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Abstract. For a linear symplectic map A of the 2d-torus T2d, one can associate a sequence of
unitary matrices (MN (A))N∈N acting on Hilbert spaces of dimension Nd. The eigenstates of
this sequence of matrices are said to be the stationary states of the quantum system. In this
article, we give quantitative properties on the distribution on T2d of these stationary states in
the so-called semiclassical limit (~ = (2πN)−1 → 0). To do this, we use semiclassical mea-
sures which are A-invariant probability measures associated to these sequences of states and
we give a lower bound for the Kolmogorov-Sinai entropy of these measures. Our main result
is that, for any quantizable matrix A in Sp(2d,Z) and any semiclassical measure µ associ-
ated to it, the Kolmogogorov-Sinai entropy of µ with respect to A is bounded from below by∑
β∈sp(A) max

(
log |β| − λmax

2
, 0
)
, where the sum is taken over the spectrum of A (counted

with multiplicities) and λmax is the supremum of {log |β| : β ∈ sp(A)}. In particular, our result
implies that if A has an eigenvalue outside the unit circle, then a semiclassical measure cannot
be carried only by periodic orbits of A.

1. Introduction

The semiclassical principle asserts that one can reconstruct objects from classical mechanics
by looking at the semiclassical limit of quantum objects. In the more speci�c setting of quantum
chaos, one can try to understand the range of validity of this principle and more precisely the
in�uence of the chaotic properties of the dynamical system (Anosov property, ergodicity, etc.) on
the semiclassical behavior of stationary states.
The �rst result in this direction is due to Shnirelman [28], Zelditch [30] and Colin de Verdière [10].
It states that, given an ergodic geodesic �ow on a riemannian manifold M , almost all sequences
of eigenfunctions of ∆ are equidistributed on S∗M in the high energy limit. This phenomenon
is known as quantum ergodicity and has many extensions. Rudnick and Sarnak formulated the
so-called �Quantum Unique Ergodicity Conjecture� which states that for manifolds of negative
curvature, all the eigenfunctions of ∆ are equidistributed in the high energy limit [27]. This
conjecture remains widely open in the general case.
In order to study quantum chaos, an approach is to study toy models, i.e. simple symplectic
dynamical systems that are highly chaotic and that admits a �good� quantization procedure [20].
The main advantages of such systems is that the classical dynamics is in general simpler than
the one of �realistic� models and the quantum states belong to �nite dimensional spaces. These
properties make these models easier to manipulate than the more �realistic� ones (like geodesic
�ows). Moreover, these toy models share enough properties with the �realistic� ones so that it is
often easier to understand the properties of the simple models and then try to adapt the method
in the more complicated situation.
Among the several toy models is the family of symplectic linear automorphisms on the 2d-torus
T2d. We say that a matrix A in Sp(2d,Z) is quantizable if it does not have 1 as an eigenvalue or
if it belongs to the subset

Spθ(2d,Z) :=
{(

E F
G H

)
∈ Sp(2d,Z) : EF t ≡ GHt ≡ 0 mod 2

}
.

Under one of these assumptions, the map A can be quantized following the method from [6]. In
this case, the phase space T2d is compact and in particular, one can associate a �nite dimensional
Hilbert space for every integer N : each space will be denoted HN (see section 2) and will be of
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dimension Nd. The semiclassical parameter is denoted ~ and it satis�es 2π~N = 1 (where N is an
integer). So looking at the semiclassical limit ~→ 0 is equivalent to making the parameter N tends
to in�nity. The set of classical observables will be the set C∞(T2d) of smooth functions on the

torus. There exists a positive quantization procedure OpAWN (.) that associates to each observable

a a linear operator OpAWN (a) on HN . This procedure is called the anti-Wick quantization and is
constructed from a family of coherent states [7]. Moreover, there is a quantum propagatorMN (A)
corresponding to A which acts on HN . This propagator satis�es the Egorov property:

(1) MN (A)−1OpAWN (a)MN (A) = OpAWN (a ◦A) +Oa(N−1).

For any eigenvector ϕN of MN (A) in the Hilbert space HN , one can de�ne the following measure
on the torus:

(2) µ̃ϕN (a) := 〈ϕN |OpAWN (a)|ϕN 〉HN .
This quantity gives a description of the stationary state in terms of the position and the momentum,
i.e. of the stationary state and its N -Fourier transform. Thanks to Egorov theorem, we have that
any weak limit of the corresponding (µ̃ϕN ) in the semiclassical limit (i.e. as N tends to in�nity)
is an A-invariant measure on the torus. We call a semiclassical measure an accumulation point of
a sequence (µ̃ϕN )N , where (ϕN )N is a sequence of stationary states in HN (see section 2). In this
setting, Bouzouina and de Bièvre proved an analogue of Shnirelman's theorem [7]. Precisely, if A
is ergodic1, they prove that for any sequence of orthonormal basis (ϕNj )1≤j≤Nd,N∈N of HN made

of eigenvectors of MN (A), there exists a sequence of JN ⊂ {1, · · · , Nd} satisfying

lim
N→+∞

|JN |
Nd

= 1 and ∀a ∈ C∞(T2d), ∀{j(N) ∈ JN : N ∈ N}, lim
N→+∞

µ̃ϕN
j(N)

(a) = Leb(a).

It means that in this sense, almost all the eigenvectors converge weakly to the Lebesgue measure
on the torus. The analogue of Quantum Unique Ergodicity in this setting would be to prove that
for any orthonormal basis of eigenvectors, one can take JN = {1, · · · , Nd}. An important property
of these models is that there exist symplectic matrices and associated sequences of orthonormal
basis for which one can take JN = {1, · · · , Nd} [18], [17] but there are also sequences for which
one can not take JN = {1, · · · , Nd} [13], [17]. In the case d = 1, it was proved by de Bièvre,
Faure and Nonnenmacher that 1

2 (δ0 + Leb) is a semiclassical measure [13]. In higher dimensions
and under arithmetic assumptions on A, Kelmer constructed semiclassical measures supported on
submanifolds of T2d [17].
Even if we know that the set of semiclassical measures is not reduced to the Lebesgue measure for
quantized maps of the torus, one can ask about the properties of these semiclassical measures. For
instance, it was shown in [6] and [14] that if we split the semiclassical measure into its pure point,
Lebesgue and singular continuous components, µ = µpp + µLeb + µsc, then µpp(T2) ≤ µLeb(T2)
and in particular µpp(T2) ≤ 1/2.

1.1. Statement of the main theorem. In [1], Anantharaman proved that for a compact rie-
mannian manifoldM with Anosov geodesic �ow, the Kolmogorov-Sinai entropy of any semiclassical
measure associated to a sequence of eigenfunctions of ∆ is positive (see section 5 or [29] (chap-
ter 4) for a de�nition of the entropy). Her result proves in particular that eigenfunctions of the
Laplacian cannot concentrate only on a closed geodesic, in the large eigenvalue limit. Translated
in the context of our toy models, her result says that, for any symplectic and hyperbolic matrix A,
the Kolmogorov-Sinai entropy of a semiclassical measure is positive. In particular, a semiclassical
measure cannot be supported only on closed orbits of A. In subsequent works with Koch and
Nonnenmacher [3], [2], they gave quantitative lower bounds on the Kolmogorov-Sinai entropy of
semiclassical measures. Translated in the model of quantized maps of the 2d-torus, their result
can be written, for any semiclassical measure associated to an hyperbolic matrix A:

(3) hKS(µ,A) ≥
2d∑
i=1

max (log |βi|, 0)− d

2
λmax,

1It means that no eigenvalue of A is a root of unity.
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where {βi : 1 ≤ i ≤ 2d} is the spectrum of A (counted with multiplicities) and λmax is the
maximum of the log |βi| [23]. As A is hyperbolic, it has exactly d eigenvalues (counted with
multiplicities) of modulus larger than 1. We underline that their result was more general as it also
deals with varying Lyapunov exponents. One can remark that if λmax is very large compared with
some of the log |βi|, the previous lower bound can be negative (and so the result empty). Regarding
their result (and the di�erent counterexamples), they conjectured some optimal lower bound on
the entropy of semiclassical measures [1], [3], [2]. Translated in our context, their conjecture states
that, for any semiclassical measure µ associated to an hyperbolic matrix A,

(4) hKS(µ,A) ≥
2d∑
i=1

max
(

log |βi|
2

, 0
)
.

Again, their conjecture was more general as they expected it to hold for situations where there
are varying Lyapunov exponents. In this article, we will show:

Theorem 1.1. Let A be a quantizable matrix in Sp(2d,Z), i.e. such that 1 is not an eigenvalue
of A or such that A belongs to Spθ(2d,Z). Let µ be a semiclassical measure on T2d associated to
A. One has

(5) hKS(µ,A) ≥
2d∑
i=1

max
(

log |βi| −
λmax

2
, 0
)
,

where {βi : 1 ≤ i ≤ 2d} is the spectrum of A and λmax is the maximum of the log |βi|.

A �rst remark about this result is that it holds for weakly chaotic systems that can have only
one instability, i.e. one positive Lyapunov exponent (the result is trivial if A has no positive
Lyapunov exponent). In particular, we do not assume A to be hyperbolic and our result implies
that if A has an eigenvalue outside the unit circle, then a semiclassical measure of (T2d, A) cannot
only be carried by periodic orbits of A. For instance, such a property is satis�ed by an ergodic
symplectic matrix [22].
We also underline that we do not obtain exactly the lower bound (4) expected by Anantharaman,
Koch and Nonnenmacher. Compared with their result, the lower bound of our theorem improves
their bound (3) and it always de�nes a nonnegative quantity. However, regarding the semiclassical
measures constructed in [17], the lower bound of our theorem should be suboptimal. In fact, recall
that the simplest example of exceptional semiclassical measure as they were constructed in [17]

happens in the case where A :=
(
Bt 0
0 B−1

)
, with B ∈ SL(d,Z). For this matrix, one can

show that there exists a subsequence of stationary states converging to the Lebesgue measure on
the submanifold X0 := {(0, ξ) ∈ T2d : ξ ∈ Td}. We also recall that the Kolmogorov-Sinai entropy
satis�es the Ruelle inequality, i.e. for any A-invariant measure µ,

hKS(µ,A) ≤
2d∑
i=1

max (log |βi|, 0) ,

with equality if µ = Leb [29] (chapter 8). In particular, Kelmer's counterexample has entropy

equal to

2d∑
i=1

max
(

log |βi|
2

, 0
)
.

In the case of varying Lyapunov exponents, the conjecture of Anantharaman, Koch and Nonnen-
macher has been shown to be true when one has only a one dimensional unstable direction [16], [25].
At this point, it is not clear to us how to combine both methods in order to obtain an explicit
nonnegative lower bound on the entropy of semiclassical measures in a general setting. We also
underline that, in the case of hyperbolic automorphisms of T2, stronger results on the entropy of
semiclassical measures were obtained by Brooks [9]. Finally, in the case of locally symmetric spaces
of rank ≥ 2, a similar lower bound as the one of theorem 1.1 was obtained by Anantharaman and
Silberman [4].



4 GABRIEL RIVIÈRE

1.2. Strategy of the proof. Compared with the original result of Anantharaman, the proof of
inequality (3) in [2] was simpli�ed by the use of an entropic uncertainty principle due to Maassen
and U�nk [21]. This principle is a consequence of the Riesz-Thorin interpolation theorem and it
can be stated as follows (in [3], see theorem 2.1 combined with remark 2.2):

Theorem 1.2 (Maassen-U�nk). Let H and H̃ be two Hilbert spaces. Let U be an unitary operator

on H̃. Suppose (πi)Di=1 is a family of operators from H̃ to H that satis�es the following property
of partition of identity:

D∑
i=1

π†iπi = IdH̃.

Then, for any unit vector ψ, we have

(6) −
D∑
i=1

‖πiψ‖2H log ‖πiψ‖2H −
D∑
i=1

‖πiUψ‖2H log ‖πiUψ‖2H ≥ −2 log sup
i,j
‖πiUπ†j‖L(H).

In [2], the method was to use this principle for eigenfunctions of the Laplacian on M and a
well-chosen partition of IdL2(M) so that the quantity in the left side of (6) can be interpreted as
the usual entropy from information theory [29]. One of the main di�culty (that already appeared

in [1]) was then to give a sharp estimate on the quantity ‖πiUπ†j‖L2(M)→L2(M) for this choice.

In [26], we show that for a good choice of partition, the quantity ‖πiUπ†j‖HN→HN was easier to

bound than the corresponding one in [2] and in [23]. More precisely, the bound could be directly
derived from estimates on the propagation of coherent states under the quantum propagator as
in [5] and [13]. Our strategy will be to generalize our method for d = 1 to higher dimensions.
To do this, we will introduce a new quantization procedure adapted to the classical dynamics for
which good choice of partitions can also be made.

