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Exercise 1

Consider a mass M and a finite string whose mass per unit of length is λ. Denote g the
gravitational constant.

(1) Using these objects, recall how we derived the wave equation

∂2y

∂t2
− c2 ∂

2y

∂x2
= 0.

Express c in function of M , g and λ.
(2) In this model, we recall 1 that the energy of a solution y(x, t) is given by

E(t) :=
1

2

∫ L

0

(
λ

(
∂y

∂t

)2

+Mg

(
∂y

∂x

)2
)
dx.

What is L in this model ? What does each term in the sum represent ?
(3) From this point of the problem, we will suppose that each piece dx of the string

is submitted to a friction force of the form −f0dx~v, where ~v is the velocity of the
piece dx and f0 > 0 is constant. Show that the new equation is of the form

∂2y

∂t2
+ 2a0c

2∂y

∂t
− c2 ∂

2y

∂x2
= 0.

Express a0 in function of λ, c and f0.
(4) Show that E(t) is a nonincreasing function for y(x, t) solving this new equation.

(5) Show that E(t) ≥ E(0)e−4a0c2t for t ≥ 0.
(6) Suppose y(x, t) is of the form g(x)h(t). Fix t and show that g must be of the form

g(x) = C sin
(nπx
L

)
,

for some integer n ≥ 0.

1. You will not prove this formula.
1
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(7) Fix an integer n ≥ 1. Show that there exist some constants An, Bn, αn and βn such
that

hn(t) = Ane
αnt +Bne

βnt.

(8) Show that the real parts of αn and βn are < 0 and comment this result.

(9) Fix n ≥ 1. Suppose

yn(x, t = 0) = yn sin
(nπx
L

)
and

∂yn
∂t

(x, t = 0) = vn sin
(nπx
L

)
.

Show that

yn(x, t) = e−a0c2t

(
vn + yna0c

2

√
γn

sh(
√
γnt) + ynch(

√
γnt)

)
sin
(nπx
L

)
,

where you will express γn in function of a0, c, n and L.

(10) Bonus Question. Show that there exist some constant γ > 0 and C > 0 independent
of n such that

E(t) ≤ Ce−γtE(0),

for any solution of the form yn(x, t). Conclude that E(t) ≤ Ce−γtE(0) for any
solution y(x, t) of the damped wave equation.

Exercise 2

We want to study two-dimensional flows of an incompressible irrotational and inviscid
fluid filling the region Ω = Ωt defined by 0 < x < l, 0 < y < h(x, t). The surface Σ = Σt of
the liquid with equation y = h(x, t) is a free surface.

For a regular function f , we denote
∂f

∂t
= ft,

∂f

∂x
= fx,

∂f

∂y
= fy,

∂2f

∂x2
= fxx,

∂2f

∂y2
= fyy.

We recall that the (i, j) element of the matrix u⊗ u is uiuj.

(1) For an inviscid fluid, explain why we can write the conservation of momentum in
Euler equation

∂(ρu)

∂t
+ div(ρu⊗ u) +∇p = F in Ωt × I

as following :

ρ

(
∂u

∂t
+ grad

|u|2

2
+ (rot u) ∧ u

)
+∇p = F in Ωt × I.

(2) For an incompressible irrotational and inviscid fluid, show that there exists a func-
tion φ = φ(x, y, t) such that u = ∇φ and

φxx + φyy = 0.
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(3) We assume that ρ(x, y, t) = ρ0 ∈ R+ and the mass density of forces derives from
a potential : F

ρ0
= −∇(gy). Deduce from the Euler equation the following relation

(which is the Bernoulli equation) :

φt +
p

ρ0

+
1

2
(φ2

x + φ2
y) + gy = const.

(4) We denote p0 the pressure on the surface Σt. In order to determine the boundary
condition satisfied by φ on the free surface Σt, show that we have

φt +
1

2
(φ2

x + φ2
y) + gh(x, t) = c(t) on Σt × I.

