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Abstract. We study the spectrum of a quantum star graph with a non-selfadjoint Robin
condition at the central vertex. We first prove that, in the high frequency limit, the
spectrum of the Robin Laplacian is close to the usual spectrum corresponding to the
Kirchhoff condition. Then, we describe more precisely the asymptotics of the difference
in terms of the Barra-Gaspard measure of the graph. This measure depends on the
arithmetic properties of the lengths of the edges. As a by-product, this analysis provides
a Weyl Law for non-selfadjoint quantum star graphs and it gives the asymptotic behaviour
of the imaginary parts of the eigenvalues.

1. Introduction

1.1. Quantum star graphs. We consider a compact metric star graph Γ. It is defined, for
some integer N ě 2, by a set of N edges e1, . . . , eN of respective lengths `1, . . . , `N P R˚` “
p0,`8q, and by pN ` 1q vertices v, v1, . . . , vN . We set ` “ p`1, . . . , `Nq. For each j P J1, NK
(we denote by J1, NK the set t1, 2, . . . , Nu), the edge ej is identified with the interval r0, `js,
the end of ej parametrized by 0 is identified with vj and the end parametrized by `j is
identified with v. Then all the egdes have a common end (the vertex v).

A quantum star graph is a metric star graph on which we consider a differential operator.
One typically considers the Laplacian on each edge with some boundary conditions at the
vertices. In this article, we aim at understanding the spectrum of these operators when
we impose boundary conditions of non-selfadjoint type. More precisely, let α P C. We
consider the set DompHαq of functions u “ pujq1ďjďN belonging to the Sobolev space H2pΓq
(each uj belongs to H2p0, `jq, see (2.1) below) and satisfying the following conditions (see
Figure 1):

(i) u vanishes on v1, . . . , vN :

@j P J1, NK, ujp0q “ 0. (1.1)

(ii) u is continuous at the vertex v:

@j, k P J1, NK, ujp`jq “ ukp`kq. (1.2)

(iii) At v we have a Robin-type condition on the derivatives of u:

N
ÿ

j“1

u1jp`jq ` αupvq “ 0, (1.3)

where upvq is the common value of ujp`jq, 1 ď j ď N .
1
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Notice that for α “ 0 we recover the usual Kirchhoff (or Neumann) condition in (1.3). Then,
for α P C, we define on the domain DompHαq the operator Hα which maps u “ pujq1ďjďN
to

Hαu “ p´u
2
jq1ďjďN . (1.4)

A more complete definition of this operator will be given in Section 2.1 below. The
purpose of this paper is to investigate the spectral properties of Hα. Note that Hα can also
be viewed as a Schrödinger type operator with a (possibly complex valued) Dirac potential
at the central vertex.

Figure 1. The quantum star graph with N “ 6 edges.

1.2. Main results. It is known (see [BK13] for a general overview about quantum graphs)
that the spectrum of the selfadjoint operator H0 is given by a sequence of positive eigen-
values. We denote them by

0 ă λ1p0q ď λ2p0q ď . . . ď λnp0q ď . . .

where each eigenvalue is repeated according to its multiplicity. Then, for n P N˚, we denote
by τn the positive square root of λnp0q.

We recall (see for instance [BK13, Lemma 3.7.4] or Remark 2.8 below) that we have the
following Weyl Law. If for R1 ă R2 we set

N0pR1, R2q “ #tn : R1 ă τn ď R2u,

then there exists CΓ ą 0 independant of R1 and R2 such that
ˇ

ˇ

ˇ

ˇ

N0pR1, R2q ´
|Γ|

π
pR2 ´R1q

ˇ

ˇ

ˇ

ˇ

ď CΓ, (1.5)

where we have set

|Γ| “
N
ÿ

j“1

`j.
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This gives in particular
τn
n
ÝÝÝÝÑ
nÑ`8

π

|Γ|
. (1.6)

These properties are also known for any α P R, but the corresponding proofs strongly
rely on the selfadjointness of Hα. Our first purpose here is to verify that the spectrum of
the operator Hα has in fact similar general properties for any α P C. We begin with the
nature of the spectrum for a general α P C:

Proposition 1.1. For all α P C, the spectrum of Hα consists of infinitely many isolated
eigenvalues with finite multiplicities. Moreover, the geometric multiplicity of each eigen-
value coincides with its algebraic multiplicity.

Then we turn to the Weyl Law for Hα. The eigenvalues of Hα are denoted by λnpαq,
n P N˚. They are repeated according to their algebraic multiplicities and ordered with the
convention that

@n P N˚, Repλnpαqq ď Repλn`1pαqq.

Then, for n P N˚, we denote by znpαq a square root of λnpαq with non-negative real part.
In particular, znp0q “ τn.

For R1, R2 P R with R1 ă R2 we set

NαpR1, R2q “ #tn : R1 ă Repznpαqq ď R2u.

Note that the znpαq, n P N˚, are not necessarily ordered by non-decreasing real parts, but
we will see that this is in fact the case for n large enough. The next result shows that we
recover for any α P C the same Wayl Law as in the selfadjoint case. For r ą 0, we denote
by Dprq the closed disk centered at 0 and with radius r in C.

Proposition 1.2 (Weyl Law). Let r ą 0. Then there exists C ą 0 such that for α P Dprq
and R1, R2 P R with R1 ă R2, we have

ˇ

ˇ

ˇ

ˇ

NαpR1, R2q ´
|Γ|

π
pR2 ´R1q

ˇ

ˇ

ˇ

ˇ

ď C.

The proof of Proposition 1.2 will rely on the fact that for large n the eigenvalue λnpαq
is in fact, in a suitable sense, close to λnp0q. In the following, we aim at describing more
precisely the asymptotic behaviour of the difference between λnp0q and λnpαq. For n P N˚,
we set

δnpαq “ λnpαq ´ λnp0q. (1.7)

Our main result is the following description of the asymptotics of δnpαq:

Theorem 1.3. There exists a probability measure µ` supported in r0, 2|Γ|´1s such that, for
every α P C and for every continuous function f on C,

1

n

n
ÿ

k“1

fpδkpαqq ÝÝÝÝÑ
nÑ`8

ż 2
|Γ|

0

fpsαq dµ`psq.

Moreover,
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(i) if `j{`1 P Q for all j P J1, NK, then µ` is a linear combination of Dirac masses, one
of them being carried by s “ 0;

(ii) if κ ¨ ` ‰ 0 for all κ P ZNz t0u, then the measure µ` is absolutely continuous with
respect to the Lebesgue measure and its support is exactly r0, 2|Γ|´1s.

Note that Impλnpαqq “ Impδnpαqq, so the asymptotic properties of δnpαq give in particu-
lar the asymptotic properties of the imaginary parts of the eigenvalues of Hα.

The measure which appears in Theorem 1.3 will be defined in terms of the measure
introduced by Barra and Gaspard in [BG00] to describe the asymptotics of λn`1p0q´λnp0q.
It is in fact more specifically connected to the measure appearing in the related result of
Keating, Marklof and Winn on spectral determinants [KMW03, Th. 3]. As in this reference,
it turns out that the size of δnpαq is in fact closely related to the distance between λnp0q
and the rest of the spectrum of H0. In particular we have the following estimate:

Proposition 1.4. Let r ą 0. Then there exists nr P N˚ such that for all α P Dprq and
n ě nr we have

|δnpαq| ď dist
`

λnp0q, SppH0qz tλnp0qu
˘

.

With the Weyl Law (1.5), this implies in particular that the sequence pδnpαqqnPN˚ is
bounded (uniformly in α P Dprq).

In the proofs of Proposition 1.2 and Theorem 1.3, we will be more precise about the
properties of δnpαq in different directions, which we describe in the next results. The
following result is already known for α real:

Proposition 1.5. Assume that there exist j, k P J1, NK such that j ‰ k and `j{`k P Q. Let

τ P
πZ
`j
X
πZ
`k
.

Then τ 2 is an eigenvalue of Hα for any α P C. Moreover, its multiplicity does not depend
on α.

As we shall see in the proof of Theorem 1.3, 0 is always in the support of the measure
µ`. This means that one can always find a subsequence of eigenvalues pλnkpαqqkě1 such
that nk Ñ `8 and δnkpαq Ñ 0. We will in fact be slightly more precise on that issue:

Proposition 1.6. Let α P C. Then, there exists an increasing sequence pnkqkPN˚ in N˚
such that

δnkpαq “ O
kÑ`8

ˆ

1

λnkp0q

˙

.

Observe that, under the assumption of Proposition 1.5, one has in fact δnkpαq “ 0 along
an increasing subsequence. Hence, Proposition 1.6 is meaningful in the case where κ ¨ ` ‰ 0
for every κ P ZNzt0u. In that case, Theorem 1.3 also implies that for every s P r0, 2|Γ|´1s

there exists a subsequence of eigenvalues pλnkpαqqkě1 such that nk Ñ `8 and δnkpαq Ñ sα.
Under appropriate Diophantine assumptions on `, our proof is slightly more quantitative
on that particular question:



SPECTRUM OF A NON-SELFADJOINT QUANTUM STAR GRAPH 5

Proposition 1.7. There exists Ω Ă pR˚`qN such that pR˚`qNzΩ has null Lebesgue measure

and if ` P Ω then the following assertion holds. Let ε ą 0 and α P C. Let s P r0, 2 |Γ|´1
s.

