SEMICLASSICAL BEHAVIOUR OF QUANTUM EIGENSTATES ON \mathbb{T}^{n}

We let $n \geq 1$ and we consider the n-dimensional torus $\mathbb{T}^{n}=\mathbb{R}^{n} / 2 \pi \mathbb{Z}^{n}$. Given $k \in \mathbb{Z}^{n}$, we set

$$
e_{k}(x):=\frac{e^{i k \cdot x}}{(2 \pi)^{\frac{n}{2}}}
$$

Given $u \in \mathcal{D}^{\prime}\left(\mathbb{T}^{n}\right)$, we write its Fourier decomposition:

$$
u(x)=\sum_{k \in \mathbb{Z}^{n}} \widehat{u}(k) e_{k}(x),
$$

with, for every $k \in \mathbb{Z}^{n}, \widehat{u}(k):=\left\langle u, e_{-k}\right\rangle_{\mathcal{D}^{\prime} \times \mathcal{C}^{\infty}}$. Given $a(x, \xi)$ in $\mathcal{C}^{\infty}\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)$, we also set

$$
a(x, \xi)=\sum_{k \in \mathbb{Z}^{n}} \widehat{a}(k, \xi) e_{k}(x)
$$

where

$$
\widehat{a}(k, \xi):=\int_{\mathbb{T}^{n}} a(x, \xi) e_{-k}(x) d x
$$

For $\hbar>0$, we define the Weyl quantization of a by its action on the basis $\left(e_{k}\right)_{k \in \mathbb{Z}^{n}}$:

$$
\mathrm{Op}_{\hbar}^{w}(a) e_{k}(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \sum_{l \in \mathbb{Z}^{n}} e_{l}(x) \widehat{a}\left(l-k, \frac{\hbar(k+l)}{2}\right) .
$$

(1) (a) Show that, if $a \in \mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$, then, for every u in $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$,

$$
\mathrm{Op}_{\hbar}^{w}(a) u=a \times u
$$

(b) Show that, if $a(x, \xi)=\xi_{1}$, then, for every u in $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$,

$$
\mathrm{Op}_{\hbar}^{w}(a) u=-i \hbar \partial_{x_{1}} u
$$

(c) Suppose that, for every $\alpha \in \mathbb{Z}^{n},\left\|\partial^{\alpha} a\right\|_{\infty}<+\infty$. Using Plancherel equality, show that

$$
\mathrm{Op}_{\hbar}^{w}(a): L^{2}\left(\mathbb{T}^{n}\right) \rightarrow L^{2}\left(\mathbb{T}^{n}\right)
$$

defines a bounded operator.
(d) Let $\left(k_{m}\right)_{m \geq 1}$ be a sequence in \mathbb{Z}^{n} such that $\hbar_{m}=\left\|k_{m}\right\|^{-1} \rightarrow 0$ and that $\frac{k_{m}}{\left\|k_{m}\right\|} \rightarrow \theta$. Determine the accumulation point (in $\mathcal{D}^{\prime}\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)$) of the sequence

$$
w_{\hbar_{m}}: a \in \mathcal{C}_{c}^{\infty}\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right) \mapsto\left\langle e_{k_{m}}, \mathrm{Op}_{\hbar_{m}}^{w}(a) e_{k_{m}}\right\rangle_{L^{2}}, \quad m \geq 1
$$

(2) (a) Show that $\psi_{\lambda} \in \mathcal{D}^{\prime}\left(\mathbb{T}^{n}\right)$ solves

$$
-\Delta \psi_{\lambda}=\lambda^{2} \psi_{\lambda}, \quad\left\|\psi_{\lambda}\right\|_{L^{2}}=1
$$

if and only if

$$
\psi_{\lambda}=\sum_{\|k\|=\lambda} \widehat{\psi}_{\lambda}(k) e_{k}, \quad \sum_{\|k\|=\lambda}\left|\widehat{\psi}_{\lambda}(k)\right|^{2}=1
$$

(b) Show that, as $\lambda \rightarrow+\infty$,
$N(\lambda, 2 \lambda):=\left|\left\{k \in \mathbb{Z}^{n}: \lambda<\|k\| \leq 2 \lambda\right\}\right| \sim \operatorname{Vol}\left(B_{n}(0,1)\right)\left(2^{n}-1\right) \lambda^{n}$,
where $B_{n}(0,1):=\left\{x \in \mathbb{R}^{n}: \sum_{j} x_{j}^{2} \leq 1\right\}$. This is the Weyl law.
(3) Let $a \in \mathcal{C}^{\infty}\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)$ all of whose derivatives are bounded.
(a) Using Plancherel equality, show that

$$
\left\|\mathrm{Op}_{\|k\|^{-1}}^{w}(a) e_{k}\right\|^{2}=\frac{1}{(2 \pi)^{n}} \sum_{l \in \mathbb{Z}^{n}}\left|\widehat{a}\left(l, \frac{k}{\|k\|}\right)\right|^{2}+\mathcal{O}\left(\|k\|^{-1}\right)
$$

