − z0

)p
u0 = 0,

for a certain z0 verifying Im(z) > −χ. We associate to this current u0 the family

u0, u1 :=

(
1

i
LVf − z0

)
u0, . . . , up−1 :=

(
1

i
LVf − z0

)p−1

u0,

and we conclude by showing that each of the ui can be expressed as a linear combination
of the uα. Without getting into the details, let us point out the main ingredients: (1) the
gradient dynamics, (2) a theorem due to Schwartz on distributions carried by submani-
folds [27, p. 102] and (3) the fact that the microsingularities of uj are contained in the
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conormals of the unstable manifolds combined with a result from [7]. We omit this step
and we refer the reader to [8, 11] for more details, especially regarding the possibility of
having Jordan blocks. For instance, we show that, in every degree k,

(14) Ck(Vf ) := Ker
(
L(k)
Vf

)
= Ker

(
L(k)
Vf

)2

.

5. Application to topology and to the Witten Laplacian

The works of Thom [29] and Smale [28] have shown that studying the dynamical prop-
erties of gradient flows has strong relations with topology. We would like to conclude this
note by describing this problem via our spectral approach. First of all, note that, as d
commutes with LVf , we can define a natural complex :

0
d−→ C0(Vf )

d−→ C1(Vf )
d−→ . . .

d−→ Cn(Vf )
d−→ 0.

Our proof in [8] shows that the spaces Ck(Vf ) have dimension equal to the number ck(f)
of critical points of index k i.e. the critical points whose stable manifold has dimension k.
Recall that the De Rham complex is defined as follows:

0
d−→ Ω0(M)

d−→ Ω1(M)
d−→ . . .

d−→ Ωn(M)
d−→ 0.

Introduce now the spectral projector associated to the eigenvalue 0:

Π
(k)
0 :=

1

2iπ

∫
Γ0

dz(
z + L(k)

Vf

) .
This finite rank operator is given by our spectral analysis in every degree and it induces
a linear map from Ωk(M) to Ck(Vf ). Omitting a few technical details, we will verify that
this operator induces a chain homotopy equation between the two complexes. In fact, for
every ψ in Ω•(M), one has

ψ = Π0(ψ) + (Id− Π0) (ψ)

= Π0(ψ) +
(
d ◦ ιVf + ιVf ◦ d

)
◦ L−1

Vf
(Id− Π0) (ψ)

= Π0(ψ) + d ◦ ιVf ◦ L−1
Vf

(Id− Π0) (ψ) + ιVf ◦ L−1
Vf

(Id− Π0) d(ψ).

If we set Rf := ιVf ◦L−1
Vf
◦ (Id− Π0), then we find the expected chain homotopy equation :

ψ = Π0(ψ) + dRf (ψ) +Rfd(ψ).

It is then classical, by making use of the elliptic properties of d, to deduce from the
chain homotopy equation that the two complexes (C•(Vf ), d) and (Ω•(M), d) are quasi-
isomorphic [8]. This above argument is rather robust and we showed how to apply it to
more general flows such as Morse-Smale flows (not necessarily of gradient type) and Anosov
flows [12]. A direct consequence of this observation is that we can write down Morse
inequalities for such flows using only linear algebra [22]. For certain nonsingular Morse-
Smale flows [12], we also showed that this correlation spectrum carries more topological
contents such as the Reidemeister torsion [18]. Finally, still regarding applications to
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topology, we can mention the recent results of Dyatlov and Zworski in the case of contact
Anosov flows in dimension 3 [15]. They expressed the dimension of Ck(V ) ∩ Ker(ιV ) in
terms of the Betti numbers of the underlying manifold. For the sake of comparison, note
that one has Ck(Vf ) ∩Ker(ιVf ) = Ck(Vf ) for gradient flows [8].