1.3. Organization of the article. In section 2, we recall how the dynamical system (T2d, A) can
be quantized. In section 3, we collect some facts about the reduction of symplectic matrices. Then,
in section 4, we construct a quantization procedure adapted to the classical dynamics induced by
A. In section 5, we apply the entropic uncertainty principle to derive theorem 1.1. Finally, in
section 6, we prove a crucial estimate on our quantization procedure that we used in section 5.
This estimate is similar to the ones obtained for the propagation of coherent states in [5], [13]. The
appendices are devoted to the proof of crucial and technical lemmas that we admitted at di�erent
steps of the article.

2. Quantum mechanics on the 2d-torus

In this section, we recall some basic facts about quantization of linear symplectic toral auto-
mophisms. Our goal is to describe a procedure which will associate [20]

• a family of �nite dimensional Hilbert spaces HN indexed by the integers to the compact
phase space T2d;

• an operator OpN (a) acting on HN for every observable a in C∞(T2d);
• a unitary matrix MN (A) acting on HN to the symplectic matrix A (and related to A by
an Egorov property).

To do this, we will follow the approach and notations used by de Bièvre & al. in previous
articles [6], [7]. We refer the reader to them for further details and references. We denote T2d :=
R2d/Z2d the 2d-torus.

2.1. Quantization of the phase space. In physical words, Rd (or Td) is called the con�guration
space and R2d (or T2d) is the phase space associated to it. In this article, ρ = (x, ξ) will denote a
point of the phase space, i.e. points of R2d or T2d. The usual scalar product on R2d is denoted 〈a, b〉

and σ is the usual symplectic form on R2d, i.e. σ(ρ, ρ′) = 〈ρ, Jρ′〉 where J :=
(

0 −IdRd
IdRd 0

)
.
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For ψ ∈ S ′(Rd), we can de�ne (qjψ)(x) := xjψ(x) and (pjψ)(x) := ~
ı
∂ψ
∂xj

(x). This allows to de�ne
translation operators acting on a tempered distribution as:

U~(x, ξ) := e
ı
~σ((x,ξ),(q,p)).

The action of this operator on L2(Rd) is given, for any ψ ∈ L2(Rd), by

[U~(x, ξ)ψ] (y) = e
ı
~ 〈y− x2 ,ξ〉ψ(y − x).

We underline that it is unitary on L2(Rd, dx) and standard facts about this representation of the
Heisenberg group can be found in the book by Folland [15]. In particular, it can be shown that:

(7) U~(ρ)U~(ρ′) = e
ı

2~σ(ρ,ρ′)U~(ρ+ ρ′).

In order to de�ne the quantum states associated to the phase space T2d, we �rst underline that
the phase space is R2d where we have identi�ed two points which are Z2d-equivalent. So, we can
require that the Hilbert space we will construct will be made of quantum states in S ′(Rd) which
satisfy an invariance under the translation operators U~(q, p) for (q, p) ∈ Z2d. It means that the
quantum states should have the same periodicity as the phase space. To do this, we �x some
κ = (κ1, κ2) in [0, 2π[2d. We will require that, for all (q, p) ∈ Z2d, a quantum state ψ should check
the following condition:

U~(q, p)ψ = e
ı

2~ 〈q,p〉e−ı〈κ1,q〉+ı〈κ2,p〉ψ.

It can be remarked that κ di�erent from 0 is allowed as, for α ∈ R, ψ and eıαψ represent the
same quantum state. The states in S ′(Rd) that satisfy the previous conditions are said to be
the quantum states on the 2d-torus and their set is denoted HN (κ) where N is related to the
semiclassical parameter by

(8) 2π~N = 1.

It de�nes tempered distributions of period 1 (modulo phase factors) whose ~-Fourier transform is
also 1-periodic. These distributions are said to be �quasiperiodic�. The following lemma can be
shown [7]:

Lemma 2.1. Let κ be an element in [0, 2π[2d. Let ~ and N be positive and such that 2π~N = 1.
The subspace HN (κ) is not reduced to 0 i� N ∈ N∗. In this case, dimHN (κ) = Nd. Moreover,
for all r ∈ Z2d, U~( rN )HN (κ) = HN (κ) and there is a unique Hilbert structure such that U~( rN )
is unitary for each r ∈ Z2d.

From this point, we will �x N to be an integer in order to have a nontrivial Hilbert space. The
Hilbert structure on HN (κ) is not very explicit [7]. However, one can make it more clear using
the following map which de�nes a surjection of S(Rd) (Schwartz functions) onto HN (κ):

(9) SN (κ) :=
∑

(n,m)∈Z2d

(−1)N〈n,m〉eı(〈κ1,n〉−〈κ2,m〉)U~(n,m).

This surjection associates to each state in S(Rd) a state which is periodic in position and momen-
tum. Using it, we can de�ne |φ, κ,N〉 := SN (κ)|φ〉 and |φ′, κ,N〉 := SN (κ)|φ′〉 for |φ〉 and |φ′〉 in
S(Rd). Then, the following link between scalar products on L2(Rd) and HN (κ) holds:

(10) 〈N,κ, φ|φ′, κ,N〉HN (κ) =
∑

n,m∈Z2d

(−1)N〈n,m〉eı(〈κ1,n〉−〈κ2,m〉)〈φ|U~(n,m)φ′〉L2(R).

Finally, the following decomposition into irreducible subrepresentations of the discrete Weyl-
Heisenberg group {( rN , φ) : r ∈ Z2d, φ ∈ R} can be written [7]:

L2(Rd) ∼=
∫

[0,2π[2d
HN (κ)dκ and U~

( r
N

)
=
∫

[0,2π[2d
UN,κ

( r
N

)
dκ,

where the integral is a direct integral.
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2.2. Weyl quantization. In the case of R2d, classical observables are functions of ρ = (x, ξ) that
belong to a certain class of symbols. We will use the following class of symbols:

Skν (1) := {(a~)~>0 ∈ C∞(R2d) : for all multiindices α, ‖∂αρ a~‖∞ ≤ ~−k−ν|α|Cα,a},

where ν ≤ 1
2 . We underline that smooth Z2d-periodic functions belongs to these class of symbols

and in this case, the semi-norms involved in the de�nition of S0
ν(1) control the growth of the deriva-

tives in ~. An usual way to quantize these observables is to use the Weyl quantization [11], [12].
Let us recall the standard de�nition of this operator for an observable a:

[Opw~ (a)u](x) :=
1

(2π~)d

∫
R2d

e
ı
~ 〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dydξ.

We recall that the product of two such pseudodi�erential operators is given by

Opw~ (a) ◦Opw~ (b) = Opw~ (a]b),

where a]b is the Moyal product of the two observables [11], [12]. At several points of the article
we will use the following expression of the Moyal product for a and b in S(R2d) (that can depend
on ~):

a]b(ρ) :=
1

(π~)2d

∫
R2d

∫
R2d

e−
2ı
~ σ(w1,w2)a(ρ+ w1)b(ρ+ w2)dw1dw2.

We also recall that, from the Calderón-Vailancourt theorem (theorem 7.11 in [11] or theorem 4.22
in [12]), we know that there exists an integer D and a constant C (depending only on d) such that

(11) ∀ 0 ≤ ν ≤ 1
2
, ∀a ∈ S0

ν(1), ‖Opw~ (a)‖L2(Rd)→L2(Rd) ≤ C
∑
|α|≤D

~
|α|
2 ‖∂αa‖∞.

We underline that the case ν = 1
2 is authorized for this last result [11]. In the case of the 2d-torus,

classical observables are C∞ functions on T2d which are ~ independant (they can be seen as a
subset of S0(1)). It can be shown that for a ∈ C∞(T2d),

Opw~ (a) =
∑
r∈Z2d

arU~ (2π~r) ,

where ar is the r coe�cient of the Fourier serie of a, i.e. a(ρ) =
∑
a∈Z2d are

−2ıπ〈Jr,ρ〉. Using the
fact that U~(r)Opw~ (a)U~(r)∗ = Opw~ (a) (thanks to (7)), it follows that Opw~ (a)HN (κ) ⊂ HN (κ).
In view of this remark, we shall denote OpwN,κ(a) the restriction of Opw~ (a) toHN (κ). We underline

that this operator still makes sense if a is an element of C∞(T2d) that depends nicely on ~ (in the
sense of the de�nition of S0

ν(1)). Finally, the following decomposition holds:

Opw~ (a) =
∫

[0,2π[2d
OpwN,κ(a)dκ,

where the integral is a direct integral. Recall from [24] (theorem XIII.83) that such a decomposition
implies:

(12) sup
κ∈[0,2π[2d

‖OpwN,κ(a)‖L(HN (κ)) = ‖Opw~ (a)‖L2(Rd).

2.3. Quantization of toral automorphisms. Let A be a matrix in Sp(2d,Z). We would like
now to quantize the dynamics associated to A on the phase space, i.e. de�ne a quantum progator
associated to A. This can be done using the metaplectic �representation� of Sp(2d,R) [15] that
de�nes, for each matrix A and for each ~ > 0, the unique (up to a phase) operator which satis�es:

∀ρ ∈ R2d, M~(A)U~(ρ)M~(A)−1 = U~(Aρ).

M~(A) is called the quantum propagator associated to A. It is a unitary operator on L2(Rd) (and
by duality, it acts also on S ′(Rd)). It can be shown [6]:
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Lemma 2.2. Let A be an element in Sp(2d,Z) such that 1 is not an eigenvalue of A. For each
N ∈ N∗, there exists at least one κA(N) ∈ [0, 2π[2d such that

M~(A)HN (κA(N)) = HN (κA(N)).

MN,κA(N)(A) denotes then the restriction of M~(A) to HN (κA(N)). It is an unitary operator for
the Hilbert structure on HN (κA(N)).

Remark. Even if it was only stated for ergodic matrices, the proof of this lemma was given in [6]
(lemma 2.2). The hypothesis that 1 is not an eigenvalue is crucial in the proof of [6]. Yet, one
can check in this same proof that the property of the lemma still holds if we take κA(N) = 0 for
a matrix A in

Spθ(2d,Z) :=
{(

E F
G H

)
∈ Sp(2d,Z) : EF t ≡ GHt ≡ 0 mod 2

}
.

We say that an element A in Sp(2d,Z) is quantizable if 1 is not an eigenvalue of A or if A is in
Spθ(2d,Z). We underline that the matrices in Spθ(2d,Z) were the ones considered by Kelmer
in [17].

Notations. From this point of the article, we �x A to be a quantizable matrix and for every
integer N , we �x some κA(N) which satis�es the property of the previous lemma. For simplicity of
notations, we will omit to mention κ (except if there is an ambiguity) and we will denote OpN (a),
SN , HN , MN (A), UN (ρ) instead of OpN,κ(a), SN (κ), HN (κ), MN,κ(A), UN,κ(ρ). When using the
subscript N , we will refer to objects living on the torus and when using ~, we will refer to objects
living on R2d.

From all this, the following �exact� Egorov property can be shown for each a ∈ C∞(T2d) [15], [7]:

MN (A)−1OpwN (a)MN (A) = OpwN (a ◦A).

Remark. We underline that we do not need any assumption on A (except that is is symplectic) to
de�ne M~(A) on L2(Rd). In particular, for every Q in Sp(2d,R), we have that

∀ a ∈ S0
ν(1), M~(Q)−1Opw~ (a)M~(Q) = Opw~ (a ◦Q).

2.4. Anti-Wick quantization. The Weyl quantization has the nice properties that it satis�es
an exact Egorov property and that for a symbol a, Opwκ (a)∗ = Opwκ (a). However, it does not
satisfy the property that if a is nonnegative then Opwκ (a) is also nonnegative. As our goal is
to construct measures using a quantization procedure, we would like for simplicity to consider
a positive quantization. This can be achieved by considering the anti-Wick quantization. To
describe this quantization, we de�ne the coherent state at point 0 on Rd:

|0, ~〉(x) :=
(

1
π~

) d
4

e−
‖x‖2
2~ .

We de�ne the translated coherent state at point ρ ∈ R2d as |ρ, ~〉 := U~(ρ)|0, ~〉. Using these
coherent states, we can de�ne a quantization procedure for a bounded symbol a in C0(R2d):

OpAW~ (a) :=
∫

R2d
a(ρ)|ρ, ~〉〈~, ρ| dρ

(2π~)d
.

We underline that |ρ, ~〉〈~, ρ| is a rank-one operator de�ned for |ψ〉 in L2(Rd) by |ρ, ~〉〈~, ρ|ψ〉 :=
〈~, ρ|ψ〉L2 |ρ, ~〉. It is obvious that this quantization is positive. It can be veri�ed also that it
satis�es the property of resolution of identity:

OpAW~ (1) = IdL2(Rd) =
∫

R2d
|ρ, ~〉〈~, ρ| dρ

(2π~)d
.

