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Solving linear ordinary differential equations of order 1 and 2

In this short text, we recall some elementary methods for solving linear Ordinary Diffe-
rential Equations (ODE) of order 1 and 2. We do not claim for any originality. Above all,
our aim is to provide a theoretical toolbox that will be useful (and hopefully sufficient) to
solve the physical problems we will study during the lectures.

One can find these results in any standard reference on this subject or in general mathe-
matics textbook for License degree. For instance, a classical and very complete textbook
on general ODE is Ordinary Differential Equations by Vladimir I. Arnold.

These methods are crucial to solve a lot of classical equations in physics and we will
extensively use them at several points of the lectures (e.g. when studying the harmonic
oscillator, the heat equation, etc.).

For simplicity of exposition, all the functions we consider are complex valued and conti-
nuous on R.

1. Scalar linear ODE of order 1

Suppose you want to solve the following equation :

(1) ẏ = a(t)y + b(t), y(t = 0) = y0,

where a and b are continuous functions on R. A first step is to look at the corresponding
homegeneous equation

(2) ẏ = a(t)y.

1.1. General case. We will look for solutions of the form v(t) = u(t)e
∫ t
0 a(s)ds. One can

verify that v is a solution of (2) if and only if u̇ = 0. Hence, any solution of (2) is of the
form

v : t 7→ Ce
∫ t
0 a(s)ds,

where C is a constant. We now want to determine the solution to equation (1). The first
case is when you know some function φ satisfying φ̇ = aφ+ b. In this case, the solution to
equation (1) is given by

y(t) = (y0 − φ(0))e
∫ t
0 a(s)ds + φ(t).
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If there is no obvious function satisfying φ satisfying φ̇ = aφ + b, we search for such φ of
the form

φ(t) = u(t)e
∫ t
0 a(s)ds.

One can verify that φ satisfies φ̇ = aφ + b if and only if u̇ = b(t)e−
∫ t
0 a(s)ds. Hence, the

solution to equation (1) is given by

(3) y(t) = y0e
∫ t
0 a(s)ds +

∫ t

0

b(τ)e
∫ t
τ a(s)dsdτ.

1.2. Particular case : a(t) is a constant function. In the case where a(t) = a is a
constant, the general solution to (1) is given by

(4) y(t) = y0e
at +

∫ t

0

b(τ)ea(t−τ)dτ.

In the case where b(t) = eβtP (t) for some polynom P , it can be more easy to search
directly for a particular solution of the form φ(t) = Q(t)eβt. One can show that such a
solution exists with degP = degQ if β 6= a and with degQ = degP + 1 if β = a. One can
find Q by identification and then the solution to (1) is given by

y(t) = (y0 −Q(0))eat +Q(t)eβt.

Example. a(t) = −1 and b(t) = 2ett2. We search a particular solution of the form
φ(t) = Q(t)eβt with degQ = 2. We find that 2Q + Q̇ = 2t2. Hence, by identification, one
finds

Q(t) = t2 − t+ 1

2
.

In this case, the solution to (1) is given by

y(t) =

(
y0 −

1

2

)
e−t +

(
t2 − t+ 1

2

)
et.

2. Scalar linear ODE of order 2

Suppose you want to solve the following equation :

(5) ÿ = a(t)ẏ + b(t)y + c(t), y(t = 0) = y0, ẏ(t = 0) = v0,

where a, b and c are continuous functions on R. A first step is to look at the corresponding
homegeneous equation

(6) ÿ = a(t)ẏ + b(t)y.
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2.1. General case. Suppose you are given two solutions v1 and v2 to equation (6) which
satisfies

(7) v1(t0)v
′
2(t0)− v′1(t0)v2(t0) 6= 0,

for some t0 ∈ R.

Example. In the case a = 0 and b = −1, one can take v1 = cos t and v2 = sin t.

It is then possible to solve equation (5) as follows. First, if you know a particular function
φ satisfying φ̈ = a(t)φ̇+ b(t)φ+ c(t), then the solution to equation (5) is given by

y(t) = αv1 + βv2 + φ,

where
αv1(0) + βv2(0) + φ(0) = x0 and αv̇1(0) + βv̇2(0) + φ̇(0) = v0.

In general, it is not easy to have an obvious function φ satisfying φ̈ = a(t)φ̇+ b(t)φ+ c(t)
and one can verify that such a φ can be chosen of the following form

φ(t) = α(t)v1(t) + β(t)v2(t),

where α and β satisfy
α̇v1 + β̇v2 = 0 and α̇v̇1 + β̇v̇2 = c.

Example. In the case a = 0 and b = −1, we have to solve the equation

α̇ cos t+ β̇ sin t = 0 and − α̇ cos t+ β̇ sin t = c.

We find that
α̇ = −c(t) sin t and β̇ = c(t) cos t.

Hence, in this case, the solution to (5) is given by

y(t) = y0 cos t+ v0 sin(t) +

∫ t

0

c(τ) sin(t− τ)dτ.

2.2. Simplifications when there exists a nonvanishing solution. Suppose you know
a nonvanishing solution v0 to equation (6). By nonvanishing, we mean that, for every t,
v0(t) 6= 0. Then, one can verify that y = v0z satisfies

ÿ = a(t)ẏ + b(t)y + c(t),

if and only if

z̈ +
2v̇0 + av0

v0
ż =

c

v0
.

Thus, it remains to solve an ODE of order 1 to find ż.
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2.3. Particular case : a(t) and b(t) are constant functions. Suppose a(t) = a and
b(t) = b are constant functions and c(t) is a continuous function on R.

One can search for solutions v1 and v2 to equation (6) which are of the form ert. Such
solutions exist if and only if
(8) r2 − ar − b = 0.

In the case where (8) has two different roots r1 and r2, one can verify that
v1(t) = er1t and v2(t) = er2t

satisfy condition (7) for t0 = 0. In the case where there is only one root r0, one can take
v1(t) = er0t and v2(t) = ter0t

which also satisfy condition (7) for t0 = 0. Thus, in both case, one can apply the strategy
from paragraph 2.1.

If we make the extra assumption that c(t) = eβtP (t) (with P a polynom), one can show
that there exists a function φ(t) of the form eβtQ(t) (with Q a polynom) which satisfies

φ̈ = aφ̇+ bφ+ c(t).

Moreover, one can take
– degP = degQ if β is not a root of (8) ;
– degP + 1 = degQ if β is a simple root of (8) ;
– degP + 2 = degQ if β is a double root of (8).