The cohomological complex (C•(Vf ), d) is known in the literature as the Thom-Smale-
Witten complex or simply the Morse complex. It is often defined in algebraic terms fol-
lowing the works of Witten [33]. Our analysis shows that this complex can be realized in
terms of currents carried by unstable manifolds as was already observed in [2, 20]. It also
gives a spectral interpretation of the Morse complex, and it can be viewed as a kind of
semiclassical limit of the twisted De Rham complex introduced by Witten [33] and Helffer-
Sjöstrand [21]. Recall that Witten introduced the following semiclassical deformation of
the coboundary operator:

df,~ := e−
f
~ de

f
~ = d+

df

~
∧ : Ω•(M)→ Ω•+1(M).

To this operator, he associated an elliptic operator which is now referred as the Witten
Laplacian

Wf,~ =
~
2

(
df,~d

∗
f,~ + d∗f,~df,~

)
=

~
2

(
df,~ + d∗f,~

)2
,

where d∗f,~ = d∗ + ιVf/~ is the adjoint of df,~ with respect to the Riemannian metric g. In
order to extract topological informations from this operator, one has to look at the small
eigenvalues (and their eigenmodes) of this operator and to prove that the dimension of the
corresponding eigenspaces is given by the number of critical points in every degree [21].
This can be achieved via semiclassical techniques developped for the study of Schrödinger
operators.

In order to relate this to our approach, we can make the following classical observation :

(15) e
f
~Wf,~e

− f~ =
~
2

(
d+ d∗2f,~

)2
=

~∆g

2
+ LVf ,

where ∆g is the Laplace Beltrami operator. In other terms, up to conjugation, the Witten
Laplacian is a stochastic perturbation of the operator LVf whose spectrum has just been
described. This remark is at the heart of the construction from [17] who computed the
spectrum of the Witten Laplacian for the height function on the 2-sphere and who showed
how to take the limit ~→ 0+. In the case of Anosov vector fields, it was proved by Dyatlov
and Zworski that the correlation spectrum is stable under this kind of stochastic perturba-
tions [13]. In [9], we show that this remains true for general Morse-Smale gradient flows,
meaning that the spectrum (eigenvalues and spectral projectors) of the Witten Laplacian
converges to the correlation spectrum of the gradient flow. As an illustration of our results,
let us mention the following:

Theorem 5.1 (Semiclassical versus dynamical convergence). Let ϕtf be a C1-linearizable
Morse-Smale gradient flow.
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Then, there exists ε0 > 0 small enough such that, for every 0 ≤ k ≤ n, for every
0 < ε ≤ ε0 and for every (ψ1, ψ2) ∈ Ωk(M)× Ωn−k(M),

lim
~→0+

∫
M

1[0,ε]

(
W

(k)
f,~

)(
e−

f
~ψ1

)
∧
(
e
f
~ψ2

)
= lim

t→+∞

∫
M

ϕ−t∗f (ψ1) ∧ ψ2,

where 1[0,ε]

(
W

(k)
f,~

)
is the spectral projector on [0, ε] for the self–adjoint elliptic operator

W
(k)
f,~ .

Recall that the limit of the right-hand side was given by Theorem 2.1. In that sense, this
Theorem illustrates the relation between Laudenbach-Harvey-Lawson approach to Morse
theory via currents and the Witten-Helffer-Sjöstrand one via semiclassical analysis. This
was made possible by providing a convenient spectral framework for the operator −LVf .
As far as we know, such a result cannot be obtained (at least directly) from the methods
in [21]. Thus, even if this spectral approach does not allow to recover the full strength
of the Helffer-Sjöstrand analysis (e.g. exponential decay of the small Witten eigenvalues),
it still provides new properties related to the asymptotics of the Witten Laplacian. We
believe that this may have other applications and we showed for instance how to use this
point of view to give a new proof of a conjecture due to Fukaya on Witten’s deformation
of the wedge product – see [9] for details.

6. Analogy with renormalization in quantum field theory.

At the heart of our argument was the extension of certain germs of currents via spectral
technics. Let us show, by some simple example, how one can construct general eigenstates
by regularization of divergent integrals rather than by spectral techniques. Note that this
kind of approach would require to have a nice enough description of ∂W u(a) for every
critical point a which may be a subtle issue related to the works of Laudenbach [2]. Still,
in the case where ∂W u(a) is a point, we can describe what it would give. This method is
similar to Epstein–Glaser renormalization in quantum field theory.