Then there exists an increasing sequence pnkqkPN˚ in N˚ such that

δnkpαq “ sα ` O
kÑ`8

˜

1

λnkp0q
1

2N
´ε

¸

.

1.3. Related literature on non-selfadjoint problems. The properties of selfadjoint
operators on compact graphs are now well understood (see [BK13]), but much less seems
to be known on the spectrum of non-selfadoint Laplacian. Yet, some authors have already
considered the related problem of the damped wave equation on graphs, which motivated
our analysis. More precisely, if we consider on Γ the problem

$

’

’

’

&

’

’

’

%

B2
t ujpt, xjq ´ B

2
xj
ujpt, xjq “ 0, @t ě 0, @j P J1, NK, @xj P p0, `jq,

ujpt, 0q “ 0 @t ě 0, @j P J1, NK,
ujpt, `jq “ ukpt, `kq, @t ě 0, @j, k P J1, NK,
řN
j“1 Bxjujpt, `jq ` aBtupt, vq “ 0, @t ě 0,

(1.8)

with some initial conditions pup0q, Btup0qq “ pu0, u1q P H1pΓq ˆ L2pΓq. The first results on
that direction concern the stabilization of coupled strings joint by a damper (this can be
seen as a star-graph with N “ 2 edges). This is related to the accumulation of eigenvalues
on the real axis. In [CCW87] it is shown that, depending on the damper and boundary
conditions, we may or may not have exponential decay to equilibrium. In [Liu88, GZ97],
the lengths are still equal to 1 but the wave speeds can be different on the two edges.
The asymptotic properties of a wave (the energy does not go to 0, it goes strongly to 0,
it decays uniformly exponentially to 0) are then described, depending on the arithmetic
properties of the ratio of these wave speeds. Similar stabilization results for the wave
equation were also obtained on star graphs [AJ04, AJK05] (see also [NV07]) and on more
general graphs [VZ09, Zua13].

The spectrum of the damped wave equation has been studied in [AMN13] (star-graph)
and [FL17] (graph with general topology). In both cases, the lengths of the edges are
rationally dependant. As in the present paper, the result in [FL17] is the description of the
distribution of high frequency eigenvalues. However, the damping is on each edge, and not
at the vertices as in the present work or as in (1.8). In these references, it is proved that
this asymptotics only depends on the mean value of the damping on each edge. Moreover,
there are only a finite number of high frequency spectral abscissa. With the notation of our
Theorem 1.3, this means that the measure µ` is given by a finite sum of Dirac measures.
This is exactly what we recover with a Robin vertex condition for rationnaly dependant
lengths (case (i) of Theorem 1.3). We also refer to [GX09] for a discussion about the basis
properties of the (generalized) eigenfunctions.

We expect our study to be a first a step towards the understanding of the spectrum of
the damped wave equation (1.8) on graphs. Here we consider a Laplacian with a fixed
Robin coefficient. The operator corresponding to the wave equation with damping at the
central vertex would be of the same form with a frequency dependent Robin coefficient.
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Indeed, if we look for stationary solutions to the damped wave equation (1.8) of the form
ujpt, xjq “ e´itzwjpxjq, then w “ pwjq1ďjďN has to be a solution of the problem

H´iazw “ z2w.

This kind of problems are left for further works. Other classical and related non-selfadjoint
problems on graphs are the ones concerned with the distribution of resonances on non-
compact quantum graphs, see [EL10, DEL10, DP11, LZ16, CT18] and references therein.
For the wave equation on some non-compact star-graph, we also refer to [AJK16].

Our results can also be compared to questions that appear in the context of the Laplace
operator on a compact Riemannian manifold pM, gq. In the selfadjoint case, we can mention
the study of the Schrödinger operator´∆Sn`a, on the sphere Sn endowed with its canonical
metric where a is a smooth real-valued function. In that case, eigenvalues are organized in
a sequence of clusters and the deviation between the eigenvalues for a ” 0 and for a general
a was described by Weinstein in [Wei77] in terms of the Liouville measure. When α P R,
our Theorem 1.3 can be thought as an analogue of this result where the potential would
be a Dirac mass at the central vertex of the star graph. Yet, as we shall see in our proof,
the measure µ` that we obtain in the case of a graph is of completely different nature.

The spectral properties of the damped wave equation have also attracted a lot of atten-
tion on compact manifolds. See for instance the results of Sjöstrand [Sjö00], Hitrik [Hit02],
Asch-Lebeau [AL03] and Hitrik-Sjöstrand [HS04]. Sjöstrand proved that the complex eigen-
values of the damped wave operator verify a Weyl Law in the high frequency limit and he
considered the distribution of the imaginary parts of their square roots. He showed that
any limit distribution is supported on an interval ra´, a`s where a˘ corresponds to the
infimum (resp. supremum) of the average of the (smooth) damping function ´a along a
typical orbit of the geodesic flow. In particular, in the case of flat tori or of negatively
curved manifolds, both quantities are equal to the average of ´a against the normalized
volume on M . In other words, the limit distribution of the imaginary parts is the Dirac
mass at a`. For more general manifolds, identifying the limit measure remains an open
problem – see for instance [Hit02, AL03, HS04] for results in the case of the sphere. These
results of Sjöstrand remain true for non-selfadjoint Schrödinger operators with a weaker
non-selfadjoint perturbation, e.g. ∆g` ia. In the irrational case (case (ii) of Theorem 1.3),
our limit measure is supported on an interval and it is in some sense opposite to the case of
flat tori and of negatively curved manifolds, where the limit measure is carried by a single
point.

1.4. The case of more general graphs. In principle, the results presented in this article
could be extended to more general graphs that are not star-shapped. Yet, we emphasize
that such an extension would a priori require to make some restriction on the choice of
the metric (i.e. on the choice of `) we put on the graph. In fact, to every choice of graph
and to every choice of boundary conditions for the Laplace operator at the vertices of the
graph, one can associate an analytic function FΓ,H0 defined on the N -dimensional torus
TN , where N is the number of edges of the graph. This function does not depend on the
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choice of ` and the vanishing locus of FΓ,H0 plays a central role when studying the spectral
properties of H0 [BK13]. Our argument is based on ideas that go back to the works of
Barra and Gaspard studying the level spacings on quantum graphs [BG00]. More precisely,
it consists in analyzing the ergodic properties of the map induced by the flow

ϕt` : y P TN ÞÑ y ` t`

on the vanishing locus of FΓ,H0 . To exploit this idea of Barra and Gaspard, it is necessary
that the orbit of 0 under this flow intersects the vanishing locus of FΓ,H0 on a nice enough
subset, typically a smooth submanifold. For instance, this can be achieved by considering
a quantum graph H0 with Neumann boundary conditions at each vertex (for which FΓ,H0

is nice enough thanks to [Fri05]) and by picking a generic metric ` (typically such that ϕt`
is uniquely ergodic). This was the approach followed in earlier works of Berkolaiko-Winn
on level spacings [BW10] or of Colin de Verdière on the failure of quantum ergodicity for
quantum graphs [Col15]. See also [KMW03, BKW04] for earlier results on these problems
by Keating et al. in the case of star graphs (still for a generic `). Here, we chose to work
only on star-graphs for which the expression of FΓ,H0 is explicit enough to determine all
the singularities of the vanishing locus and to handle any choice of metric `. This will
illustrate the difference of behaviour depending on our choice of metric `.

Finally, in order to extend the results to more general graphs, we would need to define
an appropriate equivalent of δnpαq (for instance, the imaginary part of λnpαq when α R R)
in order to state an analogue of Theorem 1.3. Typically, the proof of Proposition 4.2 below,
which gives Proposition 1.4 and then Theorem 1.3, relies on explicit computations.

1.5. Organization of the paper. In Section 2.1 we define the operator Hα and give some
basic spectral properties. In particular, we compute the secular equation on which all the
subsequent analysis relies. In Section 3, we focus on the distribution of the eigenvalues
of H0. In particular, we introduce the corresponding dynamical system on TN and the
Barra-Gaspard measure. In Section 4 we prove that, for high frequencies, the perturbation
of the Robin parameter does not move the spectrum so much. So each eigenvalue of Hα

remains close, in a suitable sense, to the corresponding eigenvalue of H0. This will finish
the proof of Proposition 1.1 and prove Propositions 1.2, 1.4 and 1.5. Finally, the last
section is devoted to the proofs of Theorem 1.3 and Propositions 1.6 and 1.7.

1.6. Notation. We denote by N the set of non-negative integers, and N˚ stands for Nz t0u.
As already mentioned, we also write J1, NK for t1, ¨ ¨ ¨ , Nu. For z0 P C and r ą 0 we set
Dpz0, rq “ tz P C : |z ´ z0| ď ru and Cpz0, rq “ tz P C : |z ´ z0| “ ru. As said above, we
write Dprq for Dp0, rq.