This quantization is related to the Weyl quantization. To see this, we can de�ne the gaussian

observable G̃~(x, ξ) := 1
(π~)d

e−
‖x‖2+‖ξ‖2

~ . For a smooth bounded observable a, the relation between

the two procedures of quantization is OpAW~ (a) = Opw~ (a ? G̃~). Using Calderón-Vaillancourt

theorem and the previous property, one can verify that ‖OpAW~ (a)−Opw~ (a)‖L2(Rd) = Oa(~). Now
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one can construct a positive quantization on the torus mimicking this positive quantization on
R2d. To do this, we project the coherent states on the Hilbert space HN :

|ρ,N〉 := SN |ρ, ~〉,

where SN is the surjection de�ned by (9). We de�ne the anti-Wick quantization of an observable
a in C∞(T2d) as follows:

OpAWN (a) :=
∫

T2d
a(ρ)|ρ,N〉〈N, ρ| dρ

(2π~)d
.

In this case, |ρ,N〉〈N, ρ| is a rank-one matrix de�ned for |ψ〉 inHN by |ρ,N〉〈N, ρ|ψ〉 := 〈N, ρ|ψ〉HN |ρ,N〉.
This quantization procedure satis�es that for a symbol a, OpAWN (a)∗ = OpAWN (a) and that the
quantization is nonnegative. As in the case of the Weyl quantization, it is related to the quanti-
zation on R2d by the integral representation [7]:

OpAW~ (a) =
∫

[0,2π[2d
OpAWN,κ (a)dκ.

It also satis�es a resolution of identity property [7]:

OpAWN (1) = IdHN =
∫

T2d
|ρ,N〉〈N, ρ| dρ

(2π~)d
.

It follows from the reoslution of identity and from the de�nition of OpAWN (a) that ‖OpAWN (a)‖L(HN ) ≤
‖a‖∞.

2.5. Semiclassical measures. All these de�nitions allow to introduce the notion of semiclassical
measures for the quantized cat-maps [7]:

De�nition 2.3. Let A be a quantizable matrix in Sp(2d,Z). We call semiclassical measure of
(T2d, A) any accumulation point of a sequence of measures of the form

∀a ∈ C∞(T2d,C), µ̃Nk(a) := 〈ψNk |OpAWNk (a)ψNk〉HNk =
∫

T2d
a(ρ)Nk

∣∣∣〈ψNk |ρ,Nk〉HNk ∣∣∣2 dρ,
where (ψNk)Nk is a sequence made of eigenvectors ofMNk(A) in HNk with Nk → +∞ as k → +∞.

Remark. The set of semiclassical measure de�nes a nonempty set of probability measures on the
torus T2d. We underline that we have previously �xed κA(N) (section 2.3) for every integer N .
In particular, the set of semiclassical measures depends implicitely on our choice of quantization
procedure as it depends on the sequence κA(N) we have �xed. We could have allowed κ to vary
in our de�nition and we would have obtained a bigger set of accumulation points. The entropic
properties of this bigger set would be the same and for simplicity of the notations, we prefer to
keep the sequence κA(N) �xed for the article.

An important property is that a semiclassical measure is A-invariant thanks to the following
Egorov property:

Proposition 2.4 (Egorov property). Let A be a quantizable matrix in Sp(2d,Z). For every a in
C∞(T2d), one has

∀t ∈ Z, MN (A)−tOpAWN (a)MN (A)t = OpAWN (a ◦At) +Oa,t(N−1),

where the constant involved in the remainder depends on a and t.

To conclude the presentation of our system, we underline that if µ is a semiclassical measure
associated to a sequence (ψNk), then µ is also an accumulation point of the sequence of linear form

a 7→ 〈ψNk |OpNk(a)ψNk〉HNk ,

where OpN is any quantization that satis�es, in the semiclassical limit,

(13) ∀a ∈ C∞(T2d),
∥∥∥OpN (a)−OpAWN (a)

∥∥∥
L(HN )

= oa(1).
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3. Symplectic linear algebra and Lyapunov exponents

In this section, we collect some facts about symplectic matrices that we will use crucially in our
proof. We refer the reader to chapter 1 of [19] for more details. We �x a quantizable matrix A in
Sp(2d,Z), i.e. such that 1 is not an eigenvalue of A or such that A ∈ Spθ(2d,Z). As theorem 1.1
is trivial in the case where the spectrum is included in {z ∈ C : |z| = 1}, we also make the
assumption that A has an eigenvalue of modulus larger than 1. We will denote

λmax = sup{log |β| : β is in the spectrum of A}.

Remark. According to Kronecker's theorem (theorem 2.5 in [22]), we know that if A is an ergodic
matrix in SL(2d,Z) (i.e. no eigenvalue of A is a root of unity), then λmax > 0.

One can decompose R2d into A-invariant subspaces called the stable, neutral and unstable
spaces, i.e.

R2d := E− ⊕ E0 ⊕ E+.

These subspaces satisfy various properties that we will use. The spectrum of the restriction of A
on the neutral space E0 is included in {z ∈ C : |z| = 1}. The dimension of E0 is even and we
will denote it 2d0. The restriction of A on the stable (resp. unstable) space E− (resp. E+) has a
spectrum included in {z ∈ C : |z| < 1} (resp. {z ∈ C : |z| > 1}). These two subspaces have the
same dimension equal to d − d0 (which is by assumption positive). Moreover, there exist r in N
and 0 < λ+

1 < · · · < λ+
r such that E+ (resp. E−) can be decomposed into A-invariant subspaces

as follows:
E+ = E+

1 ⊕ · · · ⊕ E+
r and E− = E−1 ⊕ · · · ⊕ E−r ,

where the spectrum of the restriction of A to E+
i (resp. E−i ) is included in {z ∈ C : |z| = eλ

+
i }

(resp. {z ∈ C : |z| = e−λ
+
i }). Moreover, one can verify that the subspaces E+

i and E−i have
the same dimension that we will denote di. The coe�cients λ+

i are called the positive Lyapunov
exponents of A. We underline that λ+

r = λmax. With these notations, theorem 1.1 can be rewritten
that for any semiclassical measure µ associated to A, one has

(14) hKS(µ,A) ≥
r∑
i=1

di max
(
λ+
i −

λmax

2
, 0
)
.

For the sake of simplicity, we will denote

(15) Λ+ :=
r∑
i=1

diλ
+
i

and

(16) Λ0 :=
r∑
i=1

di max
(
λ+
i −

λmax

2
, 0
)
.

Our decomposition is exactly the Oseledets decomposition associated to the dynamical system
(T2d, A, µ) [29]. For our proof, we will need something stronger in order to apply tools of semi-
classical analysis. Precisely, we will need a symplectic decomposition of R2d into these subspaces.
According to [19] (section 1.4 to 1.7), this decomposition is possible and we now recall the results
from [19] that we will need. To do this, we introduce the �-product of two matrices. Consider two
real matrices M1 in M(2d′,R) and M2 in M(2d′′,R) of the block form

M1 :=
(
A1 B1

C1 D1

)
and M2 :=

(
A2 B2

C2 D2

)
,

where A1, B1, C1 and D1 are in M(d′,R) and A2, B2, C2 and D2 are in M(d′′,R). The �-sum of
M1 and M2 is de�ned as the following 2(d′ + d′′) matrix:

M1 �M2 :=


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 .
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We can use this �-sum to rewrite our symplectic matrix A in an adapted symplectic basis [19]
(section 1.7-theorem 3). Precisely, for every 1 ≤ i ≤ r, one can construct an adaptedDi inGl(di,R)
such that the spectrum of Di is included in {z ∈ C : |z| = eλ

+
i } and denote Ai := diag(Di, D

∗−1
i )

(setion 1.7 in [19]). There exists also an adapted A0 in Sp(2d0,R) such that the spectrum2 of A0

is included in {z ∈ C : |z| = 1} (section 1.5 and 1.6 in [19]). Using these matrices, it can be shown
that there exists a symplectic matrix Q in Sp(2d,R) such that

(17) A = Q (A0 �A1 � · · ·Ar)Q−1.

This tells us that we have a symplectic reduction adapted to the Oseledets decomposition. The
results in [19] are more precise and we have only stated what we will need for our proof of
theorem 1.1.

4. Positive quantization adapted to the dynamics

We have de�ned the set of semiclassical measures starting from the anti-Wick quantization.
In this section, we will construct a new (positive) quantization procedure that is adapted to the
classical dynamics and that is equivalent to the Weyl quantization (and so to the anti-Wick one)
in the sense of equation (13). To do this, we will mimick the construction of the anti-Wick
quantization. In this case, we have seen that it corresponds to the Weyl quantization applied to
the observable a ? G̃~. It means that we have made the convolution of the observable a with a
Gaussian observable which is localized in a ball of radius

√
~.

Our strategy is to make a slightly di�erent choice of function G~ which will be localized on an
ellipsoid with lengths on each direction that depend on the Lyapunov exponent. For instance, if
the Lyapunov exponent associated to the variable (x1, ξ1) is larger than the one associated to the
variable (x2, ξ2), the ellipsoid will be larger in the second direction. We should also take care of
not violating the uncertainty principle and as a consequence the radius of the ellipsoid will always
be bounded from below by

√
~.

In this section, we make this argument precise in the case of R2d and then periodize the new
quantization to get a quantization on the torus.

4.1. An adapted convolution observable. To construct our new quantization on R2d, we
introduce a Gaussian observable G(x, ξ) := exp

(
−π‖(x, ξ)‖2

)
, where ‖.‖ is the euclidian norm

on R2d. In the case of the anti-Wick quantization, we took the convolution of any bounded

observable a with G̃~ = (π~)−dG ◦
(

(π~)−
1
2 Id
)
to construct our quantization. Regarding the

Oseledets decomposition of A (see (17)), we would like to make a more strategical choice than

(π~)−
1
2 Id for our choice of matrix. To do this, we use the notations of section 3 and for ~ > 0, we

introduce a matrix B(~) of the following form:

B(~) := Q

(
D(~) 0

0 D(~)

)
Q−1,

where D(~) is an element in GL(d,R) of the form

D(~) :=
(

~−
ε0

2λmax IdRd0 , ~−
λ

+
1

2λmax IdRd1 , · · · , ~−
λ+
r

2λmax IdRdr

)
.

In the previous de�nition, ε0 is some small �xed positive number that we keep �xed until the end
of the proof and that we suppose to be very small compared with λ+

1 (to avoid complications). To

simplify the expressions, we introduce the notation γ+
j :=

λ+
j

2λmax
and γ+

0 := ε0
2λmax

. In particular,

we have that the supremum ‖B(~)−1‖∞ of the modulus of the coe�cient of B(~) is a O(~γ) where
γ = ε0

2λmax
. Finally, we can de�ne an �adapted� ~-Gaussian observable

G~ := 2
d
2 |detB(~)| 12G ◦B(~).

We underline that 2d/2 is only a normalization constant.

2We underline that d0 will be equal to 0 if all the Lyapunov exponents of A are nonzero.
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4.2. Positive quantization on R2d. We have constructed a convolution which is adapted to the
dynamics. We would also like to keep the nice `u∗u'-structure of the anti-Wick quantization. So,
for a bounded observable a in C∞(R2d), we de�ne

Op+
~ (a) := Opw~ (a ? (G~]G~)) ,

where a ? b is the convolution product of two observables and a]b is the Moyal product of two
observables (i.e. the symbol of Opw~ (a) ◦Opw~ (b) [11]). We verify that

Op+
~ (a) =

∫
R2d

a(ρ0)Opw~ ((G~]G~) (• − ρ0)) dρ0 =
∫

R2d
a(ρ0)Opw~ (Gρ0

~ )∗ ◦Opw~ (Gρ0
~ ) dρ0,

where Gρ0
~ (ρ) := G~(ρ−ρ0). So if a ≥ 0, this de�nes a nonnegative operator. The following lemma

says that Op+
~ is a nice quantization procedure:

Lemma 4.1. Let a be an observable in S0(1). We have∥∥Opw~ (a)−Op+
~ (a)

∥∥
L2(Rd)→L2(Rd)

= Oa(~γ),

for some �xed positive γ (depending only on A and on ε0).

We postpone the proof of this lemma to appendix A. The strategy is the same as when one
proves the equivalence of the anti-Wick quantization and the Weyl one. Precisely, we can prove
that there exists an explicit kernel K~(ρ0) such that

a ? (G~]G~) (ρ) =
∫

R2d
a(ρ+B(~)−1ρ0)K~(ρ0)dρ0,

where
∫

R2d K~(ρ0)dρ0 = 1.

