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Waves, Propagation Phenomena

Preliminary remark

Verify that a complex valued function ψ is a solution of

∆ψ =
1

c2
∂2ψ

∂t2

if and only Re(ψ) and Im(ψ) are.

Exercise 1

Consider a conducting and vibrating string. Denote λ its mass by unit of length. Suppose
that the motion takes place only the y and z directions. Suppose that there is a constant
density of current j in the string and that there is a constant magnetic field B on the x
direction.

Recall that the Laplace force on a piece of string d~l is given by
~F = jd~l ∧ ~B.

(1) Determine the propagation equation.
(2) Let (y(x, t), z(x, t)) = (y0e

ı(kx−ωt), z0e
ı(kx−ωt)) be a solution of this equation. Deter-

mine the dispersion relation.
(3) Express y0 in terms of z0.

Exercise 2

Consider the membrane of a drum that is initially in the plane (xOy) and that it is
slightly perturbed on the z axis (and not on the x and y axis). Denote µ the mass per unit
of surface.

We want to establish the equation satisfied by z(x, y, t).

Assumptions. The strength of the tension force at a point M is denoted T (M). If a
small piece dl of the membrane is torn around M , then one must exerce a force T (M)dl
on each part to close the hole. This force is directed on the normal of dl and tangent to
the membrane of the drum.

We make the assumption that the weight force on the membrane is negligible.

Consider a small piece dS = dxdy of the membrane.
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(1) Write the Newton’s law and deduce the values of ∂T
∂x

and ∂T
∂y
.

(2) Derive that T (x, y) is a constant that we will denote T0.

(3) Show that z satisfies

µ
∂2z

∂t2
= T0

(
∂2z

∂x2
+
∂2z

∂y2

)
.

Exercise 3

Consider the model of the vibrating string studied in the course. We make the additional
assumption that a friction force of the form

d~F = −~vf(x)dx

acts on every piece dx of the string. We will use the same notations as in the course.

(1) Determine the equation equation satisfied by this system (it is called the damped
wave equation).

(2) Suppose f(x) = f0 > 0 is a constant and ỹ(x, t) = ỹ0e
ı(kx−ωt) solves the damped

wave equation. Determine the “dispersion” relation between k and ω.

(3) Suppose k is real. Show that ω has to be of the form a+ ıb with b < 0.

Exercise 4

Consider the Klein-Gordon equation

1

c2
∂2ψ

∂t2
=
∂2ψ

∂x2
− m2c2

~2
ψ.

(1) Determine the dispersion relation associated to this equation.

(2) Compute the phase velocity vφ and the group velocity vg. Comment.

Exercise 5

We consider the setting of exercise 2.

(1) Under which assumption on kx, ky and ω, z(x, y, t) = sin(kxx) sin(kyy) cos(ωt) is a
solution of

∂2z

∂t2
=

1

c2

(
∂2z

∂x2
+
∂2z

∂y2

)
.

(2) Suppose the drum is rectangular and delimited by the lines x = 0, x = a, y = 0
and y = b. Determine all the possible frequencies associated to the above solutions.

(3) Compare with the one dimensional case.
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Exercise 6

We look at a simplified model for the wave propagation into a monoatomic cristal.
Consider an infinite sequence of equal mass m indexed by n in Z (each mass representing

an atom). We will suppose that two consecutive mass na and (n + 1)a are coupled by a
spring of constant k (independent of n). We denote a the length of the spring.

All the mass stay on the same line and we denote un(t) the displacement at time t of
the mass standing at the postion n.

(1) Show that, for every n, one has

m
d2un
dt2

= k(un+1 + un−1 − 2un).

(2) Justify the fact that it describes a propagation phenomenon.

(3) We search solutions of the form un(t) = Ueı(nKa−ωt). Give an interpretation for U ,
K and ω.

(4) Show that

ω2 =
4k

m
sin2

(
Ka

2

)
.

Draw ω in function of K.

(5) Prove that we can restrict ourselves to −π
a
≤ K ≤ π

a
. What is the physical inter-

pretation of the limit cases K = ±π
a
?

(6) Compute the group velocity. Comment the the limit cases K = ±π
a
.

(7) Describe what happens in the case K = 0.

Exercise 7 (Exam 2011)

We study a one-dimensional, diatomic crystalline solid. In its equilibrium state, it is
modeled as

– an infinite number of atoms of mass m1 located at x = 2na on the (Ox) axis (where
n ∈ Z) ;

– an infinite number of atoms of mass m2 located at x = (2n + 1)a on the (Ox) axis
(where n ∈ Z) ;

– a spring of constant k and length a between each mass m1 and m2.
The constants k and a are identical for every spring. The masses can only move on the
(Ox)-axis.

We denote un(t) the displacement of the mass initially located in 2na and vn(t) the
displacement of the mass initially located in (2n+ 1)a.

We make the assumption that m1 > m2.



4

(1) Show that the motion is described, for every n in Z, by

m1
d2un
dt2

= k(vn + vn−1 − 2un) and m2
d2vn
dt2

= k(un+1 + un − 2vn).