2. Spectral framework and first properties

In this section, we define the operator Hα on a suitable Hilbert space on Γ. Then we
derive some basic properties for its spectrum. In particular, we give some rough localization
for the eigenvalues, and we derive the secular equation, that will be used all along the
article.
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2.1. The Schrödinger operator with Robin condition. The metric graph Γ is en-
dowed with the Hilbert structure of

L2
pΓq “

N
à

j“1

L2
p0, `jq.

In particular, for u “ pujq1ďjďN P L
2pΓq, we have

}u}2L2pΓq “

N
ÿ

j“1

}uj}
2
L2p0,`jq

.

For m P N, we similarly define the Sobolev space

Hm
pΓq “

N
à

j“1

Hm
p0, `jq . (2.1)

In the introduction, we have denoted by DompHαq the set of u P H2pΓq such that (1.1),
(1.2) and (1.3) hold, and for u P DompHαq we have defined Hαu P L

2pΓq by (1.4). For later
purpose, we also define DompH8q as the set of u “ pujq1ďjďN P H2pΓq such that

@j P J1, NK, ujp0q “ ujp`jq “ 0. (2.2)

Then, for u P DompH8q, we define H8u P L
2pΓq as in (1.4).

It is known that, for α P R Y t8u, the operator Hα is selfadjoint and bounded from
below (it is even non-negative for α ě 0 or α “ 8). In particular, since H2pΓq is compactly
embedded in L2pΓq, the spectrum of Hα consists of a sequence of isolated real eigenvalues
going to `8. When α is not real, the operator Hα is no longer symmetric. However, we
prove in Proposition 2.1 that Hα is at least maximal sectorial. We recall that an operator
T on some Hilbert space H is said to be sectorial (with vertex γ P R and semi-angle
θ P r0, π

2
r) if the numerical range of T ,

t〈Tϕ, ϕ〉H , ϕ P DompT q, }ϕ}H “ 1u ,

is a subset of the sector

Σγ,θ “ tζ P C : |argpζ ´ γq| ď θu .

Then T is said to be maximal sectorial if pT ´ ζq has a bounded inverse on H for some
(and hence any) ζ in CzΣγ,θ. Similarly, we say that a quadratic form q on H with domain
Dompqq is sectorial (with vertex γ P R and semi-angle θ P r0, π

2
r) if for all ϕ P Dompqq with

}ϕ}H “ 1 we have
qpϕq P Σγ,θ.

In this paper, we study the properties of Hα for some fixed α P C. However, at some
point (see the proof of Proposition 4.4 below), we will deduce some properties of Hα from
the corresponding properties of H0 by a regularity argument with respect to the parameter
α. This is why we need uniform estimates on Hα̃ for α̃ lying on a disk containing 0 and α.
Thus, we fix r ą 0 and give the following results with constants uniform with respect to α
in the disk Dprq.
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Proposition 2.1. Let r ą 0. There exist γ P R and θ P
“

0, π
2

“

such that for any α P Dprq
the operator Hα is maximal sectorial with vertex γ and semi-angle θ.

Proof. ‚ Let α P Dprq. We denote by DompQαq the set of functions u P H1pΓq which
satisfy (1.1) and (1.2) (notice that this set does not depend on α). Then, for u,w P

DompQαq, we set

Qαpu,wq “
N
ÿ

j“1

ż `j

0

u1jpxjqw
1
jpxjq dxj ` αupvqwpvq.

In particular, DompHαq Ă DompQαq and, for u P DompHαq and w P DompQαq, we have

〈Hαu,w〉L2pΓq “ Qαpu,wq. (2.3)

‚ For u P DompQαq “ DompQ0q and j P J1, NK we have

|pQα ´Q0qpuq| “ |α| |upvq|
2
ď 2 |α|

ż `j

0

|ujpxjq|
ˇ

ˇu1jpxjq
ˇ

ˇ dxj

ď
1

4

›

›u1j
›

›

2

L2p0,`jq
` 4 |α|2 }uj}

2
L2p0,`jq

ď
1

4
Q0puq ` 4r2

}u}2L2pΓq .

Since the form Q0 is symmetric, bounded from below and closed, we deduce that the form
Qα is sectorial (uniformly in α P Dprq) and closed [Kat80, Th. VI.1.33].
‚ By the Representation Theorem [Kat80, Th. VI.2.1], there exists a unique maximal
sectorial operator H̃α on L2pΓq such that DompH̃αq Ă DompQαq and

@u P DompH̃αq, @w P DompQαq,
〈
H̃αu,w

〉
L2pΓq

“ Qαpu,wq.

Moreover, DompH̃αq is the set of u P DompQαq for which there exists f P L2pΓq such that

@w P DompQαq, Qαpu,wq “ 〈f, w〉L2pΓq ,

and, in this case, H̃αu “ f .
‚ By (2.3), we have DompHαq Ă DompH̃αq and H̃α coincides with Hα on DompHαq.
Now let u “ pujq1ďjďN P DompH̃αq. Let us prove that u P DompHαq. There exists
f “ pfjq1ďjďN P L

2pΓq such that, for all w P DompQαq, we have

Qαpu,wq “ 〈f, w〉L2pΓq .

Let k P J1, NK. Considering all the test functions w “ pwjq1ďjďN such that wk P C
8
0 pp0, `jqq

and wj “ 0 for k ‰ j, we obtain that uk belongs to H2p0, `kq and ´u2k “ fk. Then
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u P H2pΓq. Now, for all w P DompQαq, we have

Qαpu,wq “
N
ÿ

j“1

〈
u1j, w

1
j

〉
L2p0,`jq

` αupvqwpvq

“

N
ÿ

j“1

´

u1jp`jqwjp`jq ´
〈
u2j , wj

〉
L2p0,`jq

¯

` αupvqwpvq

“ 〈f, w〉L2pΓq `

˜

N
ÿ

j“1

u1jp`jq ` αupvq

¸

wpvq.

Choosing w P DompQαq such that wpvq ‰ 0 yields (1.3). This proves that u P DompHαq,
and hence Hα “ H̃α is maximal sectorial. �

Remark 2.2. With the same proof we recover that Hα is selfadjoint if α is real, and non-
negative if α ě 0. Notice that [BK13, Th. 1.4.11] provides a similar result for more general
selfadjoint vertices conditions and more general graphs.

2.2. First properties of the spectrum. In this paragraph we begin our description of
the localization of the spectrum with some rough properties.

Proposition 2.3. Let r ą 0. Let γ and θ be given by Proposition 2.1. Let α P Dprq. Then
the spectrum of the operator Hα is included in Σγ,θ and consists of isolated eigenvalues with
finite multiplicities.

Proof. By Proposition 2.1, the operatorHα is maximal sectorial with vertex γ P R and semi-
angle θ P

`

0, π
2

˘

, and hence its spectrum is a subset of Σγ,θ [Kat80, §V.3.10]. In particular,
the resolvent set of Hα is not empty. Moreover, DompHαq is compactly embedded in
L2pΓq, so the operator Hα has a compact resolvent. Thus, its spectrum consists of isolated
eigenvalues with finite multiplicities. �

Notice that we have not proved yet that Hα has an infinite number of eigenvalues. We
will get this as a byproduct of the more refined analysis of Section 4.

Remark 2.4. Even if we are mostly interested in the large eigenvalue limit of the spectrum,
we note that 0 is an eigenvalue of Hα if and only if

α “
N
ÿ

j“1

1

`j
,

and that in this case kerpHαq is generated by u “ pujq1ďjďN such that ujpxjq “ xj{`j for
all j P J1, NK and xj P r0, `js.

Now we consider non-zero eigenvalues. Let z P C˚. For u “ pujq1ďjďN P H2pΓq, we have

´u2j “ z2uj for all j P J1, NK if and only if there exist constants pβj, β̃jq1ďjďN such that,
for j P J1, NK and for x P r0, `js,

ujpxq “ βj sinpzxq ` β̃j cospzxq.
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Such a function u belongs to DompHαq (and then Hαu “ z2u) if and only if the vertices
conditions (1.1), (1.2) and (1.3) are satisfied. The Dirichlet condition (1.1) at the external
vertices gives

@j P J1, NK, β̃j “ 0, (2.4)

so that

ujpxq “ βj sinpzxq. (2.5)

With this simple calculation, we can already prove the following rough result.

Proposition 2.5. (i) Let α P C. If λ P C is an eigenvalue of Hα then Impλq and Impαq
have the same sign (recall that the spectrum of Hα is real if α is real, on the other
hand there can be real eigenvalues even if α is not real).

(ii) Let r ą 0. There exists cr ą 0 such that, if λ P C is an eigenvalue of Hα for some
α P Dprq, then

Repλq ě ´cr and |Impλq| ď cr.

Moreover, we have

lim sup
RÑ`8

sup
λPSppHαq
RepλqěR

|Impλq| ď
2 |Impαq|

|Γ|
.

