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Exercise 1

We study a one-dimensional, diatomic crystalline solid. In its equilibrium state, it is
modeled as

– an infinite number of atoms of mass m1 located at x = 2na on the (Ox) axis (where
n ∈ Z) ;

– an infinite number of atoms of mass m2 located at x = (2n + 1)a on the (Ox) axis
(where n ∈ Z) ;

– a spring of constant k and length a between each mass m1 and m2.
The constants k and a are identical for every spring. The masses can only move on the
(Ox)-axis.

We denote un(t) the displacement of the mass initially located in 2na and vn(t) the
displacement of the mass initially located in (2n+ 1)a.

We make the assumption that m1 > m2.

(1) Show that the motion is described, for every n in Z, by

m1
d2un
dt2

= k(vn + vn−1 − 2un) and m2
d2vn
dt2

= k(un+1 + un − 2vn).

(2) We search for solutions of the form

un(t) = Ueı(nKa−ωt) and vn(t) = V eı(nKa−ωt).

Deduce the dispersion relation.
(3) Explain why we can restrict ourselves to K ∈ [−π/a, π/a].
(4) Compute the values of ω2 for K = ±π

a
.
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(5) Show that for Ka� 1, there are two dispersion relations

ω2 = 2k

(
1

m1

+
1

m2

)
and ω2 =

k

2(m1 +m2)
K2a2.

(6) Represent the approximative shape of the dispersion relation ω = f(K) ≥ 0 for
K ∈ [−π/a, π/a].

(7) Describe the behavior of the atoms for K = 0.
(8) Show that there are two domains of pulsations for which there is no wave propaga-

tion.
(9) Suppose one of the atom in the chain is excited with such a pulsation. What hap-

pens ?

Exercise 2

We recall that "a set that moves with the flow" is a set Ωt, t ∈ I ⊂ R, whose pre-image
Ω0 at the initial time remains constant. Using the assumptions introduced in the course,
let us denote Ωt = Φ(Ω0) a set (here a surface or a volume) in the domain filled by the fluid.

(1) Show that the acceleration field a(x, t) in Eulerian representation can be written
as

a =
∂u

∂t
+∇(

|u|2

2
) + ( ~rotu) ∧ u.

(2) Let Vt ⊂ R3 be the domain filled by the fluid. Explain why we can write the Navier–
Stokes equations for an incompressible and homogeneous fluid as following :

(NS)

 ρ̄

(
∂u

∂t
+ (u · ∇)u

)
− µ∆u +∇p = F in Vt × I,

divu = 0 in Vt × I,
where ρ(x, t) = ρ̄, ∀x ∈ Vt, ∀t ∈ I.

(3) The vorticity is the vector field ~ω = ~rotu. Taking the ~rot of the first (NS) equation,
show that we can find the following vorticity equation :

ρ̄

(
∂~ω

∂t
+ ~rot(~ω ∧ u)

)
= µ∆~ω + ~rotF in Vt × I.

(4) Show that for an inviscid incompressible fluid for which the volume density of forces
derives from a potential, the vorticity equation becames

∂~ω

∂t
+ (u · ∇)~ω − (~ω · ∇)u = 0 in Vt × I.

(5) We admit the following equation, similar to Proposition 1 seen in the course, in
which n is a unit normal to the surface Σt that moves with the flow :

d

dt

∫
Σt

~ω · n dγ =

∫
Σt

[
∂~ω

∂t
+ ~rot(~ω ∧ u)

]
· n dγ.
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Prove the following Kelvin’s theorem :
Let us consider an inviscid incompressible fluid for which the volume density of
forces derives from a potential. Then, the flux of the vorticity vector through a sur-
face moving with the flow remains constant.

Exercise 3

(a) Write down the Maxwell equations in vacuum.
(b) Let ~E, ~B be a solution to the Maxwell equations. Les S be a (not necessarily closed)

surface and ∂S its boundary. Show that the circulation of E around ∂S equals the time
rate of change of the magnetic flux through S (where the latter is by definition the flux of
the magnetic field through S). This is called Faraday’s law of magnetic induction. Explain
how it implies that a changing magnetic field can produce a current in a wire.

(c) Let ~E0, ~B0, ~e, ~e
′ ∈ R3 and v, v′ > 0. Consider

~E(~r, t) = ~E0g(~e · ~r − vt), ~B(~r, t) = ~B0h(~e′ · ~r − v′t),
where g and h are smooth functions on R, g(0) = h(0) = g′(0) = h′(0) = 1, g”(0) 6= 0.
Find the conditions on ~E0, ~B0, ~e, ~e

′, v, v′ so that ~E(~r, t), ~B(~r, t) are a solution of the Maxwell
equations. Hint : you may find it convenient to introduce the Poynting vector ~R0 = ~E0∧ ~B0.

(d) Why are such solutions called traveling plane waves ? In which direction do they
travel ?


