Université Lille 1, Sciences et Technologies

 2011/2012 - Master degree in mathematical engineering Refresher course in physicsFinal exam.
October, $14^{\text {th }}$ 2011. 3 hours.

Documents, cell phones and calculators are forbidden.

Each exercise should be done on a different sheet of paper.

Exercise 1

We study a one-dimensional, diatomic crystalline solid. In its equilibrium state, it is modeled as

- an infinite number of atoms of mass m_{1} located at $x=2 n a$ on the $(O x)$ axis (where $n \in \mathbb{Z}$);
- an infinite number of atoms of mass m_{2} located at $x=(2 n+1) a$ on the $(O x)$ axis (where $n \in \mathbb{Z}$);
- a spring of constant k and length a between each mass m_{1} and m_{2}.

The constants k and a are identical for every spring. The masses can only move on the ($O x$)-axis.

We denote $u_{n}(t)$ the displacement of the mass initially located in $2 n a$ and $v_{n}(t)$ the displacement of the mass initially located in $(2 n+1) a$.

We make the assumption that $m_{1}>m_{2}$.
(1) Show that the motion is described, for every n in \mathbb{Z}, by

$$
m_{1} \frac{d^{2} u_{n}}{d t^{2}}=k\left(v_{n}+v_{n-1}-2 u_{n}\right) \text { and } m_{2} \frac{d^{2} v_{n}}{d t^{2}}=k\left(u_{n+1}+u_{n}-2 v_{n}\right) .
$$

(2) We search for solutions of the form

$$
u_{n}(t)=U e^{\imath(n K a-\omega t)} \text { and } v_{n}(t)=V e^{\imath(n K a-\omega t)} .
$$

Deduce the dispersion relation.
(3) Explain why we can restrict ourselves to $K \in[-\pi / a, \pi / a]$.
(4) Compute the values of ω^{2} for $K= \pm \frac{\pi}{a}$.
(5) Show that for $K a \ll 1$, there are two dispersion relations

$$
\omega^{2}=2 k\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \text { and } \omega^{2}=\frac{k}{2\left(m_{1}+m_{2}\right)} K^{2} a^{2} .
$$

(6) Represent the approximative shape of the dispersion relation $\omega=f(K) \geq 0$ for $K \in[-\pi / a, \pi / a]$.
(7) Describe the behavior of the atoms for $K=0$.
(8) Show that there are two domains of pulsations for which there is no wave propagation.
(9) Suppose one of the atom in the chain is excited with such a pulsation. What happens?

Exercise 2

We recall that "a set that moves with the flow" is a set $\Omega_{t}, t \in I \subset \mathbb{R}$, whose pre-image Ω_{0} at the initial time remains constant. Using the assumptions introduced in the course, let us denote $\Omega_{t}=\Phi\left(\Omega_{0}\right)$ a set (here a surface or a volume) in the domain filled by the fluid.
(1) Show that the acceleration field $\mathbf{a}(\mathbf{x}, t)$ in Eulerian representation can be written as

$$
\mathbf{a}=\frac{\partial \mathbf{u}}{\partial t}+\nabla\left(\frac{|\mathbf{u}|^{2}}{2}\right)+(\overrightarrow{\operatorname{rot}} \mathbf{u}) \wedge \mathbf{u}
$$

(2) Let $V_{t} \subset \mathbb{R}^{3}$ be the domain filled by the fluid. Explain why we can write the NavierStokes equations for an incompressible and homogeneous fluid as following :

$$
(N S) \begin{cases}\bar{\rho}\left(\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)-\mu \Delta \mathbf{u}+\nabla p=\mathbf{F} & \text { in } V_{t} \times I \\ \operatorname{div} \mathbf{u}=0 & \text { in } V_{t} \times I\end{cases}
$$

where $\rho(\mathbf{x}, t)=\bar{\rho}, \forall \mathbf{x} \in V_{t}, \forall t \in I$.
(3) The vorticity is the vector field $\vec{\omega}=\overrightarrow{\operatorname{rot}} \mathbf{u}$. Taking the rot of the first $(N S)$ equation, show that we can find the following vorticity equation :

$$
\bar{\rho}\left(\frac{\partial \vec{\omega}}{\partial t}+\overrightarrow{\operatorname{rot}}(\vec{\omega} \wedge \mathbf{u})\right)=\mu \Delta \vec{\omega}+\overrightarrow{\operatorname{rot} \mathbf{F}} \quad \text { in } V_{t} \times I
$$

(4) Show that for an inviscid incompressible fluid for which the volume density of forces derives from a potential, the vorticity equation becames

$$
\frac{\partial \vec{\omega}}{\partial t}+(\mathbf{u} \cdot \nabla) \vec{\omega}-(\vec{\omega} \cdot \nabla) \mathbf{u}=0 \quad \text { in } V_{t} \times I
$$

(5) We admit the following equation, similar to Proposition 1 seen in the course, in which \mathbf{n} is a unit normal to the surface Σ_{t} that moves with the flow:

$$
\frac{d}{d t} \int_{\Sigma_{t}} \vec{\omega} \cdot \mathbf{n} d \gamma=\int_{\Sigma_{t}}\left[\frac{\partial \vec{\omega}}{\partial t}+\operatorname{rot}(\vec{\omega} \wedge \mathbf{u})\right] \cdot \mathbf{n} d \gamma
$$

Prove the following Kelvin's theorem :
Let us consider an inviscid incompressible fluid for which the volume density of forces derives from a potential. Then, the flux of the vorticity vector through a surface moving with the flow remains constant.

Exercise 3

(a) Write down the Maxwell equations in vacuum.
(b) Let \vec{E}, \vec{B} be a solution to the Maxwell equations. Les S be a (not necessarily closed) surface and ∂S its boundary. Show that the circulation of E around ∂S equals the time rate of change of the magnetic flux through S (where the latter is by definition the flux of the magnetic field through S). This is called Faraday's law of magnetic induction. Explain how it implies that a changing magnetic field can produce a current in a wire.
(c) Let $\vec{E}_{0}, \vec{B}_{0}, \vec{e}, \vec{e}^{\prime} \in \mathbb{R}^{3}$ and $v, v^{\prime}>0$. Consider

$$
\vec{E}(\vec{r}, t)=\vec{E}_{0} g(\vec{e} \cdot \vec{r}-v t), \quad \vec{B}(\vec{r}, t)=\vec{B}_{0} h\left(\vec{e}^{\prime} \cdot \vec{r}-v^{\prime} t\right)
$$

where g and h are smooth functions on $\mathbb{R}, g(0)=h(0)=g^{\prime}(0)=h^{\prime}(0)=1, g^{\prime \prime}(0) \neq 0$. Find the conditions on $\vec{E}_{0}, \vec{B}_{0}, \vec{e}, \vec{e}, v, v^{\prime}$ so that $\vec{E}(\vec{r}, t), \vec{B}(\vec{r}, t)$ are a solution of the Maxwell equations. Hint : you may find it convenient to introduce the Poynting vector $\vec{R}_{0}=\vec{E}_{0} \wedge \vec{B}_{0}$.
(d) Why are such solutions called traveling plane waves? In which direction do they travel?