Remark 2.6. The last statement should be compared with the support of µ` in Theorem
1.3. In particular, this is an equality when κ ¨ ` ‰ 0 for every κ P ZNzt0u.

Proof. Let z “ τ ` iη P C˚ (with τ, η P R) and assume that λ “ z2 is an eigenvalue of Hα.
Let u P kerpHα ´ z2qz t0u, normalized by }u}L2pΓq “ 1. Let β1, . . . , βN P C be such that

(2.5) holds. Taking the imaginary parts in the equality

λ “ 〈Hαu, u〉 “ Qαpu, uq

gives

Impλq “ Impαq |upvq|2 . (2.6)

This implies in particular that Impλq and Impαq have the same sign.
Then we compute

1 “ }u}2L2pΓq “

N
ÿ

j“1

ż `j

0

|βj sinpzxjq|
2 dxj “

N
ÿ

j“1

|βj|
2

ˆ

shp2η`jq

4η
´

sinp2τ`jq

4τ

˙

. (2.7)

Let pλmqmPN be a sequence of complex numbers such that Repλmq goes to `8 and, for all
m P N, λm is an eigenvalue of Hαm for some αm P Dprq. For m P N we consider τm ě 0 and
ηm P R such that λm “ pτm ` iηmq

2. Then τm goes to `8 as m goes to `8. Assume for
instance that Impαq ě 0. After extracting a subsequence if necessary, we can assume that
the sequence pηmqmPN has a limit η8 in r0,`8s. For m P N we consider um P kerpHαm´λmq
such that }um}L2pΓq “ 1 and we denote by β1,m, . . . , βN,m P C the corresponding coefficients

in (2.4).
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Assume that η8 “ `8. Then, by (2.7), we have

N
ÿ

j“1

|βj,m|
2 e2ηm`j

4ηm
ÝÝÝÝÑ
mÑ`8

1.

Then
|upvq|2 “ |β1,m|

2
|sinpzm`1q|

2
ď |β1,m|

2 e2ηm`1 “ Opηmq,
and hence, by (2.6),

2τmηm “ Impλnq ď r |upvq|2 “ Opηmq.
This gives a contradiction.

We similarly get a contradiction if we assume that η8 P p0,`8q so, finally, ηm goes to
0 as m goes to `8. (2.7) now gives

N
ÿ

j“1

|βj,m|
2 `j

2
ÝÝÝÝÑ
mÑ`8

1

so

lim sup
mÑ`8

|Γ| |umpvq|
2

2
“ lim sup

mÑ`8

N
ÿ

j“1

|βj,m|
2 `j

2
|sinpzm`jq|

2
ď 1.

Then (2.6) gives

lim sup
mÑ`8

|Impλnq| ď |Impαq| |umpvq|
2
ď

2 |Impαq|

|Γ|
.

We conclude with Proposition 2.3. �

2.3. Comparison with the eigenvalues of the Dirichlet problem. The spectrum of
H8 (see (2.2)) is completely explicit. If we set

T8 “
N
ď

j“1

πZ
`j
,

then
SppH8q “

 

τ 2, τ P T8
(

.

Moreover, if τ 2 is an eigenvalue of H8, then its multiplicity is given by

# tj P J1, NK : τ`j P πZu .
In particular, if the lengths of the edges are pairwise incommensurable, then all the eigenval-
ues of H8 are simple. On the contrary, if all the lengths are equal, then all the eigenvalues
of H8 have multiplicity N ´ 1.

In the selfadjoint case (α P R) it is known (see [BK13, Th. 3.1.8] or Remark 2.8 below)
that between two consecutive eigenvalues of H8 there is exactly one simple eigenvalue of
Hα. In the degenerate situation where λ P R is an eigenvalue of H8 of multiplicity m ě 2,
then λ is for all α P R an eigenvalue of multiplicity m´ 1 for Hα. The first statement has
no meaning for the possibly non-real eigenvalues of Hα, α R R, but the second still holds
in general.
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Lemma 2.7. Let α P C.

(i) If τ P T8, then

dimpkerpHα ´ τ
2
qq “ dimpkerpH8 ´ τ

2
qq ´ 1.

(ii) If z P CzT8, then

dimpkerpHα ´ z
2
qq ď 1.

Proof. Assume that τ 2 is an eigenvalue of H8. There exists j P J1, NK such that τ`j{π is
an integer. Let u P kerpHα ´ τ 2q. By (2.5) we have upvq “ ujpτ`jq “ 0. This implies that

kerpHα´τ
2q Ă kerpH8´τ

2q. Moreover, the map u ÞÑ
řN
j“1 u

1
jp`jq is a non-zero linear form

on kerpH8 ´ τ
2q, which yields the first part of the lemma.

Now let z P CzT8. If u P kerpHα ´ z2q is such that upvq “ 0, then it belongs to
kerpH8´z

2q, so u “ 0. This means that the linear form u ÞÑ upvq is injective on kerpHα´z
2q

and proves the second statement. �

2.4. The secular equation. In Paragraph 2.2, we have only used the vertex condition
(1.1). For a more refined analysis, we have to take into account (1.2) and (1.3).

Let z P C˚ and u P kerpHα ´ z2q. Let β P CN be such that (2.5) holds. Then the
conditions (1.2) and (1.3) at the vertex v read

β1 sinpz`1q “ β2 sinpz`2q “ . . . “ βN sinpz`Nq (2.8)

and

z
N
ÿ

j“1

βj cospz`jq ` αβN sinpz`Nq “ 0. (2.9)

We can divide this last equality by z. Conversely, if β satisfies (2.8)-(2.9) and u P L2pΓq is
defined by (2.5) then u P DompHαq and Hαu “ z2u. Thus, z2 ‰ 0 is an eigenvalue of Hα

if and only if

det
´

A
´

z`,
α

z

¯¯

“ 0,

where, for y “ py1, . . . , yNq P CN and η P C,

Apy, ηq “

¨

˚

˚

˚

˚

˝

sinpy1q ´ sinpy2q 0 . . . 0
0 sinpy2q ´ sinpy3q 0 . . .
...

. . . . . . . . .
...

0 . . . 0 sinpyN´1q ´ sinpyNq
cospy1q cospy2q . . . . . . cospyNq ` η sinpyNq

˛

‹

‹

‹

‹

‚

.

Moreover, since the map

pβjq1ďjďN P ker
´

A
´

z`,
α

z

¯¯

ÞÑ u P ker
`

Hα ´ z
2
˘

,

defined by (2.5), is an isomorphism, we have

dim
´

ker
´

A
´

z`,
α

z

¯¯¯

“ dim
`

ker
`

Hα ´ z
2
˘˘

.
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By a straightforward computation we observe that

detpApy, ηqq “ FNpyq ` ηFDpyq, (2.10)

where

FNpy1, . . . , yNq “
N
ÿ

j“1

cospyjq
ź

k‰j

sinpykq (2.11)

and

FDpy1, . . . , yNq “
N
ź

j“1

sinpyjq. (2.12)

Note that FN “ detpAp¨, 0qq is the determinant associated with the Neumann (or Kirch-
hoff) problem (α “ 0) and FD is the determinant corresponding to the Dirichlet problem,
i.e. z2 is an eigenvalue of H8 if and only if FDpz`q “ 0.

For y P CN such that FDpyq ‰ 0 we set

Ψpyq “ ´
FNpyq

FDpyq
“ ´

N
ÿ

j“1

cotanpyjq. (2.13)

Remark 2.8. Let τ P R`zT8. Then τ 2 is an eigenvalue of H0 is and only if Ψpτ`q “ 0. We
have

d

dτ
Ψpτ`q “

N
ÿ

j“1

`j
`

1` cotanpτ`jq
2
˘

ą 0.

Since |Ψpτ`q| goes to `8 when τ approaches T8, we see that in each connected component
I of R`zT8 (which does not contain 0) there exists exactly one n P N˚ such that τn P I.
See Figure 2 in Section 4 below. On the other hand, we deduce from the discussion of
Paragraph 2.3 that the operator H8 satisfies a Weyl Law as in (1.5). Then, combining
Lemma 2.7 and the previous remark, we recover (1.5) for H0. In fact, the same applies to
Hα for any α P R if we observe that on R`zT8 we also have

d

dτ

`

τΨpτ`q
˘

ą 0.

3. Eigenvalues of H0 and the Barra-Gaspard measure

In this section, we review a few facts on a natural Radon measure associated to our
metric star graph pΓ, `q. This measure was defined by Barra and Gaspard in [BG00]
to study the level spacings of the operator H0 (see also [BW10]) and further used to
study the distribution of the eigenmodes of H0 [KMW03, BKW04, Col15] or resonances
on noncompact graphs [CT18]. The main differences with these references is that we use
the explicit structure of the graph to handle any choice of metric on Γ.
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3.1. A stratified manifold associated to the eigenvalues of H0. We have said in the
previous section that τ 2 is an eigenvalue of H0 if and only if FNpτ`q “ 0, where FN is
defined by (2.11). We set

Z “
 

y P RN : FNpyq “ 0
(

.