(2) We search for solutions of the form

un(t) = Ueı(nKa−ωt) and vn(t) = V eı(nKa−ωt).

Deduce the dispersion relation.
(3) Explain why we can restrict ourselves to K ∈ [−π/a, π/a].
(4) Compute the values of ω2 for K = ±π

a
.

(5) Show that for Ka� 1, there are two dispersion relations

ω2 = 2k

(
1

m1

+
1

m2

)
and ω2 =

k

2(m1 +m2)
K2a2.

(6) Represent the approximative shape of the dispersion relation ω = f(K) ≥ 0 for
K ∈ [−π/a, π/a].

(7) Describe the behavior of the atoms for K = 0.
(8) Show that there are two domains of pulsations for which there is no wave propaga-

tion.
(9) Suppose one of the atom in the chain is excited with such a pulsation. What hap-

pens ?

Exercise 8 (Exam 2012)

Consider a mass M and a finite string whose mass per unit of length is λ. Denote g the
gravitational constant.

(1) Using these objects, recall how we derived the wave equation

∂2y

∂t2
− c2 ∂

2y

∂x2
= 0.

Express c in function of M , g and λ.
(2) Give the expression of the energy E(t) of a solution y(x, t).
(3) From this point of the problem, we will suppose that each piece dx of the string

is submitted to a friction force of the form −f0dx~v, where ~v is the velocity of the
piece dx and f0 > 0 is constant. Show that the new equation is of the form

∂2y

∂t2
+ 2a0c

2∂y

∂t
− c2 ∂

2y

∂x2
= 0.

Express a0 in function of λ, c and f0.
(4) Show that E(t) is a nonincreasing function for y(x, t) solving this new equation.

(5) Show that E(t) ≥ E(0)e−4a0c
2t for t ≥ 0.
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(6) Suppose y(x, t) is of the form g(x)h(t). Fix t and show that g must be of the form

g(x) = C sin
(nπx
L

)
,

for some integer n ≥ 0. What does L represent in our model ?
(7) Fix an integer n ≥ 1. Show that there exist some constants An, Bn, αn and βn such

that
hn(t) = Ane

αnt +Bne
βnt.

(8) Show that the real parts of αn and βn are < 0 and comment this result.
(9) Fix n ≥ 1. Suppose

yn(x, t = 0) = yn sin
(nπx
L

)
and

∂yn
∂t

(x, t = 0) = vn sin
(nπx
L

)
.

Show that

yn(x, t) = e−a0c
2t

(
vn + yna0c

2

√
γn

sh(
√
γnt) + ynch(

√
γnt)

)
sin
(nπx
L

)
,

where you will express γn in function of a0, c, n and L.
(10) Show that there exist some constant γ > 0 and C > 0 independent of n such that

E(t) ≤ Ce−γtE(0),

for any solution of the form yn(x, t). Conclude that E(t) ≤ Ce−γtE(0) for any
solution y(x, t) of the damped wave equation.

Exercise 9 (Exam 2013)

Consider the membrane of a circular drum which is centered at O in the (xOy)-plane.
The radius of the drum is R and its mass per unit of surface is µ.

We neglect the friction forces and the force due do to gravitation. The only force that
we take into account is the tension force. We make the assumption that the tension force
on a small piece of drum dl located in M = (x, y) is of strength

dF = T (x, y)dl,

where T (x, y) does not depend on the time t. Moreover, the direction of the force is or-
thogonal to dl. We want to describe the motion of the membrane on the z-direction, i.e.
describe

z(x, y, t),

which depends only on the variables (x, y, t). We will denote by (r, θ) the polar coordinates
in the (xOy)-plane.

Finally, for any integer n ∈ Z, we introduce the Bessel equation

u2h′′(u) + uh′(u) + (u2 − n2)h(u) = 0.

We will admit that this equation has a solution Jn which is well defined in u = 0.
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(1) Write the Newton’s laws on the (x, y, z) directions for a small piece of drum dS =
dxdy.

(2) Deduce that T (x, y) is a constant that we will denote T0.
(3) Deduce that

∂2z

∂t2
= c2

(
∂2z

∂x2
+
∂2z

∂y2

)
,

and express c in terms of the physical quantities of the problem.
(4) What are the two limit conditions in r = R ?
(5) We search for a solution of the form z = ψ(r, θ) cos(ωt). What property is satisfied

by such a wave ?
(6) Show that

r
∂

∂r

(
r
∂ψ

∂r

)
+
∂2ψ

∂θ2
+
ω2r2

c2
ψ = 0.

(7) What property satisfies ψ(r, θ) as a function of θ. Deduce that ψ(r, θ) can be written

ψ(r, θ) = A0(r) +
+∞∑
n=1

An(r) cos(nθ) + A−n(r) sin(nθ).

(8) Express Ak in terms of the Bessel function Jk.
(9) What are the restrictions on the values of ω ? For which physical reason these

restrictions appear ?