4.3. Periodization of observables. We have just de�ned a new quantization procedure on R2d

which is related to the classical dynamics associated to the matrix A. To study our problem, we
need to restrict this quantization procedure to HN . To do this, we de�ne

(18) Op+
N (a) := OpwN (a ? (G~]G~)) .

This de�nition makes sense for a smooth and Z2d-periodic observable a (that can also depend on
~). Thanks to lemma 4.1 and to the decomposition of L2(Rd) along the spaces HN (κ), we know
that ‖Op+

N (a) − OpwN (a)‖L(HN ) = Oa(~γ) (see also [24] (theorem XIII.83)). The explicit form of
this procedure is given by

Op+
N (a) =

∑
r∈Z2d

(∫
T2d

e2ıπ〈ρ,Jr〉
(∫

R2d
a(ρ0) (G~]G~) (ρ− ρ0)dρ0

)
dρ

)
UN

( r
N

)
.

For our purpose, we would like to verify that it remains a positive quantization procedure with a
nice structure. To see this, we introduce the following periodization operators on S(R2d):

(19) ∀ θ ∈ R2d, ∀ F ∈ S(R2d), Tθ(F )(ρ) :=
∑
r∈Z2d

F

(
ρ+ r − Jθ

2N

)
e2ıπ〈ρ+r,θ〉.

This de�nition makes sense for a function in the Schwartz class S(R2d) that would depend on ~.
We also underline that in every case, the observable Tθ(F ) is Z2d-periodic, i.e. for every r0 ∈ Z2d,
Tθ(F )(ρ + r0) = Tθ(F )(ρ). In particular, T0(Gρ0

~ ]G
ρ0
~ ) is smooth, Z2d-periodic and in the class

Sk1
2
(1) for some positive k. We can use this function to rewrite

Op+
N (a) =

∫
T2d

a(ρ0)OpwN (T0(Gρ0
~ ]G

ρ0
~ )) dρ0.

The translation operators Tθ satisfy the following property:

Proposition 4.2. Fix ~ > 0. Let F1 and F2 be two elements in S(R2d) (depending eventually on
~). One has

Opw~ (T0(F 1]F2)) =
∫

T2d
Opw~ (TθF1)∗ ◦Opw~ (TθF2)dθ.
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We postpone the proof of this lemma (which is just a careful application of the Poisson formula)
to appendix B. This proposition provides an alternative form for our quantization procedure, i.e.

(20) Op+
N (a) =

∫
T2d

a(ρ0)
∫

T2d
OpwN (Tθ(G

ρ0
~ ))∗ ◦OpwN (Tθ(G

ρ0
~ ))dθdρ0.

In particular, it implies that Op+
N is a nonnegative quantization procedure. We also underline

that we have the following resolution of identity:

(21) IdHN =
∫

T2d

∫
T2d

OpwN (Tθ(G
ρ0
~ ))∗ ◦OpwN (Tθ(G

ρ0
~ ))dθdρ0.

Remark. These last two formulas are the analogues of the ones obtained for the anti-Wick quan-
tization. The expressions seems more complicated but we will see that it is more adapted to the
dynamics induced by A.

4.4. Long times Egorov property. In this last paragraph, we show that as the anti-Wick
procedure, the quantization procedure Op+

N satis�es an Egorov property until times of order

TE(N) := logN
2λmax

. We �x some positive ε� min(ε0, λ1) and de�ne the Ehrenfest time

(22) mE(N) :=
[

1− ε
2λmax

logN
]
,

The parameter ε will be kept �xed (until the end of the proof of theorem 1.1). In order to state
our result, we denote µN the measure associated to a unit eigenvector ψN of MN (A), i.e.

µN (a) := 〈ψN |Op+
N (a)|ψN 〉HN =

∫
T2d

a(ρ0)
∫

T2d
‖OpwN (Tθ(G

ρ0
~ ))ψN‖

2

HN dθdρ0.

One can show the following (pseudo)-invariance property of the measures µN until time mE(N):

Proposition 4.3. Let (ψN )N be a sequence of unit eigenvectors of MN (A) in HN and µN the
associated sequence of measures. Then, for every positive ε, one has

(23) ∀a ∈ C∞(T2,C), ∀|t| ≤ mE(N), µN (a ◦At) = µN (a) + oa,ε(1),

where the constant in the remainder depends only on a and ε.

Proof. We have an exact Egorov property for the Weyl quantization. In particular, it tells us
that, for every integer t,∥∥Op+

N (a ◦At)−Op+
N (a)(t)

∥∥
L(HN )

=
∥∥Op+

N (a ◦At)−OpwN (a ◦At)
∥∥
L(HN )

+Oa(N−γ),

where Op+
N (a)(t) := MN (A)−tOp+

N (a)MN (A)t. From the decomposition of the space L2(Rd) along
the spaces HN (κ), we know that∥∥Op+

N (a ◦At)−OpwN (a ◦At)
∥∥
L(HN )

≤
∥∥Op+

~ (a ◦At)−Opw~ (a ◦At)
∥∥
L(L2(Rd))

.

Recall that we know that, for a bounded symbol b, Op+
~ (b) is equal to the operator Opw~ (b?(G~]G~))

and that b ? (G~]G~) (ρ) =
∫

R2d b(ρ + B(~)−1ρ0)K~(ρ0)dρ0 (see paragraph 4.2 and appendix A).
We write this formula for b = a ◦At and combine it with the Taylor formula. We �nd that

(a ◦At) ? (G~]G~) (ρ) = a ◦At(ρ) +
∫

R2d
K~(ρ0)

∫ 1

0

(
dρ+sB(~)−1ρ0a

)
.(AtB(~)−1)ρ0dsdρ0.

Appendix A gives us an exact expression for K~. We can compute the derivatives of the second
term of the sum and according to Calderón-Vaillancourt theorem (see paragraph 2.2), we �nally
�nd that

(24)
∥∥Op+

N (a ◦At)−MN (A)−tOp+
N (a)MN (A)t

∥∥
L(HN )

= Oa
(
‖AtB(~)−1‖∞

)
,

where ‖AtB(~)−1‖∞ is the supremum of the moduli of the coe�cients of AtB(~)−1. By construc-
tion, B(~) was constructed to be adapted to the classical dynamics induced by A and we know
that, using the notations of section 3,

AtB(~) = Q
(

(At0~
ε0

2λmax ) � (At1~
λ1

2λmax ) � · · · � (At0~
λ1

2λmax )
)
Q−1.
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We can verify that these two last equalities allows to conclude the proof of proposition 4.3.�

5. Proof of theorem 1.1

We consider a semiclassical measure µ. Without loss of generality, we can suppose that it is
constructed from Op+

N and that it is associated to a sequence of eigenvectors ψNk of MNk(A) in
HNk where (Nk)k is an increasing sequence of integers. Precisely, we have

∀ a ∈ C∞(T2,C), µ(a) = lim
k→+∞

〈ψNk |Op
+
Nk

(a)|ψNk〉HNk .

We recall that we have denoted µNk(a) = 〈ψNk |Op
+
Nk

(a)|ψNk〉HNk . To simplify notations, we will
not mention k in the following of this article. We start our proof by �xing a �nite measurable
partitionQ := {Q1, · · · , QK} of small diameter δ0 whose boundary is not charged

3 by µ (paragraph
2.2.8 in [3]). We denote η(x) := −x log x (with the convention 0 log 0 = 0). We recall that the
Kolmogorov-Sinai entropy of the measure µ for the partition Q can be de�ned as [29]

hKS(µ,A,Q) := lim
m→+∞

1
2m

∑
|α|=2m

η
(
µ
(
AmQα−m · · · ∩A−(m−1)Qαm−1

))
,

where αj varies in {1, · · · ,K} (K is the cardinal of Q).

5.1. Using the entropic uncertainty principle. Our quantization is de�ned for smooth ob-
servables on the torus. So we start by de�ning a smoothing of the partition Q: it is de�ned by a
family (Pi)Ki=1 of smooth observables in C∞(T2d, [0, 1]) (of small support of diameter less than 2δ)
that satis�es the following property of partition of T2d:

(25) ∀ρ ∈ T2d,

K∑
i=1

P 2
i (ρ) = 1.

Mimicking the de�nition of Kolmogorov-Sinai entropy, we de�ne the quantum entropy of ψN with
respect to P:

(26) h2m(ψN ,P) := −
∑
|α|=2m

µN (P2
α) logµN (P2

α),

where Pα :=
∏m−1
j=−m Pαj ◦Aj for α := (α−m, · · · , αm−1). One can verify that for any �xed m, we

have

(27) h2m(µ,P) := −
∑
|α|=2m

µ(P2
α) logµ(P2

α) = lim
N→∞

h2m(ψN ,P).

So, for a �xed m and as N → ∞, the quantum entropy we have just de�ned tends to the usual
entropy of µ at time 2m (with the notable di�erence that we consider smooth partitions). Our cru-
cial observation to apply the entropic uncertainty principle is that we have the following partition
of identity for HN :

(28)
∑
|α|=2m

∫
T2d

∫
T2d

P2
α(ρ0)OpwN (Tθ(G

ρ0
~ ))∗ ◦OpwN (Tθ(G

ρ0
~ ))dθdρ0 = IdHN .

This partition of identity is derived from equation (21) and is crucial to apply the entropic uncer-
tainty principle (6). Moreover, this partition looks more like a classical partition as it is de�ned
by the quantity P2

α and it will also make the computation in the entropic uncertainty principle

easier. This uncertainty principle can be applied for H = L2(T4d,HN ) and H̃ = HN . For (θ, ρ0)
in T4d and ψ in HN , we de�ne

πα|ψ〉(θ, ρ0) := Pα(ρ0)OpwN (Tθ(G
ρ0
~ ))|ψ〉.

This de�nes a linear application from HN to L2(T4d,HN ) and its adjoint is given by

π†αf :=
∫

T4d
Pα(ρ0)OpwN (Tθ(G

ρ0
~ ))∗f(θ, ρ0)dθdρ0,

3The parameter δ0 is small and �xed for all the article: it has no vocation to tend to 0.
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for f in L2(T4d,HN ). It de�nes a quantum partition of identity as it satis�es the relation∑
|α|=2m π

†
απα = IdHN . Applying the entropic uncertainty principle for this partition and U =

MN (A)n, we bound ‖παMN (A)nπ†β‖L(L2(T4d,HN )) and derive the following corollary:

Corollary 5.1. Using the previous notations, one has

∀n ∈ N, ∀m ∈ N, h2m(ψN ,P) ≥ − log sup
|α|=2m

{Leb(P2
α)} − log c(A,n),

where c(A,n) := sup
θ,θ′,ρ0,ρ′0∈T2d

{∥∥∥OpwN (Tθ(G
ρ0
~ ))MN (A)nOpwN (Tθ′(G

ρ′0
~ ))∗

∥∥∥
L(HN )

}
.

5.2. Estimate of c(A,n). In section 6, we will prove the following theorem:

Theorem 5.2. Let A be a quantizable matrix and let ε be some (small) positive number. For
every positive δ (small enough), there exists a constant C such that, for n := nE(~) = [(1 −
ε)| log ~|/λmax],

c(A,n) ≤ C|detB(~)|~−δ−
Λ+
λmax

εe−nE(~)Λ0 ,

where Λ+ and Λ0 depend on the Lyapunov exponents of A and were de�ned in section 3 rela-
tions (15) and (16)).

Recall that we have the relation 2π~N = 1. If we consider δ � ε, then the quantum entropy at
time 2m is bounded from below as follows:

(29) ∀m ≥ 1, h2m(ψN ,P) ≥ logN
λmax

((Λ0 − Λ+)(1− 2ε)− d0ε0)− log sup
|α|=2m

{Leb(P2
α)}+ C̃.

The quantity logN
λmax

((Λ0 − Λ+)(1− 2ε)− d0ε0) comes from the ~ term in the upper bound of theo-

rem 5.2. This estimate is our main simpli�cation compared with [3] as it will only use estimates of
gaussian integrals. We underline that this theorem plays a crucial role in our proof4 as it replaces
all the discussion of section 3 in [3].

5.3. Subadditivity of the quantum entropy. Now, we have to �nd a time m for which in-
equality (29) is optimal. It will depend on N and the last di�culty is that if m(N) grows too fast
with N , h2m(N)(ψN ,P) has no particular reason to tend to hKS(µ,A,P) in the semiclassical limit.
We have to be careful and we �rst verify that classical arguments from ergodic theory (subaddi-
tivity of the entropy) can be adapted for the quantum entropy as long as m ≤ logN/(2λmax). In
particular, we prove that the sequence 1

2m0
h2m0(ψN ,P) is `almost' decreasing until the Ehrenfest

time (see appendix C):

Lemma 5.3. We �x an integer m0. We denote mE(N) = [(1 − ε) logN/(2λmax)] and we have
then

1
2mE(N)

h2mE(N)(ψN ,P) ≤ 1
2m0

h2m0(ψN ,P) +R(m0, N),

where R(m0, N) is a remainder that satis�es limN→∞R(m0, N) = 0.