This defines a stratified submanifold, which can be splitted as

Z “
ğ

JĂJ1,NK

ZJ ,

where, for J Ă J1, NK,

ZJ “ ty P Z : yj “ 0 mod π ô j P Ju .

With this definition of Z, we see that τ 2 is an eigenvalue of H0 if and only if τ` P Z.
More precisely,

(i) if τ` P ZH then FDpτ`q ‰ 0 so, by Lemma 2.7, τ 2 is a simple eigenvalue of H0 ;
(ii) if τ` P ZJ for some J Ă J1, NK with #J ě 2, then τ 2 is an eigenvalue of H8 of

multiplicity #J and, again by Lemma 2.7, τ 2 is an eigenvalue of H0 of multiplicity
#J ´ 1.

Note that ZJ is empty if #J “ 1 and ZH “ Ψ´1pt0uq (see (2.13)). Then for J Ă J1, NK
we set

mJ “

#

1 if J “ H,

#J ´ 1 if #J ě 2.
(3.1)

Now we check that each stratum of Z is a submanifold of RN to which the vector ` is
transverse.

Lemma 3.1. (i) ZH is a submanifold of RN of dimension N ´ 1, and for all y P ZH we
have ∇Ψpyq ¨ ` ‰ 0.

(ii) Let J Ă J1, NK with #J ě 2. Then ZJ is a submanifold of RN of dimension N´p#Jq
and its boundary BZJ “ ZJzZJ satisfies

BZJ “
ď

JŘJ 1ĂJ1,NK

ZJ 1 .

Moreover, ` is transverse to ZJ .

Proof. ‚ Let y P ZH. We have

∇Ψpyq ¨ ` “
N
ÿ

j“1

`j
`

1` cotanpyjq
2
˘

ą 0.

In particular, ∇Ψpyq ‰ 0. By the Implicit Function Theorem, this proves that ZH “

Ψ´1pt0uq is a submanifold of dimension pN ´ 1q in RN , and ` is transverse to ZH.
‚ Now we consider J Ă J1, NK with #J ě 2. Then any y P RN such that yj “ 0 mod π
for all j P J belongs to Z, so

ZJ “
 

y P RN : yj “ 0 mod π ô j P J
(

.
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This defines a submanifold of dimension N ´ p#Jq. On the other hand, it is not difficult
to check that

ZJ “
 

y P RN : yj “ 0 mod π, @j P J
(

,

and the statement about BZJ follows. Finally, ` is transverse to each ZJ because all its
components are positive. �

3.2. Restriction to a dynamical system on a torus. Since FN is 2π-periodic with
respect to each variable, the condition FNpτ`q “ 0 can be seen as an equation on the torus
TN “ RN{p2πZNq. We set

Λ` “
 

k P ZN : k ¨ ` “ 0
(

and
ΛK` “

 

ξ P RN : @k P Λ`, k ¨ ξ “ 0
(

.

In particular, τ` belongs to ΛK` for all τ P R. We denote by N` the dimension of ΛK` .

Remark 3.2. N` is the smallest integer for which there exist ˜̀
1, . . . , ˜̀

N` P p0,`8q such that
for all j P J1, NK we have

`j “
N
ÿ̀

k“1

mj,k
˜̀
k,

for some mj,1, . . . ,mj,N` P N˚.

Noticing that 2πZN X ΛK` is a lattice of ΛK` , we define the torus

T` “ ΛK` {p2πZN X ΛK` q.

It can be identified with a subset of TN . We denote by µT` the Lebesgue measure on T`
(inherited from the Lebesgue measure on ΛK` ) and we set |T`| “ µT`pT`q.

For y P TN and t ě 0 we set

ϕt`pyq “ y ` t` mod 2π.

From the unique ergodicity of this flow on T`, one has, for every continuous function f on
TN and uniformly for y P T`,

lim
TÑ`8

1

T

ż T

0

pf ˝ ϕt`qpyqdt “
1

|T`|

ż

T`
f dµT` (3.2)

(this can be computed explicitely if f is of the form y ÞÑ eiκ¨y for some κ P ZN , and the
general case follows by decomposing f in Fourier series). This implies in particular that
any orbit of the flow ϕt` starting in T` is dense in T`.

Since Z (and each ZJ , J Ă J1, NK) is p2πZNq-periodic, we can consider

Z “ pZ X ΛK` q{p2πZN X ΛK` q “
ğ

JĂt1,...,Nu

ZJ ,

where
ZJ “ pZJ X ΛK` q{p2πZN X ΛK` q.
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Taking the convention that dimZJ “ ´8 when ZJ is empty, we have results analogous
to Lemma 3.1:

Lemma 3.3. (i) ZH is a submanifold of T` of dimension N`´1 to which ` is transverse.
(ii) Let J Ă J1, NK with #J ě 2. Then ZJ is a submanifold of T` of dimension not

greater than N` ´ 1 and

BZJ :“ ZJzZJ Ă
ď

J 1

ZJ 1 ,

where the union is over the sets J 1 Ă J1, NK such that dimpZJ 1q ă N` ´ 1. Moreover,
` is transverse to ZJ .

Proof. Since ` is transverse to ZH “ Ψ´1pt0uq and belongs to ΛK` , ZHXΛK` is a submanifold
of ΛK` of dimension N`´1 to which ` is transverse. After taking the quotient, the analogous
properties hold for ZH.

Now let J Ă J1, NK with #J ě 2. Since ZJ coincides around each of its points with an
affine subspace of RN (with constant tangent space), the same holds for ZJ X ΛK` . Since `
belongs to ΛK` and not to TZJ , the dimension of ZJ XΛK` is not greater than N` ´ 1 and `
is a transverse vector. All this then holds for ZJ .

We have BpZJ X ΛK` q Ă BZJ X ΛK` . Let y0 P BpZJ X ΛK` q and J 1 Ă J1, NK such that
y0 P ZJ 1 X ΛK` and J Ř J 1. Let V be a neighborhood of y0 in ZJ 1 X ΛK` such that V is an
open subset of an affine subspace of RN . If we denote by pf1, . . . , fNq the canonical basis
of RN , there exists j P J 1zJ such that y0 ` tfj belongs to ZJ X ΛK` for t ą 0 small enough.
Then for all y P V and t ą 0 small enough we have y ` tfj P ZJ X ΛK` . This implies that

dimpZJ 1 X ΛK` q ă dimpZJ X ΛK` q ď N` ´ 1.

The same conclusion holds for ZJ . �

3.3. Distribution of the eigenvalues by ergodic averaging. We now study the distri-
bution of the eigenvalues of H0 following the seminal work of Barra and Gaspard [BG00].
The results in this paragraph were already presented under some genericity assumptions
on ` for quantum star graphs [KMW03, §3] and for general quantum graphs in [BW10,
§4.3] and [Col15, §3]. We briefly recall these arguments to see that the case of a general
metric ` can be handled similarly for quantum star graphs using the conventions of the
above paragraphs. For later purpose, note also that, compared with [KMW03, §3], we will
also allow test functions which are not necessarly compactly supported in ZH. To that
aim, we set

J` “ tJ Ă J1, NK : dimpZJq “ N` ´ 1u .

For J P J` we denote by µJ the Lebesgue measure on ZJ and by ν a unit vector normal
to ZJ in T`.
Lemma 3.4. Let g be a continuous function on Z. We assume that g is compactly sup-
ported on ZJ for some J P J`. Then, one has

1

n

n
ÿ

k“1

pg ˝ ϕτk` qp0q ÝÝÝÝÑnÑ`8

πmJ

|Γ| |T`|

ż

ZJ
gpyq|` ¨ νpyq| dµJpyq.
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In the case of a generic `, see [KMW03, Th. 8] for star graphs and [BW10, Prop. 4.4]
and [Col15, Lemma 3.1] for the case of more general graphs.

Proof. Let V be a neighborhood of the support of g in ZJ such that V Ă ZJ . Since ` is
transverse to ZJ , there exists δ Ps0, τ1r such that the map

T :

"

s ´ 2δ, 2δrˆV Ñ T`
pt, yq ÞÑ y ` t`

is injective with an image which does not intersect ZzZJ . Let χ P C80 ps ´ δ, δr, r0, 1sq be
equal to 1 near 0 and such that

ş

R χptqdt “ δ. We define a continuous function g̃ on T` by
setting

g̃py ` t`q “ χptqgpyq

for all t Ps ´ δ, δr and y P V , and g̃ “ 0 outside the image of T . Then

1

n

n
ÿ

k“1

pg ˝ ϕτk` qp0q “
τn ` δ

n

1

τn ` δ

mJ

δ

ż τn`δ

0

g̃ ˝ ϕt`p0qdt.

By (1.6) and unique ergodicity (3.2) of the flow ϕt` on T`, one finds that

1

n

n
ÿ

k“1

pg ˝ ϕτk` qp0q ÝÝÝÝÑnÑ`8

πmJ

|Γ| |T`|
1

δ

ż

T`
g̃ dµT` .