Let us consider the canonical sphere (Sn, gCan) and we let f be the usual height function
whose critical points are the south pole S and the north pole N . We are given two charts
φ : Sn 7→ Rn near the south pole and φ̃ : Sn 7→ Rn near the north pole. In stereographic
chart (x1, . . . , xn) near the south pole, the gradient vector field reads φ∗Vf =

∑n
i=1 xi∂xi .

Let us show how to construct a global eigenmode for the eigenvalue k ∈ N. In local
coordinates (x1, . . . , xn) near the south pole S, a natural candidate for eigenfunction is the
polynomial germ

u ◦ φ−1 =
n∏
i=1

xαii

where α ∈ Nn is a multiindex which satisfies
∑n

i=1 αi = k and LVfu = ku near S. Since
the chart (x1, . . . , xn) covers S2 \N , the germ u extends as a smooth function u on S2 \N
which solves LVfu = ku.
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Then in stereographic chart near the north pole N , φ̃∗Vf = −
∑n

i=1 xi∂xi and

ũ = u ◦ φ̃−1 =

∏n
i=1 x

αi
i

(
∑n

i=1 x
2
i )
k

since the transition map between charts reads xi 7→ xi
x21+···+x2n

for all i ∈ {1, . . . , n}. There-

fore u ∈ C∞(S2\N) and has a singularity at N which can be measured by scaling. Consider
the action of the following simple dynamical system :

ϕt : (x1, . . . , xn) ∈ Rn 7→ (etx1, . . . , e
txn) ∈ Rn

which acts on ũ by pull–back: ϕ−t∗ũ. Then one can show that ũ ∈ D′(Rn \ {0}) is
homogeneous of order −k under scaling hence weakly homogeneous of the same order in
the sense of [7, definition 3.4 p. 828].

In [7, Theorem 5.1 p. 844], it is proved that if a distribution ũ defined on some manifold
M minus some submanifold X (here X = {N}) is weakly homogeneous of degree −k
such that −k + codim(X) > 0 then there is a unique extension u which is an eigenmode
LVfu = ku.

Otherwise, if −k + codim(X) 6 0, the extension involves a renormalization as follows.
For all test form ψ(x1, . . . , xn)dx1 ∧ · · · ∧ dxn ∈ Ωn

c (Rn) :

〈u, ψ〉 = lim
ε→0+

∫
Rn\B(0,ε)

ũψdnx−
∑
|β|6k−n

(∫
ε6|x|61

ũ
xβ

β!
dnx

)(
∂βxψ

)
(0)


where u ∈ D′(Rn) defines a distributional extension of ũ ∈ D′(Rn \ {0}). This can be
written in purely current theoretic terms as :

u = lim
ε→0+

ũ1{|x|>ε} −
∑
|β|6k−n

cβ(ε)∂βxδ


where 1{|x|>ε} is the indicator function of {|x| > ε}, cβ(ε) = (−1)|β|

∫
ε6|x|61

ux
β

β!
dnx and

cβ(ε)∂βxδ is a local counterterm supported at 0 ∈ Rn which can be singular when ε → 0.
This renormalization is analogous to Epstein–Glaser renormalization used in quantum field
theory [4].

Once we have extended the function u ∈ C∞(Sn \N) to a distribution u on Sn, one may
wonder if the extension u still satisfies the eigenvalue equation LVfu = ku. In other words,
does renormalization preserve symmetries ? The extension u satisfies the following residue
formula [6, Thm 8.3.7 p. 182] :

LVfu− ku =
∑
|β|6k−n

(∫
∂B(N,1)

uω
xβ

β!

)
∂βxδ

where the integral is over the (n−1) sphere around N and ω =
∑n

i=1(−1)ixidx1∧ d̂xi∧dxn.
So one could try to subtract from u some distributions supported at N , if these subtractions
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fail to turn u into an eigenfunction of LVf with eigenvalue k, then we are in a situation
where the generalized eigenspaces of the vector field LVf have Jordan blocks which is called
logarithmic mixing in [17].
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