Combining this lemma with the entropic estimation (29), we have, for every �xed m0 > 0,
(30)

1
2m0

h2m0(ψN ,P) + R̃(m0, N) ≥
(

(Λ0 − Λ+)− d0ε0
1− 2ε

)
− 1

2mE(N)
log sup
|α|=2mE(N)

{Leb(P2
α)}.

where R̃(m0, N) is a remainder that satis�es ∀m0 ∈ N, limN→∞ R̃(m0, N) = 0.

4The other term on the lower bound will be estimate thanks to the computation of the entropy of the Lebesgue
measure.
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5.4. The conclusion. To conclude, it remains to bound the quantity sup|α|=2mE(N){Leb(P2
α)}.

To do this, we underline that, for each α of length 2m,

∀x ∈ supp(P2
α), Leb(P2

α) ≤ Leb(supp(P2
α)) ≤ Leb(B(x, 2δ0, 2m)),

where B(x, 2δ0, 2m) is the Bowen ball given by {y ∈ T2d : ∀j ∈ [−m,m− 1], d(Ajx,Ajy) < 2δ0},
where d is the metric induced on T2d by the Euclidean norm on R2d. By induction and using the
invariance of the metric d, we know that for every x in T2d and for every k in Z, A−kB(Akx, 2δ0) =
x + A−kB(0, 2δ0). Then, using the invariance by translation of the Lebesgue measure, we know
that for every x in T2d, Leb(B(x, 2δ0, 2m)) = Leb(B(0, 2δ0, 2m)). Combining [8] and theorem 8.15
from [29], we know that Leb(B(0, 2δ0, 2m)) ≤ Cδ0e−2m(Λ+−ε) (to avoid too many small parameters,
we choose the same ε as before). We use this last inequality and we make N tends to in�nity
in (30). It gives, for every positive m0,

1
2m0

h2m0(µ,P) ≥ Λ0 −
d0ε0

1− 2ε
− ε.

This last inequality holds for all (small enough) smoothing P of the partition Q. The lower bound
does not depend on the derivatives of P so we we can replace the smooth partition P by the true
partition Q in the de�nition of h2m0(µ,P). We let m0 tends to in�nity, then ε to 0 and �nally ε0
to 0. We �nd

hKS(µ,A) ≥ hKS(µ,A,Q) ≥ Λ0.�

6. The main estimate: proof of theorem 5.2

In this section, we want to prove theorem 5.2, i.e. give an estimate of c(A,n). We underline
that the spirit of the proof will be similar to the proof of estimates on the propagation of coherent
states under the quantum propagator [5], [13].

First, we use exact Egorov property for the Weyl quantization and we �nd

c(A,n) := sup
θ,θ′,ρ0,ρ′0∈T2d

{∥∥∥∥OpwN (Tθ(Gρ0
~ ) ◦An

2
)
OpwN

(
Tθ′(G

ρ′0
~ ) ◦A−n2

)∥∥∥∥
L(HN )

}
.

As OpwN (a) is the restriction of Opw~ (a) to HN and using the decomposition of L2(Rd) along the
HN (κ), we know that

(31) c(A,n) ≤ sup
θ,θ′,ρ0,ρ′0∈T2d

{∥∥∥∥Opw~ (Tθ (Gρ0
~ ) ◦An

2
)
Opw~

(
Tθ′(G

ρ′0
~ ) ◦A−n2

)∥∥∥∥
L(L2(Rd))

}
.

6.1. Strategy of the proof. For the sake of simplicity, we draw our strategy in the case where
θ = θ′ = ρ0 = ρ′0 = 0. In this case, we have to consider two symbols which are de�ned as in�nite
sums over Z2d

T0(G~) ◦An
2 (ρ) =

∑
r∈Z2d

G~(A
n
2 ρ+ r) and T0(G~) ◦A−n2 (ρ) =

∑
r∈Z2d

G~(A−
n
2 ρ+ r).

In the case where n = 0, we can observe that these two observables are in the class S(Λ++d0ε0)/(2λmax)
1
2

(1)
and so they are amenable to standard symbol calculus. The situation becomes more complicated
for n large of order | log ~|/λmax. The observables T0(G~) ◦ An

2 and T0(G~) ◦ A−n2 are sums of
Gaussian observables centered on ellipsoids whose lengths in the di�erent directions are in an
interval [~1−ν , ~ν ] with ν � 1. So the symbols we consider are not nice symbols amenable to
the usual symbol calculus of [11] as derivatives can explode with a rate of order ~−1+ν in some
directions.

Moreover, T0(G~)◦An
2 and T0(G~)◦A−n2 are de�ned as sums of Gaussian observables centered

on the lattice Z2d. Thanks to these two observations, when we will do the product of the two
corresponding operators, two terms of the sum which are not centered on the same element of Z2d
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will have a contribution O(~∞) (section 6.3). The main contribution in the norm of the operator
will then come from the operator∑

r∈Z2d

U~(r)∗Opw~
(
G~ ◦A

n
2
)
Opw~

(
G~ ◦A−

n
2
)
U~(r).

Again, this operator is de�ned as an in�nite sum and each operator in the sum is located at a dif-
ferent point of the lattice Z2d. Moreover, the symbols of these operators are located in ellipsoids
of small size ~ν . Combining these two observations to the Coltar-Stein theorem (section 6.4),
we will prove that the main contribution in the norm of the operator is given by the norm of
Opw~

(
G~ ◦A

n
2
)
Opw~

(
G~ ◦A−

n
2
)
. The reduction of the proof to the estimation of this operator

norm is explained in sections 6.3 and 6.4. The strategy follows standard estimations from semi-
classical analysis [11], [12]. The main di�erence with usual computations comes from the fact that
we have to deal with functions that do not belong to nice class of symbols and we have to verify
that the particular form of these functions allows to draw the same conclusions.

So the main di�culty will be to give an upper bound on
∥∥Opw~ (G~ ◦A

n
2
)
Opw~

(
G~ ◦A−

n
2
)∥∥

(section 6.2). To do this, we will do a precise analysis of the kernel of this operator. Precisely, we
can introduce the function

K(n)
~ (x, y, z) :=

1
(2π~)d

(∫
Rd
e
ı
~ 〈x−y,ξ〉G~ ◦A

n
2

(
x+ y

2
, ξ

)
dξ

)(∫
Rd
e
ı
~ 〈y−z,η〉G~ ◦A−

n
2

(
y + z

2
, η

)
dη

)
.

We have to understand the norm of the operator of kernel
∫

Rd K
(n)
~ (x, y, z)dy. This can be done

by a careful analysis of K(n)
~ (x, y, z) (i.e. understand where it is negligible or not): it will be the

subject of section 6.2.

6.2. The leading term. We start our estimate by giving a bound on the term centered on (0, 0)
in Z4d. It means that we will look at the norm of the operator
(32)

Opw~

(
G~
(
A
n
2 • −π~Jθ − ρ0

)
e2ıπ〈A

n
2 •−ρ0|θ〉

)
Opw~

(
G~
(
A−

n
2 • −π~Jθ′ − ρ′0

)
e2ıπ〈A−

n
2 •−ρ′0|θ

′〉
)∗
,

where θ, θ′, ρ0, ρ
′
0 ∈ T2d. Precisely, we will prove in this paragraph the following proposition:

Proposition 6.1. Let θ, θ′, ρ0 and ρ′0 be elements in T2d. Let ε be some (small) �xed positive
number. Then, for every positive δ and for n = nE(~) := [(1− ε)| log ~|/λmax], one has

‖(32)‖L(L2(Rd)) ≤ C|detB(~)|~−δ−ε
Λ+
λmax exp

− ∑
i:2λ+

i −λmax>0

di

(
λ+
i −

λmax

2

)
nE(~)

 ,

where Λ+ :=
∑r
i=0 diλ

+
i and where the constant C is uniform for θ, θ′, ρ0 and ρ′0 in T2d

Remark. We underline that this estimate is exactly the one of theorem 5.2. In the following
sections (6.3 and 6.4), we will verify that the main contribution comes from the term centered in
(0, 0) only if we restrict ourselves to 0 ≤ n ≤ nE(~). Moreover, it will be clear in the proof that the
bound is the smallest possible for n = nE(~) if we only consider the range of times 0 ≤ n ≤ nE(~).

6.2.1. First observations. For simplicity of notations, we introduce two auxiliary matrices

A+(n, ~) := Q−1
√

~B(~)A
n
2 Q and A−(n, ~) := Q−1

√
~B(~)A−

n
2 Q.

Recall that, using the notations of section 3, we have

A+(n, ~) =
(
~
λmax−ε0

2λmax A
n
2
0

)
�
(

~
λmax−λ

+
1

2λmax A
n
2
1

)
· · · �

(
~
λmax−λ+

r
2λmax A

n
2
r

)
and

A−(n, ~) =
(
~
λmax−ε0

2λmax A
−n2
0

)
�
(

~
λmax−λ

+
1

2λmax A
−n2
1

)
· · · �

(
~
λmax−λ+

r
2λmax A

−n2
r

)
.
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We would like now to write the norm we have to estimate into a simpler form using these new
notations. First, we underline that if we de�ne

V~u(x) := ~
d
4 u(
√

~x),

then, for any bounded operators Opw~ (a) and Opw~ (b) on L2(Rd), one has

‖Opw~ (a)Opw~ (b)‖L(L2(Rd)) =
∥∥∥Opw1 (a ◦ (

√
~IdR2d))Opw1 (b ◦ (

√
~IdR2d))

∥∥∥
L(L2(Rd))

.

Moreover, we can use that the matrix Q is an element of Sp(2d,R). In particular, its quantization
M(Q) (via the metaplectic representation) satis�es an exact Egorov property [11]. Using these

two observations and de�ning Γ̃θ(w) := G ◦ Q(w)e2ıπ〈w|θ〉, we can deduce that the norm of the
operator (32) is bounded by
(33)

2d|detB(~)| sup
θ,θ′∈[−M,M ]2d;ρ0,ρ′0∈R2d

∥∥∥Opw1 (Γ̃θ (A+(n, ~) • −ρ0)
)
Opw1

(
Γ̃θ′ (A−(n, ~) • −ρ′0)

)∗∥∥∥
L(L(Rd))

,

where M is a constant depending only on Q. Initially, we underline that the parameter θ was
varying in [0, 1]2d and with our change of variables, it has to vary in Q∗[0, 1]2d which remains in
a �xed compact set [−M,M ]2d. This is important to underline that this parameter θ can not be

arbitrarly large in ~ as when we will derive Γ̃θ, the upper bounds in the norm of the derivatives
will depend on the norm of θ.

6.2.2. Study of the evolution for positive times. To study the norm of the previous operator, we

will �rst rewrite the operator Opw1

(
Γ̃θ (A+(n, ~) • −ρ0)

)
under a more compact form. To do

this, de�ne now the Fourier transform of Γ̃θ(A+(n, ~) • −ρ0) along the impulsion variable, i.e. for
θ := (θ1, θ2) ∈ [−M,M ]2d and ρ0 := (ρ1

0, ρ
2
0) ∈ R2d,

Γn,+θ,ρ0
(x, ξ) :=

1
(2π)d

∫
Rd

Γ̃θ

(
A+(n, ~)

(
x
y

)
− ρ0

)
eı〈ξ|y〉dy.

With this notation, we can rewrite

∀u ∈ L2(Rd), Opw1
(

Γ̃θ (A+(n, ~) • −ρ0)
)
u(x) =

∫
Rd

Γn,+θ,ρ0

(
x+ y

2
, x− y

)
u(y)dy.

For future purpose, we need to have a precise estimate on the kernel of this operator. Using the
Oseledets decomposition of section 3, we introduce the notation (x, ξ) := (x̃0, · · · , x̃r, ξ̃0, · · · , ξ̃r) ∈
R2d where (x̃i, ξ̃i) is an element of R2di . Recall also that the matrix Ai that appears in the
�-decomposition of A is of the form diag(Di, D

−1∗
i ) for 1 ≤ i ≤ r. De�ne now, for 1 ≤ i ≤ r,

Ãi,+(n, ~) := diag

(
~
λmax−λ

+
i

2λmax D
n
2
i , ~

−
λmax−λ

+
i

2λmax D
n
2
i

)
and

Ã0,+(n, ~) := diag
(
~

1
2 IdRd0 , ~−

1
2 IdRd0

)
.