Since the Jacobian of T at pt, yq is |` ¨ νpyq|, one gets

1

δ

ż

T`
g̃ dµT` “

ż

ZJ
|` ¨ νpyq|gpyq dµJpyq,

and the conclusion follows. �

For ε ą 0 we introduce

Zpεq “ ty P Z : DJ s.t. dimpZJq ă N` ´ 1 and dpy,ZJq ď εu . (3.3)

In other words, we consider an ε-neighborhood of the strata of Z whose dimensions are
strictly smaller than N` ´ 1. In particular, the pN` ´ 1q-dimensional Hausdorff measure of
this set is Opεq.

Lemma 3.5. We have

lim sup
nÑ`8

# tk ď n : ϕτk` p0q P Z`pεqu

n
“
εÑ0

Opεq.

See [Col15, p. 354] for the case of a generic metric on a general quantum graph.

Proof. Let
Bpεq “ ty ` t` : ´ε ď t ď ε and y P Zpεqu .

Since this set is contained in an Opεq neighborhood of the strata of Z having dimensions
not greater than N` ´ 2, its Lebesgue measure is of size Opε2q as ε tends to 0.

Let n P N˚ and k ď n such that ϕτk` p0q P Zpεq. Then ϕt`p0q stays inside Bpεq for
t P rτn ´ ε, τn ` εs. Moreover, by the Weyl Law, the number (counted with multiplicities)
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of square roots of eigenvalues of H0 lying in an interval of length 1 is uniformly bounded
by some constant M . Hence, for ε ą 0 small enough, one has

# tk ď n : ϕτk` p0q P Z`pεqu

n
ď
M

2ε

ż τn`ε

0

p1Bpεq ˝ ϕ
t
`qp0qdt.

Hence, by letting n tend to `8 and by combining (3.2) with [Wal82, p.149, Rk. 3], one
finds that

lim sup
nÑ`8

# tk ď n : ϕτk` p0q P Z`pεqu

n
ď
M

2ε

µT`pBpεqq

|T`|
,

and the conclusion follows. �

We define the Barra-Gaspard measure on Z by

µBG “
ÿ

JPJ`

µBG,J , (3.4)

where, for J P J`, we have set

µBG,J “ mJ |` ¨ νpyq|µJ .

Finally, we obtain the following averaging property:

Proposition 3.6. Let g be a continuous function on Z. Then, one has

1

n

n
ÿ

k“1

pg ˝ ϕτk` qp0q ÝÝÝÝÑnÑ`8

π

|Γ| |T`|

ż

Z
g dµBG.

Again, we refer to [KMW03, BW10, Col15] for earlier versions of this result for quantum
graphs endowed with Kirchhoff conditions and with a generic metric `. In particular, this
proposition implies

µBGpZq “
|Γ| |T`|
π

. (3.5)

Proof. Let ε ą 0. We introduce a family of nonnegative continuous functions χ̃ and pχJqJPJ`
on Z such that

χ̃`
ÿ

JPJ`

χJ “ 1,

χ̃ is supported in Zpεq and χJ is compactly supported in ZJ . By Lemmas 3.4 and 3.5
applied to χJg, J P J`, and χ̃g, respectively, we have

lim
nÑ`8

1

n

n
ÿ

k“1

pg ˝ ϕτk` qp0q “
ÿ

JPJ`

ż

ZJ
χJg dµBG,J `Opεq.

We let ε go to 0, and by the dominated convergence Theorem we obtain the expected
result. �
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4. Separation and localization of the eigenvalues

In this section, we will give an acccurate description of the localization of the eigenvalues
of Hα when α P C. This will rely on a careful analysis that will allow us to view in a
quantitative manner the eigenvalues of Hα as a perturbation of the eigenvalues of H0 as
the real part of the spectral parameter tends to `8. We proceed in two steps. First, we
localize a sequence of eigenvalues of Hα near the eigenvalues of H0. Then, we show that we
have indeed found all the eigenvalues. All this analysis is summarized in Proposition 4.4
which is the main result of this section and from which Propositions 1.1, 1.2, 1.4 and 1.5
follow.

To that aim, given α P C and z P C˚zT8, we set

ψαpzq “ Ψpz`q ´
α

z
“ ´

N
ÿ

j“1

cotanpz`jq ´
α

z
.

The functions ψα, α P C, are holomorphic on C˚zT8 and z2 is an eigenvalue of Hα inside
C˚zT8 if and only if ψαpzq “ 0 (see the discussion of Paragraph 2.4). In particular, the
positive roots of ψ0 outside T8 are given by the τn such that τ 2

n is not an eigenvalue of H8.

4.1. Upper bound on the set of eigenvalues. We set

N “ tn P N˚ : τn R T8u ,
and, for n P N ,

ρn “
1

ψ10pτnq
“

1

∇τn`Ψ ¨ `
.

Then, the following holds:

Lemma 4.1. (i) For n P N , one has

0 ă ρn ď min

"

|Γ|´1 ,
sinpτn`1q

2

`1

, . . . ,
sinpτn`Nq

2

`N

*

. (4.1)

(ii) Let γ0 “
1

16eN
. Then, for n P N , one has Dpτn, γ0ρnq X T8 “ H and, for γ P r0, γ0s

and z P Dpτn, γρnq,
ˇ

ˇ

ˇ

ˇ

ψ0pzq ´
z ´ τn
ρn

ˇ

ˇ

ˇ

ˇ

ď
γ

2
. (4.2)

Proof. ‚ For z P C˚zT8, one has

ψ10pzq “
N
ÿ

j“1

`j
sinp`jzq2

“

N
ÿ

j“1

`j
`

1` cotan2
pz`jq

˘

, (4.3)

and

ψ20pzq “ ´2
N
ÿ

j“1

`2
j cospz`jq

sinpz`jq3
. (4.4)

In particular, (4.3) gives (4.1).
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‚ Let γ Ps0, γ0s, n P N , j P J1, NK and z P Dpτn, γρnq. Since γ ď 1 and `jρn ď 1 one has

|cospz`jq| ď e`jγρn ď e,

and hence, since we also have γ ď 1{2e,

|sinpz`jq| ě |sinpτn`jq| ´ |z ´ τn| `je ě `
1
2
j ρ

1
2
n ´ γρn`je ě

`
1
2
j ρ

1
2
n

2
.

In particular, FDpz`q ‰ 0, so Dpτn, γρnq X T8 “ H. Then, by (4.4) we have

|ψ20pzq| ď
16e

ρ
3{2
n

N
ÿ

j“1

a

`j. (4.5)

From this one can infer that, for every pz, z1q in Dpτn, γρnq,

|z ´ τn|
2

2
|ψ20pz1q| ď 8γ2e

N
ÿ

j“1

a

ρn`j ď
γ

2
,

and the result follows by Taylor expansion. �

Figure 2. The graph of Ψ for ` “ p1,
?

2, πq, with the elements of T8
(diamonds), τ1 to τ7, and the corresponding disks of radii 2ρn{τn (filled) and
2ρn (dotted).

Proposition 4.2. Let γ0 ą 0 be given by Lemma 4.1. Let r ą 0. There exists nr P N˚
such that, for every n P N with n ě nr and for every α P Dprq, there is a unique
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znpαq P Dpτn, γ0ρnq such that znpαq
2 is an eigenvalue of Hα. Moreover, znpαq depends

analytically on α P Dprq, znpαq
2 is an algebraically simple eigenvalue of Hα, and

|znpαq ´ τn| ď
8rρn
τn

. (4.6)

Proof. For γ Ps0, γ0s, n P N and z on the circle Cpτn, γρnq, one has by (4.2)

|ψ0pzq| ě
γ

2
.

On the other hand, since ρn ď |Γ|
´1, one has, for n large enough,

|α|

|z|
ď

r

τn ´ γρn
ď

2r

τn
.

Thus, there exists nr P N˚ such that for n P N with n ě nr, γ P
“

8r
τn
, γ0

‰

and z P Cpτn, γρnq
we have

|ψαpzq| ě |ψ0pzq| ´
|α|

|z|
ě

2r

τn
ą 0.

This proves that, for every α P Dprq and every γ P
“

8r
τn
, γ0

‰

, the operator Hα has no

eigenvalue on the set tz2, z P Cpτn, γρnqu. By continuity of the spectrum, the number of
eigenvalues counted with multiplicity in tz2, z P Dpτn, γρnqu does not depend on α P Dprq.

By Remark 2.8, τn is the only τ in Dpτn, γρnq such that τ 2 is an eigenvalue of H0. Thus,
for α P Dprq, there is exactly one znpαq P Dpτn, γρnq such that znpαq

2 is an eigenvalue
of Hα. The analyticity of this eigenvalue comes from the usual perturbation theory for
parameter dependant operators (see [Kat80]). �

From this point on, we set, for r ą 0,

Nr “ tn P N : n ě nru .

