TD n°3 Indépendance

Exercice 1 Une urne contient b boules blanches et r boules rouges. On tire ces boules une à une, sans remise, jusqu'à épuisement. Pour k tel que $0 \le k \le b$, quelle est la probabilité pour qu'exactement k boules blanches soient tirées avant la première boule rouge?

Exercice 2 Deux joueurs A et B jouent une suite de parties indépendantes. Lors de chacune d'elles, ils ont respectivement les probabilités p pour A et q := 1 - p pour B de gagner. Le vainqueur final est celui des deux joueurs qui le premier obtient deux victoires de plus que son adversaire. Quelle est la probabilité pour que A soit vainqueur?

Exercice 3 Soient X et Y deux variables aléatoires définies sur un espace probabilisé 5Ω , A, P), ne pouvant prendre que deux valeurs distinctes. Montrer que X et Y sont indépendantes si et seulement si E(XY) = E(X)E(Y).

Indication : Si X prend les valeurs x_1 , x_2 et Y les valeurs y_1 , y_2 , déduire de lhypothèse d'indépendance que

$$E((X - x_i)(Y - y_i)) = E(X - x_i)E(Y - y_i) \quad \forall i = 1, 2$$

Exercice 4 Soit X une variable améatoire réelle et soient f et g deux fonctions croissantes de \mathbb{R} dans \mathbb{R} . On suppose que $E(f(X)^2) < \infty$ et $E(g(X)^2) < \infty$. Démontrer que

$$E(f(X)q(X)) \geqslant E(f(X))E(q(X))$$

Indication : Montrer que $(f(x) - f(y))(g(x) - g(y)) \ge 0$ pour tous x et y dans \mathbb{R} et utiliser le théorème de Fubini après avoir introduit une variable aléatoire Y indépendante de X et de même loi.

En déduire que si |X| < 1 p.s (presque surement)

$$E(\frac{1}{1-X^2})\leqslant E(\frac{1}{1-X})E(\frac{1}{1+X})$$

Exercice 5 Soient X et Y deux variables aléatoires indépendantes, de même loi exponentielle de densité donnée par

$$d_{\theta}(x) := \theta e^{-\theta x} \mathbb{I}_{[0,\infty[}(x) \quad \forall x \in \mathbb{R}$$

avec $\theta > 0$. Déterminer les densités des lois X^3 , |X - Y|, $\min(X, Y^3)$. Même question lorsque X et Y suivent la loi uniforme sur [-1, 1].

Exercice 6 Soient n un entier non nul, $(X_i)_{i=1\cdots n}$ une famille de variables aléatoires indépendantes, et notons F_i la fonction de répartition de X_i pour tout i dans $\{1, \cdots n\}$. On définit les variables aléatoires m_n et M_n par :

$$m_n := \min_{1 \leqslant i \leqslant n} X_i$$
 et $M_n := \max_{1 \leqslant i \leqslant n} X_i$

Montrer que pour tout réel x

$$P([M_n \leqslant x]) = \prod_{1 \leqslant i \leqslant n} F_i(x)$$

, que

$$P([m_n \le x]) = 1 - \prod_{1 \le i \le n} (1 - F_i(x))$$

et que

$$P([x_1 \le m_n \le M_n \le x_2]) = \prod_{1 \le i \le n} (F_i(x_1) - F_i(x_2)) \quad \forall x_1, x_2 \in \mathbb{R}$$

Exercice 7 Soient n un entier non nul, $(X_i)_{i=1\cdots n}$ une famille de variables aléatoires indépendantes, de même loi exponentielle de paramètre 1. Montrer que

$$P([\exists i, j / X_i = X_i]) = 0$$

On pose $Z := \min_{1 \le i \le n} X_i$ et $N := \min\{i \mid X_i = Z\}$. Déterminer la loi de Z. Etablir que pour réel t > 0 et pour tout entier k dans $\{1, \dots, n\}$

$$P([N = k, Z > t]) = \frac{e^{-nt}}{n}$$

En déduire que Z et N sont des variables aléatoires indépendantes et préciser la loi de N.

Exercice 8 On appelle loi gamma de paramètre p>0 et on note Γ_p la loi de densité γ_p donnée par

$$\gamma_n(x) := \mathbb{I}_{\mathbb{R}^+}(\Gamma(p))^{-1} x^{p-1} e^{-x} \quad \forall x \in \mathbb{R}$$

où $\Gamma(p)$ est une constante de normalisation (elle assure que l'intégrale de γ_p vaut 1).

- 1. Montrer que $\Gamma(p) = (p-1)\Gamma(p-1)$ et que pour p entier $\Gamma(p) = p!$.
- 2. Monter que $\Gamma_p * \Gamma_q = \Gamma_{p+q}$ pour tous entiers p et q. En déduire la loi de $\lambda_1 + \cdots + \lambda_n$ lorsque $(\lambda_i)_{i \in \{1,\dots,n\}}$ est une famille de variables aléatoires mutuellement indépendantes de même loi exponentielle de paramètre 1.
- 3. Montrer que la fonction caractéristique φ^{Γ_p} de la loi Γ_p est donnée par

$$\varphi^{\Gamma_p} = (1 - it)^{-p} \quad \forall t \in \mathbb{R}$$

4. Soit maintenant $(X_i)_{i\geqslant 1}$ une suite de variables aléatoires mutuellement indépendantes et de même loi exponentielle. Soit $S_n:=X_1+\cdots+X_n$ leur somme (pour tout entier n). Pour tout réel t positif posons $N(t):=\operatorname{card}\{i\ /\ S_i\leqslant t\}$. En évaluant $P([N(t)\geqslant k])$ pour tout entier k, montrer que N(t) suit une loi de Poisson de paramètre t.

Exercice 9 Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires mutuellement indépendantes, de même loi de Bernoulli de papramètre p. Pour tout entier $n\geqslant 1$, on définit par récurrence la variable aléatoire T_n par

$$T_n := \inf\{k \mid k > T_{n-1}, X_k = 1\}$$

si cet infimum existe et $T_n=\infty$ sinon, et $T_0=0$. démontrer que les variables aléatoires T_1 , T_2-T_1 , ..., T_n-T_{n-1} , ... sont mutuellement indépendantes et de même loi. Calculer la loi de T_1 et sa fonction caractéristique. En déduire la loi de T_n .

Exercice 10 Soient X et Y deux variables aléatoires indépendantes et de même loi uniforme sur l'intervalle [0,1]. on pose

$$U = X$$
 et $V = \max(X, Y)$

- 1. Pour toute application f borelienne de \mathbb{R}^2 dans \mathbb{R} déterminer l'espérance E(f(U,V)).
- 2. En déduire la loi de V.