Explain why we can replace φ(x, y, t) by φ(x, y, t)−
∫ t

0

c(s)ds and give the equation

obtained.
(5) We remark that the normal velocity of Σt is the same as the normal velocity of the

fluid. Recalling that y = h(x, t) is the equation of the free surface Σt, deduce that
the velocity of each point of Σt is (0, ht). Show that the vector (−hx, 1) is normal
to Σt. Using u = ∇φ, show that

ht + φxhx − φy = 0 on Σt × I.
(6) Give the non penetration condition on the lower horizontal wall satisfied by φ and

write the Cauchy problem.

Exercise 3 – Electromagnetism

(a) First a little warm-up exercice that has nothing to do with electromagnetism, but
that will be of use in (g) below. Let ~K(M) be a vectorfield of the form ~K(M) = k(r)~ur,
in spherical coordinates ; here k is a smooth function of r ≥ 0. Show that, then, ~rot ~K = 0.
Show also that div ~K = 0 if and only if k(r) = 0, for all r ≥ 0.
Hint : Since you probably don’t know the expression for ~rot by heart in spherical coordi-
nates, I suggest you do the computation in cartesian coordinates. For the divergence, let
me help you out : in spherical coordinates, and with the usual notation,

div ~K =
1

r2

∂

∂r

(
r2Kr

)
+

1

r sin θ

∂ sin θKθ

∂θ
+

1

r sin θ

∂Kϕ

∂ϕ
.

Before going on, we first recall the Maxwell equations, in case you forgot what they look
like :

div ~E(M, t) =
ρ(M, t)

ε0
div ~B(M, t) = 0

~rot ~E(M, t) = −∂
~B

∂t
(M, t) ~rot ~B(M, t) = µ0

(
~j(M, t) + ε0

∂ ~E
∂t

(M, t)
)
.
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(b) A theoretical question. Let ~E, ~B be a solution to the Maxwell equations. Les S be
a (not necessarily closed) surface and ∂S its boundary. Show that the circulation of E
around ∂S equals the time rate of change of the magnetic flux through S (where the latter
is by definition the flux of the magnetic field through S). This is called Faraday’s law of
magnetic induction. Explain how it implies that a changing magnetic field can produce a
current in a wire.

(c) One more theoretical question. I gave a physical argument during the lectures im-
plying that a charge density ρ and a current density ~j must satisfy the continuity equation

∂ρ

∂t
(M, t) + div~j(M, t) = 0.

Show that this equation is in fact implied by the Maxwell equations.

Now, something slightly more concrete. Let us consider in what follows a charge distri-
bution ρ(M, t), given by

ρ(M, t) =
3α

4πt3
Q0 exp(−α(

r

t
)3),

where Q0 ∈ R, α > 0 are given constants and t > 0.
(d) Compute the total charge present in space at any given time t. Compute the total

charge present in a ball of radius R centered at the origin, at any given time t. What
happens to this charge as t→ +∞ ? And as t→ 0 ? Explain in simple intuitive terms what
you think is happening.

We wish to compute ~j.
(e) Assume ~j is of the form ~j(M, t) = 1

t3
g( r

t
)~ur and find the differential equation satisfied

by g if ~j and ρ above satisfy the continuity equation. Then show that this differential
equation is solved by

g(u) =
9αQ0

u2

∫ u

0

u′
(

1− αu′3
)

exp(−αu′3)du′.

Attention : One shall not try to compute this integral !

(f) How does the result in (d) fit the intuitive picture of what is happening to the charge
that you developed in (c) ?

Having found ρ and ~j, we now wish to compute the electric and magnetic fields ~E and
~B they generate. Let’s see if we can do this.
(g) Symmetry arguments strongly suggest ~E and ~B should be spherically symetric. Show

that, then, ~B(M) = 0, for all M . Write ~E(M) = E(r, t)~ur and establish the two partial
differential equations satisfied by E(r, t).