4.2. Lower bound on the set of eigenvalues. At this stage, we have identified some
eigenvalues of Hα. If τ 2 is an eigenvalue of H0 which is also an eigenvalue of H8 then it is
also an eigenvalue of Hα, and the multiplicities of τ 2 as an eigenvalue of H0 or Hα coincide.
Otherwise, τ 2 is a simple eigenvalue of H0, and around τ 2 (in a sense made precise by
Proposition 4.2), there is a unique simple eigenvalue of Hα. Our purpose is now to prove
that we have in fact found all the eigenvalues of Hα. For this we will need the following
lemma.

Lemma 4.3. We have

lim sup
nPN
nÑ`8

ρn ą 0.

Proof. Let χ be a continuous function from Z to r0, 1s compactly supported in ZH and
equal to 1 on some open subset thereof. Then the function

f : y ÞÑ
χpyq

∇yΨ ¨ `
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can be seen as a continuous function on Z, compactly supported in ZH. By Lemma 3.4
we have

1

n

n
ÿ

k“1

pf ˝ ϕτk` qp0q ÝÝÝÝÑnÑ`8

π

|Γ| |T`|

ż

ZH
f dµBG,H ą 0.

This implies in particular that ρn does not go to 0 as n P N goes to `8. �

Now we can state the main result of this section which compares the set of eigenvalues
of Hα with the ones of H0.

Proposition 4.4. Let r ą 0 and nr P N˚ be given by Proposition 4.2. Then, for every
α P Dprq, the spectrum of Hα is given by a sequence of eigenvalues pznpαq

2qnPN˚ (repeated
according to algebraic multiplicities) such that the following assertions hold for n ě nr.

(i) If n R N then znpαq “ τn.
(ii) If n P N then znpαq is given by Proposition 4.2. In particular, there exists a disk in C

centered at τn which contains znpαq but does not contain τm or zmpαq for any m ‰ n.
(iii) The functions α ÞÑ znpαq are analytic,
(iv) The geometric and algebraic multiplicity of the eigenvalue znpαq

2 are equal, and in
particular this multiplicity is 1 if n P N .

Propositions 1.1, 1.2, 1.4 and 1.5 are consequences of the previous proposition combined
with Remark 2.8 (for the proof of Proposition 1.2).

Figure 3. The sets tz2 : |z ´ τn| “ γ0ρnu for ` “ p1,
?

2, πq. They are close
to the disks centered at τ 2

n with radius 2γ0τnρn. By Lemma 4.3, this radius
is regularly greater than cr.

Proof. Let cr be given by Proposition 2.5. We set

Ωr “ tλ P C : Repλq ě ´cr, |Impλq| ď cru z
ď

nPNr

"

z2 :
8rρn
τn

ă |z ´ τn| ă γ0ρn

*

.

By Propositions 2.5 and 4.2, we have SppHαq Ă Ωr for all α P Dprq. By Lemma 4.3, all
the connected components of Ωr are bounded (see Figure 3). By the perturbation theory
of Kato [Kat80], the number of eigenvalues of Hα (counted with algebraic multiplicities)
in each of these connected components does not depend on α. Choosing nr larger if
necessary, we can assume that there exists a finite union Ω̃r of connected components of
Ωr which contains τ 2

n if and only if n ă nr. Then, for all α P Dprq, Ω̃r contains exactly
nr ´ 1 eigenvalues of Hα (counted with multiplicities), which can be denoted by znpαq

2,
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1 ď n ă nr. The other connected components of Ωr contain eigenvalues which have already
been identified. If such a connected component contains τ 2

n for some n P N , n ě nr, it
contains exactly one eigenvalue of Hα, which we have denoted by znpαq

2. We also know
that for n R N , the eigenvalue τ 2

n remains an eigenvalue of Hα with the same multiplicity.
Since the number of eigenvalue in each connected components is fixed, there cannot be
any other eigenvalue for Hα in Ωr. All the properties enumerated in the proposition then
follow from Lemma 2.7 and Proposition 4.2. �

In this proof, it is important that all the connected components of Ωr are bounded.
Otherwise, even with the continuity of the spectrum, an eigenvalue could disappear (by
escaping to infinity) or be created (by coming from infinity).

5. Proofs of the main results

Let α P C. We have seen that for n large enough, the eigenvalue znpαq
2 of Hα is

either equal to τ 2
n, or close to τ 2

n in the sense of Proposition 4.2. Now we prove that the
difference δnpαq (see (1.7)) is, at first order, a simple function of τn, and we use the results
of Section 3.3 to prove Theorem 1.3. Finally, as a by-product of our analysis, we will prove
Propositions 1.6 and 1.7.

5.1. The limit measure.

Lemma 5.1. Let r ą 0 and let nr P N˚ be given by Proposition 4.2. Then, for n P Nr, we
have

δnpαq “ 2αρn ` O
nÑ`8

pn´1
q,

where the rest is uniform with respect to α P Dprq.

This asymptotic expression will allow us to relate the distribution of δnpαq for large n to
the Barra-Gaspard measure, as in [KMW03, Th. 3] where the asymptotic distribution of
ψ10pτnq “ ρ´1

n on compact intervals of R was described for Λ` “ t0u (in that case, N “ N˚).

Proof. For α P Dprq and n P Nr, we set

ηnpαq “ znpaq ´ τn.

By (4.6) and (4.1), we have

ηnpαq “ Opρnτ´1
n q “ Opτ´1

n q.

Then, by (4.5) and (4.6),

|ψ0pznpαqq ´ ηnpαqψ
1
0pτnq| ď

|ηnpαq|
2

2
sup

|z´τn|ď|ηnpαq|

|ψ20pzq| À
ρ

1{2
n

τ 2
n

À
1

τ 2
n

.

We have

0 “ ψ0

`

τn ` ηnpαq
˘

´
α

τn ` ηnpαq
“ ηnpαqψ

1
0pτnq ´

α

τn
`Opτ´2

n q.



SPECTRUM OF A NON-SELFADJOINT QUANTUM STAR GRAPH 25

Since ρn is bounded, this gives

ηnpαq “
αρn
τn

`Opτ´2
n q, (5.1)

and then
δnpαq “ 2τnηnpαq ` ηnpαq

2
“ 2αρn `Opτ´1

n q. (5.2)

We conclude with (1.6). �

We consider on Z the continuous function defined by

Φpyq “
2

∇yΨ ¨ `
“

2
řN
j“1 `jp1` cotan2pyjqq

, if y P ZH,

and Φpyq “ 0 otherwise.

Proposition 5.2. The first statement of Theorem 1.3 holds if we set

µ` “
π

|Γ| |T`|

˜

Φ˚µBG,H ` δ0

ÿ

JPJ`,J‰H
µBG,JpZJq

¸

, (5.3)

where Φ˚µBG,H is the pushforward of the measure µBG,H by Φ.

Proof. We first observe that the image of Φ is included in r0, 2 |Γ|´1
s so, by (3.5), the

right-hand side of (5.3) defines a probability measure on r0, 2 |Γ|´1
s.

Let α P C. Let f be a continuous function on C. By Lemma 5.1 we have

1

n

n
ÿ

k“1

fpδnpαqq “
1

n

n
ÿ

k“1

fpαΦpϕτn` p0qqq ` O
nÑ`8

pn´1
q.

Then, by Proposition 3.6 applied to g “ f ˝ pαΦq,

1

n

n
ÿ

k“1

fpδnpαqq ÝÝÝÝÑ
nÑ`8

π

|Γ| |T`|

˜

ż

ZH
pf ˝ pαΦqq dµBG,H ` fp0q

ÿ

JPJ`,J‰H
µBG,JpZJq

¸

.

The proposition follows. �

We observe that if `j{`1 P Q for all j P J1, NK then ΛK` is of dimension 1. So, by Lemma
3.3, Z consists of isolated points, and Φ only takes a finite number of values (including 0,
at the point 0). This implies that µ` is a finite sum of Dirac masses, including the Dirac
mass at 0.

To conclude the proof of Theorem 1.3, it remains to prove the last statement. It is given
by the following proposition.

Proposition 5.3. Suppose that Λ` “ t0u. Then the measure µ` is absolutely continuous
with respect to the Lebesgue measure and its support is the interval r0, 2|Γ|´1s.

Proof. We first observe that when N` “ N we have J` “ tHu. Then, for f P C0
c pRq, we

have
ż

R
f dµ` “

π

|Γ|p2πqN

ż

ZH
pf ˝ Φq dµBG,H.
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The image of Φ is included in r0, 2 |Γ|´1
s, and considering the point

`

θ,´θ, π
2
, . . . , π

2

˘

(modulo 2π) for θ going from π
2

to 0, we see that the image of Φ is in fact exactly r0, 2 |Γ|´1
s.

We extend Φ to a map Φ̃ : y ÞÑ 2p∇yΨ ¨ `q´1 on an open neighborhood of ZH in TN .
For y P ZH we have

∇yΦ̃ “ Φpyq2
ˆ

`1 cospy1q

sin3py1q
, . . . ,

`N cospyNq

sin3pyNq

˙

and

∇yΨ “

ˆ

1

sin2py1q
, . . . ,

1

sin2pyNq

˙

.

If these two vectors are colinear we have

`1 cotanpy1q “ ¨ ¨ ¨ “ `N cotanpyNq.