(b) Show that, as $\lambda \rightarrow+\infty$

$$
\frac{1}{N(\lambda, 2 \lambda)} \sum_{\lambda<\|k\| \leq 2 \lambda}\left\|\mathrm{Op}_{\|k\|^{-1}}^{w}(a) e_{k}\right\|^{2} \longrightarrow \frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n} \times \mathbb{S}^{n-1}}|a(x, \theta)|^{2} d x d \sigma(\theta)
$$

where σ is the normalized Lebesgue measure on the unit sphere $\mathbb{S}^{n-1}=\partial B_{n}(0,1)$.
(c) Deduce that, as $\hbar \rightarrow 0^{+}$,

$$
\frac{1}{N(\hbar)} \sum_{0<\hbar\|k\| \leq 1}\left\|\operatorname{Op}_{\|k\|^{-1}}^{w}(a) e_{k}\right\|^{2} \longrightarrow \frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n} \times \mathbb{S}^{n-1}}|a(x, \theta)|^{2} d x d \sigma(\theta)
$$

where

$$
N(\hbar):=\left|\left\{k \in \mathbb{Z}^{n}: 0<\hbar\|k\| \leq 1\right\}\right| .
$$

This is a microlocal Weyl law.
(4) Let a be an element in $\mathcal{C}^{0}\left(\mathbb{T}^{n} \times \mathbb{S}^{n-1}\right)$.
(a) Show that, for every x in \mathbb{T}^{n} and for σ-a.e. θ in \mathbb{S}^{n-1}, one has

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} a(x+t \theta, \theta) d t=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n}} a(x, \theta) d x
$$

Indication. Start with the case where a is trigonometric polynomial.
(b) Deduce that, if a does not depend on the variable θ, then

$$
\lim _{T \rightarrow+\infty} \int_{\mathbb{T}^{n} \times \mathbb{S}^{n-1}}\left|\frac{1}{T} \int_{0}^{T} a(x+t \theta) d t-\frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n}} a(x) d x\right|^{2} d x d \sigma(\theta)=0
$$

(5) Let a be an element in $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$. Show that, for every $t \in \mathbb{R}$,

$$
e^{-\frac{i t \hbar \Delta}{2}} a e^{\frac{i t \hbar \Delta}{2}}=\mathrm{Op}_{\hbar}^{w}\left(a_{t}\right),
$$

where $a_{t}(x, \xi)=a(x+t \xi)$.
(6) Let $\left(\psi_{j}\right)_{j \geq 1}$ be an orthonormal basis of $L^{2}\left(\mathbb{T}^{n}\right)$ such that, for every $j \geq 1$,

$$
-\Delta \psi_{j}=\lambda_{j}^{2} \psi_{j}
$$

with $0=\lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{j} \leq \lambda_{j+1} \leq \ldots$. For $j>1$, we set $\hbar_{j}:=\lambda_{j}^{-1}$. Let a in $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$ such that $\int_{\mathbb{T}^{n}} a d x=0$.
(a) Show that, for every $T>0$

$$
V_{\hbar}(a):=\frac{1}{N(\hbar)} \sum_{0<\hbar \lambda_{j} \leq 1}\left|\left\langle\psi_{j}, a \psi_{j}\right\rangle\right|^{2} \leq \frac{1}{N(\hbar)} \sum_{0<\hbar \lambda_{j} \leq 1}\left\|\mathrm{Op}_{\hbar_{j}}^{w}\left(\langle a\rangle_{T}\right) \psi_{j}\right\|^{2}
$$

where $\langle a\rangle_{T}(x, \xi)=\frac{1}{T} \int_{0}^{T} a(x+t \xi) d t$.
(b) Deduce that, for every $T>0$,

$$
V_{\hbar}(a) \leq \frac{1}{N(\hbar)} \sum_{0<\hbar\|k\| \leq 1}\left\|\mathrm{Op}_{\|k\|^{-1}}^{w}\left(\langle a\rangle_{T}\right) e_{k}\right\|^{2}
$$

(c) Conclude that

$$
\lim _{\hbar \rightarrow 0} V_{\hbar}(a)=0
$$

(7) Let a in $\mathcal{C}^{\infty}\left(\mathbb{T}^{n}\right)$. Deduce from the previous question that there exists $S \subset \mathbb{Z}_{+}^{*}$ such that

$$
\lim _{N \rightarrow+\infty} \frac{|\{1 \leq j \leq N: j \in S\}|}{N}=1
$$

and

$$
\lim _{j \rightarrow+\infty, j \in S} \int_{\mathbb{T}^{n}} a(x)\left|\psi_{j}(x)\right|^{2} d x=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n}} a(x) d x
$$

(8) Show that S can be chosen such that

$$
\lim _{N \rightarrow+\infty} \frac{|\{1 \leq j \leq N: j \in S\}|}{N}=1,
$$

and, for every a in $\mathcal{C}^{0}\left(\mathbb{T}^{n}\right)$,

$$
\lim _{j \rightarrow+\infty, j \in S} \int_{\mathbb{T}^{n}} a(x)\left|\psi_{j}(x)\right|^{2} d x=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n}} a(x) d x .
$$

(9) Is it necessary to extract a subsequence?

