Vectorial analysis (and a few words on the heat equation)

Except if we mention the contrary, we will work in the $3 D$ euclidean space.

Exercise 1

Compute the volumes of the following sets :
(1) $A=\left\{(x, y, z): 0 \leq z \leq a, 0 \leq \sqrt{x^{2}+y^{2}} \leq b(z)\right\}$, where $b(z)$ is a function of z;
(2) $A=\left\{(x, y, z): a^{2} \leq x^{2}+y^{2}+z^{2} \leq b^{2}\right\}$, where $a, b \geq 0$;
(3) $A=\left\{(x, y, z): x^{2}+y^{2} \leq a x, x^{2}+y^{2}+z^{2} \leq a^{2}\right\}$.

Exercise 2

Give an explicit expression for the operators div, Δ and rot in cylindrical and spherical coordinates. Give also an expression for Δ for general $\left(q_{1}, q_{2}, q_{3}\right)$ coordinates.

Exercise 3

Suppose that f and g are scalar fields and that \vec{A} and \vec{B} are vector fields. Verify that the following properties hold :
(1) $\operatorname{grad}(f g)=g \operatorname{grad}(f)+f \overrightarrow{\operatorname{grad}}(g)$;
(2) $\operatorname{div}(f \vec{A})=f \operatorname{div}(\vec{A})+\operatorname{grad}(f) \cdot \vec{A}$;
(3) $\overrightarrow{\operatorname{rot}}(f \vec{A})=f \overrightarrow{\operatorname{rot}}(\vec{A})+\operatorname{grad}(f) \wedge \vec{A}$;
(4) $\operatorname{div}(\operatorname{rot} \vec{A})=0$;
(5) $\overrightarrow{\operatorname{rot}}(\operatorname{grad} f)=\overrightarrow{0}$;
(6) $\operatorname{div}(\vec{A} \wedge \vec{B})=\vec{B} \cdot \operatorname{rot}(\vec{A})-\vec{A} \cdot \overrightarrow{r o t}(\vec{B})$.

Exercise 4

(1) Give examples of scalar fields f such that $\Delta f=0$.
(2) We now use spherical coordinates. Suppose there exists α and $F(\theta, \phi)$ such that $f=r^{\alpha} F(\theta, \phi)$ satisfies $\Delta f=0$. Show that there exists $\beta \neq \alpha$ such that

$$
\Delta\left(r^{\beta} F(\theta, \phi)\right)=0
$$

(3) Using the previous question, give more examples of scalar fields f such that $\Delta f=0$.

Exercise 5

Suppose \vec{E} is a vector field. Prove the following properties :
(1) A potential V satisfying $\vec{E}=-\operatorname{grad} V$ is uniquely determined up to a constant.
(2) If \vec{E} a vector field with conservative circulation satisfies a cylindrical symmetry with respect to the z-axis, then $\vec{E} \cdot \vec{u}_{\theta}=0$.
(3) If \vec{E} satisfies a spherical symmetry, then it has conservative circulation.
(4) Suppose $\vec{E}=\overrightarrow{\mathrm{rot}} \vec{A}=\overrightarrow{\mathrm{rot}} \overrightarrow{A^{\prime}}$. There exists V such that $\vec{A}=\overrightarrow{A^{\prime}}-\operatorname{grad} V$.
(5) If a vector field \vec{E} with conservative flux satisfies a cylindrical symmetry with respect to the z-axis, then $\vec{E} \cdot \vec{u}_{r}=0$.
(6) If a vector field \vec{E} with conservative flux satisfies a spherical symmetry, then $\vec{E}=0$.

Exercise 6

Consider S a surface in the plane $(x O y)$. Suppose it has an oriented and closed boundary Γ (that does not intersect itself). Denote $\vec{E}=-y \vec{u}_{x}+x \vec{u}_{y}$ in euclidean coordinates.
(1) Show that the area of S is given by $\frac{1}{2} \int_{\Gamma} \vec{E} \cdot d \vec{M}$.
(2) Compute the area of the surface delimited by the ($0 x$) axis and the curve $\gamma: t \mapsto$ $(a(t-\sin t), a(1-\cos t))$, where $0 \leq t \leq 2 \pi$.
(3) Compute the area of $S=\{(r, \theta): 0 \leq r \leq a(1+\cos \theta)\}$.

Exercise 7

Let V be a vector field. Denote
$\langle V\rangle=\frac{V(h, 0,0)+V(-h, 0,0)+V(0, h, 0)+V(0,-h, 0)+V(0,0, h)+V(0,0,-h)}{6}$.
(1) Show that

$$
\langle V\rangle \approx V(0)+\frac{h^{2}}{6} \Delta V(0)
$$

(2) How can you interpret $\Delta V(0)$ regarding this approximation?
(3) In electrostatics, if there is a density of charges ρ, then the associated potential V satisfies the Poisson equation

$$
\Delta V=-\frac{\rho}{\epsilon_{0}}
$$

Interpret the qualitative meaning of this equation.

Exercise 8

Consider an infinite solid on the half space $x \geq 0$. Suppose that this solid is of constant thermal conductivity and capacity and that it is initially at a temperature T_{0}. For $t>0$, we impose $T=T_{1}$ on the plane $x=0$.
(1) What is the equation (with the limit conditions) satisfied by $\theta(x, t)=\frac{T-T_{1}}{T_{0}-T_{1}}$?
(2) Suppose θ is of the form $f\left(\frac{x}{2 \sqrt{D t}}\right)$, where $D=\frac{\kappa}{c_{v}}$. Determine the equation satisfied by f.
(3) Show that $f^{\prime}(u)=A e^{-u^{2}}$ and that T is of the form

$$
T(x, t)=T_{1}+\left(T_{0}-T_{1}\right) \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{x}{2 \sqrt{D t}}} e^{-u^{2}} d u
$$

(4) Comment this solution for small t.

Exercise 9

Consider a sphere of radius R which has constant thermal conductivity and capacity. At $t=0$, the sphere is at temperature T_{0} and for $t>0$, we impose $T=T_{1}$ on the surface of the sphere.
(1) Justify that T is only a function of r (in spherical coordinates) and give the equation satisfied by T.
(2) Set $\psi(r, t)=r\left(T-T_{1}\right)$. What is the equation satisfied by ψ ? What are the limit conditions for ψ at $t=0, r=0$ and $r=R$?
(3) Suppose $\psi(r, t)$ is of the form $f(r) g(t)$. Fix $t=t_{0}>0$ and prove that $\psi(r, t)=$ $g(t) \sin \left(\frac{n \pi r}{R}\right)$ for some constant A and some integer n.
(4) Show that $g(t)$ is of the form $E_{n} e^{-\frac{n^{2} \pi^{2}}{R^{2}} D t}$ and give an expression for D.
(5) Justify that a general solution $\psi(r, t)$ of our problem is of the form

$$
\sum_{n \geq 1} E_{n} e^{-\frac{n^{2} \pi^{2}}{R^{2}} D t} \sin \left(\frac{n \pi r}{R}\right)
$$

Explain how one can find the values of E_{n} for $n \geq 1$.
(6) Comment the evolution of temperature for $t>0$.