Since Ψpyq “ 0, this only happens when yj “
π
2

mod π for all j P J1, NK. Then, for
t P p0, 2|Γ|´1q, the subset Φ´1pttuq is a smooth submanifold of codimension 1 in ZH.

Let f P C8c pp0, 2|Γ|´1qq. Applying the co-area formula (see [Fed96]), we can write
ż

ZH
pf ˝ Φq dµBG,H “

ż 2|Γ|´1

0

fptq

ˆ
ż

Φ´1pttuq

|νpyq ¨ `|

}∇Φ}
dµΦ´1pttuq

˙

dt,

where µΦ´1pttuq is the Lebesgue measure on Φ´1pttuq. Hence, the measure µ` is absolutely
continuous with respect to the Lebesgue measure on the interval p0, 2|Γ|´1q. We can
also note that its density is positive almost everywhere since |νpyq ¨ `| ą 0 on ZH and

Φ´1pttuq has positive measure for all t Ps0, |Γ|´1
r. Since Φ does not vanish on ZH, the

measure µ` does not put any mass at t “ 0, and Φ´1pt2|Γ|´1uq is reduced to 2N points so
µBG,H pΦ

´1pt|Γ|´1uqq “ 0. �

Remark 5.4. More generally, we can consider the case where 1 ă N` ď N . We denote
by P` the orthogonal projection of RN on the vector space ΛK` . Then, we write down the
partition

ZH “ Zreg
H \ Zsing

H ,

where
Zreg
H “ ty P ZH : rkpP`∇yΨ, P`∇yΦ̃q “ 2u,

and
Zsing
H “ ty P ZH : rkpP`∇yΨ, P`∇yΦ̃q “ 1u.

We can decompose the integral following this partition of ZH:
ż

ZH
pf ˝ Φq dµBG,H “

ż

Zreg
H

pf ˝ Φq dµBG,H `

ż

Zsing
H

pf ˝ Φq dµBG,H.

To the first term, we can again apply the co-area formula
ż

Zreg
H

pf ˝ Φq dµBG,H “

ż 2|Γ|´1

0

fptq

˜

ż

Φ´1pttuqXZreg
H

|νpyq ¨ `|

}∇Φ}
dµΦ´1pttuq

¸

dt,
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which gives as above a contribution to the absolutely continuous part of the the measure
µ`. In particular, if

µZHpZ
sing
H q “ 0,

then the limit measure is a linear combination of a Dirac mass at 0 and of an absolutely
continuous measure.

5.2. Rates of convergence. In this paragraph we prove Propositions 1.6 and 1.7.

Proof of Proposition 1.6. We already know that if two lengths are commensurable then
λnpαq “ λnp0q (and hence δnpαq “ 0) for an infinite number of n P N˚. Now assume that,
for instance, `1{`2 does not belong to Q.

We have seen in Proposition 4.2 that δnpαq is small when ρn is small. This happens
when τn is close to T8. By the Dirichlet Approximation Theorem, there exists a sequence
pppk, qkqqkPN in Z2

` such that qk goes to `8 and, for all k P N,
ˇ

ˇ

ˇ

ˇ

`1

`2

´
pk
qk

ˇ

ˇ

ˇ

ˇ

ď
1

q2
k

.

Thus, one has
ˇ

ˇ

ˇ

ˇ

πqk
`2

´
πpk
`1

ˇ

ˇ

ˇ

ˇ

ď
π

qk`1

.

Since πqk{`1 and πpk{`2 belong to T8, there exists nk P N˚ such that τnk is between them
(see Remark 2.8). In particular,

|τnk`2 ´ πqk| “ `2

ˇ

ˇ

ˇ

ˇ

τnk ´
πqk
`2

ˇ

ˇ

ˇ

ˇ

ď
π`2

qk`1

,

so, by Lemma 4.1,

ρnk À sinpτnk`2q
2
À

1

q2
k

À
1

τ 2
nk

.

By Proposition 4.2, there exists an eigenvalue λnkpαq “ znkpαq
2 of Hα such that

znkpαq P D

ˆ

τnk ,
8|α|ρnk
τnk

˙

.

Then

|δnkpαq| À τnk |znkpαq ´ τnk | À
1

τ 2
nk

,

and the conclusion follows. �

Let γ ą 0, we say that ` is γ-Diophantine (see [Pös01]) if there exists C ą 0 such that,
for every κ P ZNzt0u,

|κ ¨ `| ě C}κ}´γ, (5.4)

where } ¨ } is the Euclidean norm on RN . In particular, κ ¨ ` ‰ 0 for all κ P Zz t0u in this
case. According to [Pös01], the set of γ-Diophantine vectors has full Lebesgue measure for
γ ą N ´ 1 and is empty when γ ă N ´ 1. The Diophantine properties of ` allow to be
more precise on the unique ergodicity of the flow ϕt`:
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Lemma 5.5. Suppose that ` is γ-Diophantine for some γ ą 0. Then there exists C1 ą 0
such that for a P C8pTNq, T ą 0 and x P TN one has

ˇ

ˇ

ˇ

ˇ

1

T

ż T

0

a ˝ ϕt`pxqdt´
1

p2πqN

ż

TN
apyq dy

ˇ

ˇ

ˇ

ˇ

ď
C1

T

ÿ

κPZN zt0u

}κ}γ
ˇ

ˇ

ˇ

ˇ

1

p2πqN

ż

TN
apyqe´iκ¨y dy

ˇ

ˇ

ˇ

ˇ

.

Proof. The proof is immediate once we have decomposed a in Fourier series. �

We now proceed to the proof of Proposition 1.7.

Proof of Proposition 1.7. Let γ PsN ´ 1, N r. Let Ω Ă pR˚`qN be of full Lebesgue measure
and such that any vector in Ω is γ-Diophantine. We assume that ` belongs to Ω. Let
σ Ps0, 2|Γ|´1s and let y0 in ZH be such that

Φpy0q “ σ. (5.5)

Let χ P C80 pRN , r0, 1sq be supported in the unit ball and be equal to 1 on a small neigh-
borhood of 0. For y P RN and r ą 0 we set

χrpyq “
ÿ

κPZN
χ

ˆ

y ´ y0 ` 2κπ

r

˙

.

Here we have identified y0 with a point in RN , and then χr can be seen as a function on
TN . Let κ P ZNz t0u and j P J1, NK such that |κj| “ max1ďkďN |κk|. Then, for p P N, we
have

ˇ

ˇ

ˇ

ˇ

ż

TN
χrpyqe

´iκ¨y dy

p2πqN

ˇ

ˇ

ˇ

ˇ

“
1

κpj

ˇ

ˇ

ˇ

ˇ

ż

TN
B
p
yj
χrpyqe

´iκ¨y dy

p2πqN

ˇ

ˇ

ˇ

ˇ

ď CrN´p }κ}´p , (5.6)

where C only depends on χ and p. Let T ą 0 and r P p0, 1s. We apply Lemma 5.5 with
a “ χr and x “ ϕT` p0q, and (5.6) with p “ 2N . This gives

ˇ

ˇ

ˇ

ˇ

ż 2T

T

pχr ˝ ϕ
τ
` qp0q dτ ´ r

NT

ż

TN
χ1pyq

dy

p2πqN

ˇ

ˇ

ˇ

ˇ

ď Cr´N .

Let ε ą 0. For T ě 1 we set

rT “ T´
1

2N
`2ε.

Then
ż 2T

T

pχrT ˝ ϕ
τ
` qp0q dτ „

TÑ`8
rNT T

ż

TN
χ1pyq

dy

p2πqN
.

In particular, for T large enough the left-hand side is positive, so there exists τ P rT, 2T s
such that χrT pϕ

τ
` p0qq ‰ 0, and in particular |ϕτ` p0q ´ y0| ď rT . Now, as ` is transverse to

ZH, there exists c ą 0 independant of T large enough and nT P N˚ such that τnT P
“

T
2
, 3T

‰

and
ˇ

ˇϕ
τnT
` p0q ´ y0

ˇ

ˇ ď crT . By (5.2) and as Φ is of class C1 near y0, we obtain

δnT pαq “
2α

ψ10pτnT q
`Opτ´1

nT
q “ αΦpy0q `OprT q `Opτ´1

nT
q “ ασ `Opτ´

1
2N
`2ε

nT q.

This concludes the proof. �
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30 GABRIEL RIVIÈRE AND JULIEN ROYER

[Liu88] K. Liu. Energy decay problems in the design of a point stabilizer for coupled string vibrating
systems. SIAM J. Control Optim., 26(6):1348–1356, 1988.

[LZ16] M. Lee and M. Zworski. A Fermi golden rule for quantum graphs. J. Math. Phys., 57(9), 2016.
[NV07] S. Nicaise and J. Valein. Stabilization of the wave equation on 1-D networks with a delay term in

the nodal feedbacks. Netw. Heterog. Media, 2(3):425–479, 2007.
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(J. Royer) Institut de Mathématiques de Toulouse (U.M.R. CNRS 5219), Université Toulouse
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