In the case i ≥ 1, these matrices di�er from the ones used to de�ne A+(n, ~) as the lower block
has been inversed. In the case i = 0, they are also di�erent because we used Id instead of A0.
They allow us to bound the kernel of the operator and to precise where it is large (or not):

Lemma 6.2. Let L be a positive integer and δ′ be some positive real number. There exists a con-
stant CL,δ′ > 0 such that for every θ in [−M,M ]2d and every ρ0 := (ρ̃1,0

0 , · · · , ρ̃1,r
0 , ρ̃2,0

0 , · · · , ρ̃2,r
0 ) ∈

R2d, one has, for every 0 ≤ n ≤ (1− ε)| log ~|/λmax and every (x, ξ) ∈ R2d,

r∏
i=0

(
1 +

∥∥∥∥Ãi,+(n, ~)
(
x̃i − ρ̃1,i

0 (~)
ξ̃i

)∥∥∥∥2
)L ∣∣∣Γn,+θ,ρ0

(x, ξ)
∣∣∣ ≤ CL,δ′~− d+δ′

2 exp
(

1
2

(
n+

log ~
λmax

)
Λ+

)
,

where Λ+ :=
∑r
i=1 diλ

+
i , ρ̃

1,i
0 (~) = ~−

λmax−λ
+
i

2λmax D
−n2
i ρ̃1,i

0 for 1 ≤ i ≤ r and ρ̃1,0
0 (~) = 0.
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Proof. In order to prove this lemma, one starts from the explicit form of Γn,+θ,ρ0
and in particular,

we write that, for i ≥ 1,

~
λmax−λ

+
i

2λmax A
n
2
i

(
x̃i
ỹi

)
−
(
ρ̃1,i

0

ρ2,i
0

)
=

 ~
λmax−λ

+
i

2λmax D
n
2
i

(
x̃i − ρ̃1,i

0 (~)
)

~
λmax−λ

+
i

2λmax D
−n2 ∗
i ỹi

− ( 0
ρ̃2,i

0

)
.

Regarding this expression, we make the change of variables ỹ′i = ~
λmax−λ

+
i

2λmax D
−n2 ∗
i ỹi in the integral

de�ning Γn,+θ,ρ0
. In the case i = 0, we put ỹ′0 = ~ 1

2 ỹ0. As the function Γ̃θ (used in the integral

de�ning Γn,+θ,ρ0
) is in the Schwartz class S(R2d) with semi-norms uniformly bounded (as θ vary in

a uniform compact set), we obtain the following upper bound on the quantity we want to bound
in the lemma:

CL~−
d
2 exp

(
1
2

(
n+

log ~
λmax

)
Λ+

)∫
Rd

(
1 +

∥∥∥∥An
2
0

(
~ 1

2 x̃0

ỹ0

)∥∥∥∥2
)−2d r∏

i=1

(1 + ‖ỹi‖2)−2ddy.

In order to bound this integral independently of n, we can use that for every ε′ > 0, there exists
a constant Cε′ > 0 such that, for every (x̃0, ξ̃0) in R2d0 , one has

∀n ≥ 0, C−1
ε′ e

−nε′‖(x̃0, ỹ0)‖ ≤
∥∥∥∥An

2
0

(
x̃0

ỹ0

)∥∥∥∥ ≤ Cε′enε′‖(x̃0, ỹ0)‖.

These estimates allow us to obtain the bounds we need (using also the fact that we restrict ourselves
to times n that are at most logarithmic in ~).�

6.2.3. Study of the evolution for negative times. In the previous paragraph, we studied the norm
of the operator for positive times. We can also rewrite

∀u ∈ L2(Rd), Opw1
(

Γ̃θ′ (A−(n, ~) • −ρ′0)
)
u(x) =

∫
Rd

Γ
−n,+
θ′,ρ′0

(
x+ y

2
, y − x

)
u(y)dy.

If we de�ne Ãi,−(n, ~) := Ãi,+(−n, ~) for 0 ≤ i ≤ r, we also have the following lemma:

Lemma 6.3. Let L be a positive integer and δ′ be some positive real number. There exists a con-
stant CL,δ′ > 0 such that for every θ in [−M,M ]2d and every ρ0 := (ρ̃1,0

0 , · · · , ρ̃1,r
0 , ρ̃2,0

0 , · · · , ρ̃2,r
0 ) ∈

R2d, one has, for every 0 ≤ n ≤ (1− ε)| log ~|/λmax and every (x, ξ) ∈ R2d,

r∏
i=0

(
1 +

∥∥∥∥Ãi,−(n, ~)
(
x̃i − ρ̃1,i

0

ξ̃i

)∥∥∥∥2
)L ∣∣∣Γ−n,+θ,ρ0

(x, ξ)
∣∣∣ ≤ CL,δ′~− d+δ′

2 exp
(

1
2

(
log ~
λmax

− n
)

Λ+

)
,

where Λ+ :=
∑r
i=1 diλ

+
i .

6.2.4. Estimate of the norm. In order to compute a bound on the norm of the operator, we consider
two elements φ1 and φ2 in L2(Rd) and we want to estimate

Cφ1,φ2(n) :=
〈
φ1,Op

w
1

(
Γ̃θ (A+(n, ~) • −ρ0)

)
Opw1

(
Γ̃θ′ (A−(n, ~) • −ρ′0)

)∗
φ2

〉
L2(Rd)

.

With the notations of the previous paragraphs, one has

Cφ1,φ2(n) :=
∫

R3d
Γn,+θ,ρ0

(
x+ y

2
, x− y

)
Γ
−n,+
θ′,ρ′0

(
z + y

2
, y − z

)
φ1(x)φ2(z)dxdydz.

Fix now some positive (small) number δ and introduce the two following subsets of R3d:

X+
δ (n) :=

{
(x, y, z) : ∀0 ≤ i ≤ r

∥∥∥∥Ãi,+(n, ~)
(

x̃i+ỹi
2 − ρ̃1,i

0

x̃i − ỹi

)∥∥∥∥2

≤ ~−δ
}

and

X−δ (n) :=

{
(x, y, z) : ∀0 ≤ i ≤ r

∥∥∥∥Ãi,−(n, ~)
(

z̃i+ỹi
2 − ρ̃

′1,i
0

ỹi − z̃i

)∥∥∥∥2

≤ ~−δ
}
.
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This de�nes two �cylinders�: the �rst one is along the z-direction and the second one along the
x-direction. We also de�ne the intersection of these two �cylinders� Xδ(n) := X+

δ (n) ∩ X−δ (n)
which is of �nite volume. Thanks to lemmas 6.2 and 6.3, we know that outside the set Xδ(n), the
kernel of the operator is small in ~. Precisely, we can prove the following lemma:

Lemma 6.4. Let δ be a (small) positive real number. Let φ1 and φ2 be two elements in L2(Rd).
One has, for 0 ≤ n ≤ (1− ε)| log ~|/λmax,∫

R3d\Xδ(n)

Γn,+θ,ρ0

(
x+ y

2
, x− y

)
Γ
−n,+
θ′,ρ′0

(
z + y

2
, y − z

)
φ1(x)φ2(z)dxdydz = O(~∞)‖φ1‖L2(Rd)‖φ2‖L2(Rd),

where the remainder is uniform for θ, θ′ ∈ [−M,M ]2d and ρ0, ρ
′
0 ∈ R2d.

Proof. Thanks to the Cauchy Schwarz inequality, it is su�cient to give an estimate on∫
R3d\Xδ(n)

∣∣∣∣Γn,+θ,ρ0

(
x+ y

2
, x− y

)
Γ
−n,+
θ′,ρ′0

(
z + y

2
, y − z

)∣∣∣∣ ∣∣φ1(x)
∣∣2 dxdydz.

According to lemmas 6.2 and 6.3, we know that for every integer L, there exists a constant CL > 0
such that, for every 0 ≤ n ≤ | log ~|/λmax and every (x, y, z) in R3d∣∣∣∣Γn,+θ,ρ0

(
x+ y

2
, x− y

)
Γ
−n,+
θ′,ρ′0

(
z + y

2
, y − z

)∣∣∣∣
≤ CL~−d−δ

r∏
i=0

(
1 +

∥∥∥∥Ãi,+(n, ~)
(

x̃i+ỹi
2 − ρ̃1,i

0

x̃i − ỹi

)∥∥∥∥2
)−L r∏

i=0

(
1 +

∥∥∥∥Ãi,−(n, ~)
(

z̃i+ỹi
2 − ρ̃

′1,i
0

ỹi − z̃i

)∥∥∥∥2
)−L

.

Under the extra assumption that (x, y, z) in R3d\Xδ, one knows that∣∣∣∣Γn,+θ,ρ0

(
x+ y

2
, x− y

)
Γ
−n,+
θ′,ρ′0

(
z + y

2
, y − z

)∣∣∣∣
≤ CL~δL−d

r∏
i=0

(
1 +

∥∥∥∥Ãi,+(n, ~)
(

x̃i+ỹi
2 − ρ̃1,i

0

x̃i − ỹi

)∥∥∥∥2
)−d r∏

i=0

(
1 +

∥∥∥∥Ãi,−(n, ~)
(

z̃i+ỹi
2 − ρ̃

′1,i
0

ỹi − z̃i

)∥∥∥∥2
)−d

.

In the allowed range of times n one can check that, for some uniform constant D, one has∫
R2d

r∏
i=0

(
1 +

∥∥∥∥Ãi,−(n, ~)
(

z̃i+ỹi
2 − ρ̃

′1,i
0

ỹi − z̃i

)∥∥∥∥2
)−d

dydz = O(~−D).

Combining these last two estimates, we �nd that, for every L > 0 (that can be chosen indepen-
dently of δ),∫

R3d\Xδ(n)

∣∣∣∣Γn,+θ,ρ0

(
x+ y

2
, x− y

)
Γ
−n,+
θ′,ρ′0

(
z + y

2
, y − z

)∣∣∣∣ ∣∣φ1(x)
∣∣2 dxdydz = O(~δL−D−d).�

6.2.5. The conclusion. According to the previous paragraph, we know that, modulo a remainder
of order O(~∞)‖φ1‖L2(Rd)‖φ2‖L2(Rd), the quantity Cφ1,φ2(n) is equal to

(34)

∫
Xδ(n)

Γn,+θ,ρ0

(
x+ y

2
, x− y

)
Γ
−n,+
θ′,ρ′0

(
z + y

2
, y − z

)
φ1(x)φ2(z)dxdydz.

For the sake of simplicity, we now restrict ourselves to the case5 n = nE(~) = [(1 − ε)| log ~|].
According to lemmas 6.2 and 6.3, one knows that there exists a constant C > 0 such that

|(34)| ≤ C~−d−δ+
Λ+
λmax

∫
Xδ(nE(~))

|φ1(x)φ2(z)|dxdydz.

We have then

(35) |(34)| ≤ C~−d−δ+
Λ+
λmax

(∫
Xδ(nE(~))

|φ1(x)|2dxdydz

) 1
2
(∫

Xδ(nE(~))

|φ2(z)|2dxdydz

) 1
2

,

5The reader can check that the bound is optimal in this case.
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We will estimate these two integrals and to do this, we will distinguish two cases:

• the indices i such that 2λ+
i − λmax > 0;

• the indices i such that 2λ+
i − λmax ≤ 0.

The case 2λ+
i − λmax > 0. De�ne, for i such that 2λ+

i − λmax > 0 and x̃i in Rdi , the sets

X+
δ (x̃i, nE(~)) :=

{
(ỹi, z̃i) :

∥∥∥∥Ãi,+(nE(~), ~)
(

x̃i+ỹi
2 − ρ̃1,i

0

x̃i − ỹi

)∥∥∥∥2

≤ ~−δ
}

and

X−δ (x̃i, nE(~)) :=

{
(ỹi, z̃i) :

∥∥∥∥Ãi,−(nE(~), ~)
(

z̃i+ỹi
2 − ρ̃

′1,i
0

ỹi − z̃i

)∥∥∥∥2

≤ ~−δ
}
.

The set X+
δ (x̃i, nE(~)) is of in�nite volume and the set X−δ (x̃i, nE(~)) has a larger volume than

the intersection X+
δ (x̃i, nE(~)) ∩ X−δ (x̃i, nE(~)). In particular, for every x̃i in Rdi , the optimal

bound on the volume is obtained by using the relations on x̃i− ỹi and on ỹi− z̃i and it is given by

Vol
(
X+
δ (x̃i, nE(~)) ∩X−δ (x̃i, nE(~))

)
≤ C̃~−diδ~

di

(
1−

λ
+
i

λmax

)
,

where C̃ is some uniform constant. If we do the same thing but exchange the roles played by x̃i
and z̃i, we can introduce the sets

X+
δ (z̃i, nE(~)) :=

{
(x̃i, ỹi) :

∥∥∥∥Ãi,+(nE(~), ~)
(

x̃i+ỹi
2 − ρ̃1,i

0

x̃i − ỹi

)∥∥∥∥2

≤ ~−δ
}

and

X−δ (z̃i, nE(~)) :=

{
(x̃i, ỹi) :

∥∥∥∥Ãi,−(nE(~), ~)
(

z̃i+ỹi
2 − ρ̃

′1,i
0

ỹi − z̃i

)∥∥∥∥2

≤ ~−δ
}
.

