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Vectorial analysis (and a few words on the heat equation)

Except if we mention the contrary, we will work in the 3D euclidean space.

Exercise 1

Compute the volumes of the following sets :

(1) A = {(x, y, z) : 0 ≤ z ≤ a, 0 ≤
√
x2 + y2 ≤ b(z)}, where b(z) is a function of z ;

(2) A = {(x, y, z) : a2 ≤ x2 + y2 + z2 ≤ b2}, where a, b ≥ 0 ;
(3) A =

{
(x, y, z) : x2 + y2 ≤ ax, x2 + y2 + z2 ≤ a2

}
.

Exercise 2

Give an explicit expression for the operators div, ∆ and ~rot in cylindrical and spherical
coordinates. Give also an expression for ∆ for general (q1, q2, q3) coordinates.

Exercise 3

Suppose that f and g are scalar fields and that ~A and ~B are vector fields. Verify that
the following properties hold :

(1) ~grad(fg) = g ~grad(f) + f ~grad(g) ;

(2) div(f ~A) = fdiv( ~A) + ~grad(f). ~A ;

(3) ~rot(f ~A) = f ~rot( ~A) + ~grad(f) ∧ ~A ;

(4) div( ~rot ~A) = 0 ;

(5) ~rot( ~gradf) = ~0 ;

(6) div( ~A ∧ ~B) = ~B. ~rot( ~A)− ~A. ~rot( ~B).

Exercise 4

(1) Give examples of scalar fields f such that ∆f = 0.
(2) We now use spherical coordinates. Suppose there exists α and F (θ, φ) such that

f = rαF (θ, φ) satisfies ∆f = 0. Show that there exists β 6= α such that

∆
(
rβF (θ, φ)

)
= 0.

(3) Using the previous question, give more examples of scalar fields f such that ∆f = 0.
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Exercise 5

Suppose ~E is a vector field. Prove the following properties :

(1) A potential V satisfying ~E = − ~grad V is uniquely determined up to a constant.

(2) If ~E a vector field with conservative circulation satisfies a cylindrical symmetry
with respect to the z-axis, then ~E.~uθ = 0.

(3) If ~E satisfies a spherical symmetry, then it has conservative circulation.

(4) Suppose ~E = ~rot ~A = ~rot ~A′. There exists V such that ~A = ~A′ − ~grad V .

(5) If a vector field ~E with conservative flux satisfies a cylindrical symmetry with
respect to the z-axis, then ~E.~ur = 0.

(6) If a vector field ~E with conservative flux satisfies a spherical symmetry, then ~E = 0.

Exercise 6

Consider S a surface in the plane (xOy). Suppose it has an oriented and closed boundary
Γ (that does not intersect itself). Denote ~E = −y~ux + x~uy in euclidean coordinates.

(1) Show that the area of S is given by 1
2

∫
Γ
~E.d ~M .

(2) Compute the area of the surface delimited by the (0x) axis and the curve γ : t 7→
(a(t− sin t), a(1− cos t)), where 0 ≤ t ≤ 2π.

(3) Compute the area of S = {(r, θ) : 0 ≤ r ≤ a(1 + cos θ)}.

Exercise 7

Let V be a vector field. Denote

〈V 〉 =
V (h, 0, 0) + V (−h, 0, 0) + V (0, h, 0) + V (0,−h, 0) + V (0, 0, h) + V (0, 0,−h)

6
.

(1) Show that

〈V 〉 ≈ V (0) +
h2

6
∆V (0).

(2) How can you interpret ∆V (0) regarding this approximation ?

(3) In electrostatics, if there is a density of charges ρ, then the associated potential V
satisfies the Poisson equation

∆V = − ρ
ε0
.

Interpret the qualitative meaning of this equation.
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Exercise 8

Consider an infinite solid on the half space x ≥ 0. Suppose that this solid is of constant
thermal conductivity and capacity and that it is initially at a temperature T0. For t > 0,
we impose T = T1 on the plane x = 0.

(1) What is the equation (with the limit conditions) satisfied by θ(x, t) = T−T1
T0−T1 ?

(2) Suppose θ is of the form f

(
x

2
√
Dt

)
, where D = κ

cv
. Determine the equation

satisfied by f .
(3) Show that f ′(u) = Ae−u

2 and that T is of the form

T (x, t) = T1 + (T0 − T1)
2√
π

∫ x

2
√
Dt

0

e−u
2

du.

(4) Comment this solution for small t.

Exercise 9

Consider a sphere of radius R which has constant thermal conductivity and capacity. At
t = 0, the sphere is at temperature T0 and for t > 0, we impose T = T1 on the surface of
the sphere.

(1) Justify that T is only a function of r (in spherical coordinates) and give the equation
satisfied by T .

(2) Set ψ(r, t) = r(T − T1). What is the equation satisfied by ψ ? What are the limit
conditions for ψ at t = 0, r = 0 and r = R ?

(3) Suppose ψ(r, t) is of the form f(r)g(t). Fix t = t0 > 0 and prove that ψ(r, t) =

g(t) sin
(nπr
R

)
for some constant A and some integer n.

(4) Show that g(t) is of the form Ene
−n

2π2

R2 Dt and give an expression for D.
(5) Justify that a general solution ψ(r, t) of our problem is of the form∑

n≥1

Ene
−n

2π2

R2 Dt sin
(nπr
R

)
.

Explain how one can find the values of En for n ≥ 1.
(6) Comment the evolution of temperature for t > 0.