We verify that the optimal bound on the volume is given by the volume of X+
δ (z̃i, nE(~)), i.e.

Vol
(
X+
δ (z̃i, nE(~)) ∩X−δ (z̃i, nE(~))

)
≤ C̃~−

diδ

2 |det Ãi,+(nE(~), ~)|−1 = C̃~−diδ~di
λ

+
i

λmax .

It is the optimal bound we can get as we have 2λ+
i − λmax > 0 (the radii of the �cylinder�

X−δ (z̃i, nE(~)) explode with ~ and so provide worst upper bounds on the volume). These esti-

mates will allow us to treat the variables corresponding to indices i such that 2λ+
i − λmax > 0 in

the right hand side of (35).

The case 2λ+
i − λmax ≤ 0. We now treat the case of the other variables. We �x such a i.

We also use the same auxiliary sets for x̃i and z̃i in Rdi . For every x̃i in Rdi , we can verify that,
as in the previous case, the optimal bound on the volume is given by

Vol
(
X+
δ (x̃i, nE(~)) ∩X−δ (x̃i, nE(~))

)
≤ C̃~−diδ~

di

(
1−

λ
+
i

λmax

)
,

where C̃ is some uniform constant. The di�erence with the previous case is that, as 2λ+
i −λmax ≤ 0,

we can not obtain a better bound in the case of z̃i. It means that we have, for every z̃i, the optimal
bound on the volume is given by

Vol
(
X+
δ (z̃i, nE(~)) ∩X−δ (z̃i, nE(~))

)
≤ C̃~−diδ~

di

(
1−

λ
+
i

λmax

)
.

Combining the di�erent estimates. Using the previous de�nitions, we have the following
inequality∫
X̃δ(nE(~))

|φ1(x)|2dxdydz ≤
∫
X̃δ(nE(~))

|φ1(x)|2
r∏
i=0

Vol
(
X+
δ (x̃i, nE(~)) ∩X−δ (x̃i, nE(~))

)
dx̃0 · · · dx̃r.

With our previous estimates, we �nd that∫
X̃δ(nE(~))

|φ1(x)|2dxdydz ≤ C̃2~−dδ+d−
Λ+
λmax ‖φ1‖2L2(Rd).
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where we recall that Λ+ :=
∑r
i=1 diλ

+
i . For the other integral, we �nd that∫

X̃δ(nE(~))

|φ2(z)|2dxdydz ≤ C̃2~−dδ~
∑
i:2λ+

i
−λmax≤0

di

(
1−

λ
+
i

λmax

)
~
∑
i:2λ+

i
−λmax>0

di
λ

+
i

λmax ‖φ2‖2L2(Rd).

Finally, using (35), we �nd that, for n = nE(~),

|(34)| ≤ CC̃2~−(d+1)δ−ε Λ+
λmax exp

 ∑
i:2λ+

i −λmax>0

di

(
λ+
i −

λmax

2

)
log ~
λmax

 ‖φ1‖L2(Rd)‖φ2‖L2(Rd).�

6.3. Negligible terms. In the previous section, we have estimated the term that is supposed to
be the leading term in the operator norm. As explained in the strategy of the proof, we will prove
in this section that terms not centered at the same point of Z2d are negligible when estimating
the operator norm. First, for simplicity of notations, we introduce the following notations, for
w ∈ R2d,

F
(n)
+ (w) := G

(
B(~)A

n
2 (w − ρ0 − π~θ)

)
e2ıπ〈A

n
2 w|θ〉

and

F
(n)
− (w) := G

(
B(~)A−

n
2 (w − π~θ′)

)
e−2ıπ〈A−

n
2 w|θ′〉.

We underline that we have taken ρ′0 = 0 without loss of generality (see the expression (31) we
want to estimate). Moreover, we can also suppose that ρ0 is an element in [−1/2, 1/2]2d. We now
estimate the norm of two translated operators with r 6= r′. To do this, we write the exact formula
for the Moyal product (see [12]-chapter 4), for r and r′ in Z2d,

Ar,r′(w) := F
(n)
+ (•+r)]F (n)

− (•+r′)(w) =
∫

R4d
F

(n)
+ (w+w1+r)F (n)

− (w+w2+r′)e−
2ı
~ 〈w1,Jw2〉 dw1dw2

(π~)2d
.

Let χ(w1, w2) be a smooth function on R4d compactly supported in a small neighborhood of 0.
We �x some small positive number ε′ and we suppose that χ is equal to 1 on the set {‖w1‖2 ≤
ε′ and ‖w2‖2 ≤ ε′} and to 0 outside {‖w1‖2 ≤ 2ε′ and ‖w2‖2 ≤ 2ε′}. Using this cuto�, we can
split the integral in two parts

A1
r,r′(w) :=

∫
R4d

χ(w1, w2)F (n)
+ (w + w1 + r)F (n)

− (w + w2 + r′)e−
2ı
~ 〈w1,Jw2〉 dw1dw2

(π~)2d

and

A2
r,r′(w) :=

∫
R4d

(1− χ(w1, w2))F (n)
+ (w + w1 + r)F (n)

− (w + w2 + r′)e−
2ı
~ 〈w1,Jw2〉 dw1dw2

(π~)2d
.

We will now prove that these two symbols are in the class S−∞(1) with an explicit control on the
norm of the derivatives depending on r and r′.

6.3.1. Class of A2
r,r′ . We know that the integral de�ning A2

r,r′ is over variables (w1, w2) that satisfy

‖w1‖2 > ε′ or ‖w2‖2 > ε′.

Thanks to this last property, we are able to use the (non)-stationary phase property. To do this,
we introduce the operators

L :=
~
2ı

〈
w1

‖w1‖22
, Jdw2

〉
or L′ := − ~

2ı

〈
Jw2

‖w2‖22
, dw1

〉
.

Using the fact that L(e−
2ı
~ 〈w1,Jw2〉) = L′(e−

2ı
~ 〈w1,Jw2〉) = e−

2ı
~ 〈w1,Jw2〉 and performing integration

by parts, we �nd that the observable A2
r,r′(w) is a O(~∞) as long as 0 ≤ n ≤ 1−ε

λmax
| log ~| (the

derivatives of F
(n)
+ and F

(n)
− are bounded by some O(~−1+ ε

2 ) for this range of times). Moreover,
we can make other integrations by parts using the operators

Lr :=
1 + ~

2ı 〈w + r, Jdw2〉
1 + ‖w + r‖22

and L′r′ :=
1− ~

2ı 〈w + r′, dw1〉
1 + ‖w + r′‖22

.
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We verify then that, for every M in N, there exists a constant CM such that

∀r 6= r′ ∈ Z2d, ∀w ∈ R2d, |A2
r,r′(w)| ≤ CM~M

(1 + ‖w + r′‖2)2d(1 + ‖w + r‖2)2d
.

Making the same computations, we �nd the same properties hold for any derivative of A2
r,r′ . In

particular, we know that the symbol
∑
r 6=r′ A

2
r,r′ is in the class S−∞(1), as long as 0 ≤ n ≤

1−ε
λmax
| log ~|.

6.3.2. Class of A1
r,r′ . For ~ small enough and for w1 on the support of χ, we know that the

observable F
(n)
+ (w+w1+r) is gaussian and centered on a point in the ball B(r, 3ε′+1/2). Moreover,

for w2 on the support of χ, the other observable F
(n)
− (w + w2 + r′) is gaussian and centered on

a point in the ball B(r′, 3ε′) (again when ~ is small enough). As we made the assumption that
r 6= r′, we also know that ‖r− r′‖2 ≥ 1. If we restrict ouselves to 0 ≤ n ≤ (1− ε)| log ~|/λmax, the
variance of the two gaussian observables is of order at most O(~ε). These di�erent observations

tell us that the observable F
(n)
+ (w+w1 + r) is exponentially small in ~ when F

(n)
− (w+w2 + r′) is

large. The converse is also true. In particular, we know that |A1
r,r′(w)| = O(~∞) (uniformly for w

in R2d). In fact, we can even be more precise and we can verify that, for every L > 0,

(1 + ‖w + r′‖2)2d(1 + ‖w + r‖2)2d|A1
r,r′(w)| = O(~L),

where the constant involved is uniform for r 6= r′ in Z2d, w in R2d and 0 ≤ n ≤ (1−ε)| log ~|/λmax.
Finally, we underline that the same method allows to derive the same on the derivatives of A1

r,r′ .

In particular, the symbol
∑
r 6=r′ A

1
r,r′ is in the class S−∞(1).

6.3.3. Applying Calderón Vaillancourt theorem. Using the two previous paragraphs, we know that
the symbol

∑
r 6=r′ Ar,r′ is in the class S−∞(1). Thanks to the Calderón Vaillancourt theorem (see

equation (11)), we know that, as long as n ≤ 1−ε
λmax
| log ~|,∥∥∥∥∥∥Op~

∑
r 6=r′

Ar,r′

∥∥∥∥∥∥
L(L2(Rd))

= O(~∞).

Finally, we can derive that∥∥∥Opw~ (Tθ(G~ ◦A
n
2 )ρ0)Opw~ (Tθ′(G~ ◦A−

n
2 )ρ

′
0)∗
∥∥∥
L(L2(Rd))

= 2d|detB(~)|
∥∥∥Opw~ (T0

(
F

(n)
+ ]F

(n)
−

))∥∥∥
L(L2(Rd))

+O(~∞).

6.4. Applying Coltar-Stein theorem. To summarize, we have shown that in order to prove
theorem 5.2, we only need to get an estimate on the norm of the operator

Opw~ (T0(F (n)
+ ]F

(n)
− )) =

∑
r∈Z2d

U~(r)Opw~ (F (n)
+ ]F

(n)
− )U~(r)∗,

where we used the notations of the previous section. Moreover, proposition 6.1 shows that the norm
of Opw~ (F+]F−) is bounded by the expected quantity. It remains to show that these two properties

are su�cient to prove the main theorem. To do this, we de�ne Ar := U~(r)Opw~ (F (n)
+ ]F

(n)
− )U~(r)∗.

Our goal is to give a bound on the two following quantities:

sup
r

∑
r′∈Z2d

‖A∗rAr′‖
1
2
L(L2(Rd))

and sup
r

∑
r′∈Z2d

‖ArA∗r′‖
1
2
L(L2(Rd))

.

If we are able to prove that both quantities are bounded by the same quantity C, Coltar-Stein
theorem will tell us that C is a bound on the norm of A :=

∑
r∈Z2d Ar [11]. Regarding this goal,

we write

A∗rAr′ = Opw~

(
(F (n)
− )r

)∗
Opw~

(
(F (n)

+ )r](F (n)
+ )r

′
)
Opw~

(
(F (n)
− )r

′
)
,
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where (F (n)
+ )r(ρ) := F

(n)
+ (ρ+r). Proceeding as in paragraph 6.3 and applying Calderón-Vaillancourt

theorem, we �nd that, for every M in N, there exists a constant CM , such that

∀ r 6= r′, ‖A∗rAr′‖
1
2
L(L2(Rd))

≤ CM~M (1 + ‖r − r′‖2)−2d.

In particular, it implies that, for every r ∈ Z2d,∑
r′∈Z2d

‖A∗rAr′‖
1
2
L(L2(Rd))

=
∥∥∥Opw~ (F (n)

− )∗Opw~ (F (n)
+ )∗Opw~ (F (n)

+ )Opw~ (F (n)
− )

∥∥∥ 1
2

L(L2(Rd))
+O(~∞).

Proposition 6.1 gives a bound on the norm Opw~ (F (n)
+ )Opw~ (F (n)

− ). We �nd then that, for n =
nE(~) := [(1− ε)| log ~|/λmax],

∀r ∈ Z2d,
∑
r′∈Z2d

‖A∗rAr′‖
1
2
L(L2(Rd))

≤ C~−δ−ε
Λ+
λmax exp

− ∑
i:2λ+

i −λmax>0

di

(
λ+
i −

λmax

2

)
nE(~)

 .

By Coltar-Stein theorem (lemma 7.10 in [11]), we can deduce that, for n = nE(~),∥∥∥Opw~ (T0(F (n)
+ ]F

(n)
− ))

∥∥∥
L(L2(Rd))

≤ C~−δ−ε
Λ+
λmax exp

− ∑
i:2λ+

i −λmax>0

di

(
λ+
i −

λmax

2

)
nE(~)

 .�

Appendix

Appendix A. Proof of lemma 4.1

In this appendix, we give a proof of lemma 4.1. Precisely, we have to verify that the symbols a
and a ? (G~]G~) have the same principal symbol. Using the de�nition of the Moyal product [12],
we can compute an exact expression of the symbol

a ? (G~]G~) (ρ) =
∫

R2d a(ρ0)
∫

R4d e
− 2ı

~ σ(w1,w2)G~(ρ− ρ0 + w1)G~(ρ− ρ0 + w2)dw1dw2
(π~)2d dρ0

=
∫

R2d a(ρ0)
∫

R4d e
−2ıπσ(w1,w2)G~(ρ− ρ0 +

√
π~w1)G~(ρ− ρ0 +

√
π~w2)dw1dw2dρ0

=
∫

R2d a(ρ+B(~)−1ρ0)K~(ρ0)dρ0,

where

K~(ρ0) :=
1

|detB(~)|

∫
R4d

e−2ıπσ(w1,w2)G~(
√
π~w1 −B(~)−1ρ0)G~(

√
π~w2 −B(~)−1ρ0)dw1dw2.

We start by computing
∫

R2d e
−2ıπσ(w1,w2)G(

√
π~B(~)w1−ρ0)dw1. Changing the variables, we �nd

that it is equal to

e
−2ıπ

〈
Jw2,(π~)−

1
2B(~)−1ρ0

〉
|detB(~)|(π~)d

∫
R2d

e
−2ıπ

〈
w1,(π~)−

1
2B(~)−1∗Jw2

〉
G(w1)dw1.

We �nd then

K~(ρ0) =
2d

|detB(~)|

∫
R2d

e−2ıπ〈Jw2,B(~)−1ρ0〉G
(
B(~)−1∗Jw2

)
G (π~B(~)w2 − ρ0) dw2

We make a change of variables to �nd that

K~(ρ0) = 2d
∫

R2d
e−2ıπ〈ρ1,ρ0〉G (ρ1)G (π~B(~)JB(~)∗ρ1 − ρ0) dρ1.

This integral de�nes an observable with a Gaussion shape that could be made explicit using for
instance the appendix of [15] but this explicit form is not really simple. In order to verify that
a and a ? (G~]G~) have the same principal symbol, we write the Taylor formula with integral
remainder at the point ρ and �nd that

a ? (G~]G~) (ρ) = a(ρ)
∫

R2d
K~(ρ0)dρ0 +

∫
R2d

K~(ρ0)
∫ 1

0

(
dρ+tB(~)−1ρ0a

)
.(B(~)−1)ρ0dtdρ0.
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We can verify that
∫

R2d K~(ρ0)dρ0 = 1. In fact, one has∫
R2d

∫
R2d

e−2ıπ〈ρ1,ρ0〉G (ρ1)G (π~B(~)JB(~)∗ρ1 − ρ0) dρ1dρ0 =
∫

R2d
G(ρ1)2e2ıπ〈ρ1,A(~)ρ1〉dρ1,

whereA(~) := π~B(~)JB(~)∗. We note thatA(~) is antisymmetric and we �nd that
∫

R2d K~(ρ0)dρ0 =
1.
Finally, we recall that we have that ‖B(~)−1‖∞ = O(~γ). We have to check that for a polynomial
P (ρ0) independent of ~, the term

∫
R2d |P |(ρ0)|K~|(ρ0)dρ0 is uniformly bounded independently of

~. This quantity is bounded by

2d
∫

R2d

∫
R2d

G (ρ1)G (π~B(~)JB(~)∗ρ1 − ρ0) |P |(ρ0)|dρ0dρ1.

Using the fact that ‖π~B(~)JB(~)∗‖∞ is uniformly bounded (as λ+
i ≤ λmax), we have the expected

property. In particular, we can use Calderón-Vaillancourt theorem (property (11)) to derive that

‖Opw~ (a)−Op+
~ (a)‖L2(Rd)→L2(Rd) = Oa(~γ).�

Appendix B. Proof of proposition 4.2

In this appendix, we prove proposition 4.2 on our quantization Op+
κ . This proposition was

crucial in our proof as it ensures that Op+
κ is nonnegative and has the same nice (`product')

structure as the anti-Wick quantization. We start the proof of this proposition by computing the
n-th Fourier coe�cient of T0(F 1]F2) (where ] is the Moyal product of two observables [11]). We
show that:

Lemma B.1. Let F1 and F2 be two elements in S(R2d). Then, we have, for any n in Z2d,

(T0(F 1]F2))n :=
∫

T2d
e2ıπ〈ρ,Jn〉T0(F 1]F2)(ρ)dρ =

(∫
R2d

e
ıπ
N 〈n,ρ〉F̂ 1 (−Jn+ ρ) F̂2 (−ρ) dρ

)
,

where F̂∗(ρ) :=
∫

R2d F∗(w)e−2ıπ〈ρ,w〉dw is the standard Fourier transform of F∗.

Proof. Using exact expression of the Moyal product from [12] (see also [11]), we write

T0(F 1]F2)(ρ) =
∑
r∈Z2d

∫ ∫
R4d

e−2ıπ〈ρ1,Jρ2〉F 1

(
ρ1√
2N

+ ρ+ r

)
F2

(
ρ2√
2N

+ ρ+ r

)
dρ1dρ2.

Using Poisson formula, we �nd that

T0(F 1]F2)(ρ) =
∑
r∈Z2d

(∫ ∫ ∫
R6d

e−2ıπ(〈ρ1,Jρ2〉+〈r,ρ′〉)F 1

(
ρ1√
2N

+ ρ′
)
F2

(
ρ2√
2N

+ ρ′
)
dρ1dρ2dρ

′
)
e2ıπ〈r,ρ〉.

We recall that we are interested in the (Jn)-th Fourier coe�cient of T0(F 1]F2). Under the previous
form, we immediatly check that

(T0(F 1]F2))n =
(∫ ∫ ∫

R6d
e−2ıπ(〈ρ1,Jρ2〉−〈Jn,ρ′〉)F 1

(
ρ1√
2N

+ ρ′
)
F2

(
ρ2√
2N

+ ρ′
)
dρ1dρ2dρ

′
)
.

We �rst make the integration into the ρ2 variable and we �nd that

(T0(F 1]F2))n =
(∫ ∫

R4d
e2ıπ(〈Jn,ρ′〉−〈

√
2NJρ1,ρ

′〉)F 1

(
ρ1√
2N

+ ρ′
)

(2N)dF̂2

(
−
√

2NJρ1

)
dρ1dρ

′
)
.

Then, making the integration against the ρ′ variable, we �nd that

(T0(F 1]F2))n =
(∫

R2d
e

2ıπ√
2N
〈
√

2NJρ−Jn,ρ〉
F̂ 1

(
−Jn+

√
2NJρ

)
(2N)dF̂2

(
−
√

2NJρ
)
dρ

)
.

An obvious change of variables allows to �nd

(T0(F 1]F2))n =
(∫

R2d
e
ıπ
N 〈n,ρ〉F̂ 1 (ρ− Jn) F̂2 (−ρ) dρ

)
.�
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Proof of proposition 4.2. Under the previous form, we can verify that

(T0(F 1]F2))n =
∑
r∈Z2d

(∫
T2d

e
ıπ
N 〈n,Jr〉e

ıπ
N 〈n−r,ρ〉F̂ 1 (ρ− J(n− r)) e ıπN 〈r,ρ〉F̂2 (−ρ− Jr) dρ

)
.

We introduce the Z2d periodic function

T̃θ(F2)(ρ) :=
∑
r∈Z2d

e
ıπ
N 〈r,θ〉F̂2 (−θ − Jr) e−2ıπ〈Jr,ρ〉.

Using the Poisson formula, it veri�es also

(36) T̃θ(F2)(ρ) = Tθ(F2)(ρ) =
∑
r∈Z2d

F2

(
r + ρ− Jθ

2N

)
e2ıπ〈r+ρ,θ〉.

With these de�nitions, we have

Tθ(F1)(ρ) :=
∑
r∈Z2d

F 1

(
r + ρ− Jθ

2N

)
e−2ıπ〈r+ρ,θ〉.

Using these new notations, we have shown the following equality which is exactly proposition 4.2:

Opw~ (T0(F 1]F2)) =
∫

T2d
Opw~ (Tθ(F1))∗ ◦Opw~ (Tθ(F2))dθ.�

Appendix C. Proof of lemma 5.3

To complete the proof of theorem 1.1, it remains to prove lemma 5.3. To prove this lemma,
we use classical properties of the entropy of a partition [29] (chapter 4) that we brie�y prove here
(see theorem 4.3 and 4.9 in [29] for details). We �x three integers p, n and m. To simplify our
notations, we de�ne the p-translated entropy as follows:

hp2m(ψN ,P) :=
∑
|α|=2m

η
(
µN (P2

α ◦Ap)
)
.

Mimicking the usual proof for the subadditivity of the entropy of a partition [29] (chapter 4), we
write

hp2(n+m)(ψN ,P) = −
∑
|α|=2(n+m) µ

N
(∏n+m−1

j=−m−n P
2
αj ◦A

j+p
)

logµN
(∏m+n−1

j=−m+n P
2
αj ◦A

j+p
)

+
∑
|α|=2(n+m) η

(
µN
(∏m+n−1

j=−m−n P
2
αj
◦Aj+p

)
µN
(∏m+n−1

j=−m+n P
2
αj
◦Aj+p

))µN (∏m+n−1
j=−m+n P

2
αj ◦A

j+p
)
.

Using the concavity of the function η and the property of partition of identity (25), we can write
the following inequality:

hp2(n+m)(ψN ,P) ≤
∑
|α|=2m

η

µN
 m+n−1∏
j=−m+n

P 2
αj ◦A

j+p

+
∑
|α|=2n

η

µN
−m+n−1∏
j=−m−n

P 2
αj ◦A

j+p

 .

Under a more compact form, it can be reformulated as follows:

Lemma C.1. Using previous notations, one has

(37) ∀p ∈ N, ∀n ≥ 0, ∀m ≥ 0, hp2(n+m)(ψN ,P) ≤ hn+p
2m (ψN ,P) + h−m+p

2n (ψN ,P).

We �x now two integers m0 < m and write the Euclidean division m = qm0 + r where 0 ≤ r <
m0. We use inequality (37) to derive

h2m(ψN ,P) ≤ hr2qm0
(ψN ,P) + h−qm0

2r (ψN ,P).

We apply one more time inequality (37) to �nd

h2m(ψN ,P) ≤ hr+m0
2(q−1)m0

(ψN ,P) + h
−(q−1)m0+r
2m0

(ψN ,P) + h−qm0
2r (ψN ,P).

By induction, we �nally have the following corollary:
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Corollary C.2. Using previous notations, one has

(38) h2m(ψN ,P) ≤ h−qm0
2r (ψN ,P) +

q∑
j=1

h
−(q+1−2j)m0+r
2m0

(ψN ,P).

Proof of lemma 5.3. This last inequality is true for any integers (m,m0, r) satisfying m =
qm0 + r. We can now give the proof of lemma 5.3. To do this, we �x a positive integer m0 and
consider (q, r) in N×N satisfying qm0 + r = mE(N) where 0 ≤ r < m0. Recall that according to
Egorov property (proposition 4.3), one has, for every a in C∞(T2),

∀ |t| ≤ mE(N), µN
(
a ◦At

)
= µN (a) + oa(1), as N → +∞.

We underline that the remainder tends to 0 uniformly for t in the allowed interval. We now apply
this property to P2

α where |α| = 2m0. Using the continuity of η, we �nd that

∀ |t| ≤ mE(N), η
(
µN
(
P2
α ◦At

))
= η

(
µN (P2

α)
)

+ oα(1), as N → +∞.
As m0 is �xed, we can deduce from the de�nition of hp2m0

(ψN ,P) that

∀ |p| ≤ mE(N), hp2m0
(ψN ,P) = h2m0(ψN ,P) + om0(1), as N → +∞.

We can apply this result in inequality (38). In this case, one has that p = −(q+1−2j)m0+r belongs
to [−mE(N),mE(N)]. As |qm0| ≤ mE(N), we can also write h−qm0

2r (ψN ,P) = h2r(ψN ,P) + or(1)
as N tends to in�nity. Finally, we �nd that

h2mE(N)(ψN ,P) ≤ h2r(ψN ,P) + qh2m0(ψN ,P) + (q + 1)R′(m0, N),

where R′(m0, N) is a remainder that satis�es ∀m0 ∈ N, limN→∞R′(m0, N) = 0. The conclusion
of the lemma follows from this last statement.�
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