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Introduction

1 On quasi-categories
See [BV], [Jo1], [Jo2], [Lu1], [Gr], [Ci]

1.1 On simplicial sets
See [JT].
Let ∆ be the category of finite non-empty ordinals [n] = {0, . . . , n} and order preserving maps. A map

f ∶ [m]→ [n] in ∆ can be described by the increasing sequence of its values f = (f(0), f(1), . . . , f(m)) ∈ [n]m.
We shall denotes by dni ∶ [n − 1] → [n] the unique injective (order preserving) map with i ∉ Im(dni ) and by
sni ∶ [n]→ [n − 1] the unique surjective (order preserving) map such that sni (i) = sni (i + 1). For example,

d5
2 = (0,1,3,4,5) s5

2 = (0,1,2,2,3,4)

For simplicity, we shall often denote the map dni by di ∶ [n−1]→ [n] and denote the map sni by si ∶ [n]→ [n−1].
Notice that the maps d0, d1 ∶ [0] → [1] are defined by d0(0) = 1 and d1(0) = 0. Every injective map
d ∶ [m]→ [n] in ∆ can be expressed uniquely as a composite d = dik . . . di1 with 0 ≤ i1 < ⋯ < ik ≤ n and every
surjective map s ∶ [m] → [n] can be expressed uniquely as a composite s = sik⋯si1 with 0 ≤ i1 < ⋯ < ik <m.
Every map f ∶ [m] → [n] in ∆ admits a unique decomposition f = ds ∶ [m] → [p] → [n] with s ∶ [m] → [p] a
surjective map and d ∶ [p]→ [n] an injective map.

The category ∆ has a non-trivial automorphism τ ∶ ∆ → ∆ which reverses the order relation on the
ordinals [n] = {0, . . . , n}. By construction, if f ∶ [m] → [n] then the map τ(f) ∶ [m] → [n] is obtained by
putting τ(f)(i) = n − f(m − i) for every i ∈ [m]. Notice that τ(dni ) = dnn−i and τ(sni ) = snn−1−i.

By definition, a simplicial set X is a presheaf of ∆. We shall adopt the standard convention of denoting
the set X([n]) by Xn for every n ≥ 0. The map di ∶= X(di) ∶ Xn → Xn−1 is called a face operator and the
map si ∶= X(si) ∶ Xn−1 → Xn a degeneracy operator. A simplicial set X is often pictured by its diagram of
face operators

X0 X1d1oo

d0oo
X2

d2oo

d0oo
d1oo ⋯

omiting the degeneracy operators:

X0
s0 // X1

s0 //
s1 // X2

s0 //

s2 //

s1 // X3 ⋯

A map of simplicial sets f ∶ X → Y is a natural transformation. By definition, it is a sequence of maps
fn ∶Xn → Yn and the following squares commute:

Xn

di

��

fn // Yn

di

��
Xn−1

fn−1 // Yn−1

Xn−1

si

��

fn−1 // Yn−1

si

��
Xn

fn−1 // Yn

We shall denote the category of simplicial sets by sSet.

If X is a simplicial set, then an element x ∈Xn is said to be a n-simplex of X. A 0-simplex x ∈X0 is said
to be vertex and a 1-simplex f ∈ X1 said to be an arrow of X. The source of an arrow f ∈ X1 is the vertex
d1(f) ∈X0 and its target is the vertex d0(f) ∈X0.

d1(f) f // d0(f)
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To every vertex a ∈X0 is associated a unit arrow 1a ∶= s0(a) ∶ a→ a.

a
1a

a

A 2-simplex t ∈ X2 has three faces d0(t), d1(t), d2(t) and three vertices a0 = d1d2(t) = d1d1(t), a1 =
d0d2(t) = d1d0(t) and a2 = d0d1(t) = d0d0(t).

a2

t
d0(t)

  
a0

d2(t)

>>

d1(t) // a1

A n-simplex x ∈Xn is said to be degenerated if n > 0 and x = si(y) for some y ∈Xn−1 and some 0 ≤ i ≤ n−1.
For example a unit arrow 1a ∶= s0(a) ∶ a→ a is degenerated. To every arrow f ∶ a→ b in X1 is associated two
degenerated 2-simplex.

a

s0(f)
f

��
a

1a

f // b

b

1b
s1(f)

a

f

@@

f // b

We shall discuss the geometric meaning of degenerated simplices below.

An important example of simplicial set is the singular complex S(X) of a topological space. By construc-
tion, a n-simplex x ∈ S(X)n is a continuous map x ∶ ∆n →X, where ∆n is the convex hull of the set of unit
vectors in R[n] = Re0 ⊕⋯⊕Ren,

∆n = {(x0, . . . , xn) ∈ Rn+1 ∣
n

∑
i=0

xi = 1, xi ≥ 0}.

Notice that ∆0 = {e0} and that ∆1 = {(1 − t)e0 + te1 ∣ 0 ≤ t ≤ 1} ≃ [0,1]. Every map f ∶ [m] → [n] in ∆
can be extended uniquely as a linear map R(f) ∶ ∆m → ∆n if we put R(f)(ei) = ef(i) for every i ∈ [m].
If x ∈ S(X)n, then S(X)(f)(x) ∶= xR(f) ∶ ∆m → S(X). A vertex of S(X) is a point of X and an arrow
u ∈ S(X)1 is a continuous path u ∶ [0,1]→X; the source of u is the vertex d1(u) = uR(d1)(e0) = u(0) and its
target is the vertex d0(u) = uR(d0)(e0) = u(1). If X and Y are topological spaces, then a continuous map
f ∶X → Y induces a map of simplicial sets S(f) ∶ S(X)→ S(Y ). This defines the singular complex functor

S ∶ Top→ sSet

where Top is the category of topological spaces and continuous maps.

Another example of simplicial set is the nerve N(P ) of a poset P . By construction, N(P )n is the set of
order preserving maps [n] → P . Equivalently, N(P )n is the set of (increasing) chains x0 ≤ x1 ≤ ⋯ ≤ xn of
n+ 1 of elements of P . A n-simplex x0 ≤ x1 ≤ ⋯ ≤ xn is non-degenerated if and only if x0 < x1 < ⋯ < xn. The
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nerve N([n]) of the poset [n] is called the fundamental simplex and it is denoted ∆[n].

0

∆[0]

0 //

∆[1]

1

1

��
0 //

@@

∆[2]

2

1

��

// 3

0 //

GG

∆[3]

99

2

GG

Another example of a simplicial set is the nerve N(C) of a category C. Recall that every poset P has the
structure of a category if we put Ob(P ) = P and

Hom(x, y) =
⎧⎪⎪⎨⎪⎪⎩

{(x, y)} if x ≤ y
∅ otherwise

In particular, the poset [n] is a category with n + 1 objects {0, . . . , n} and with exactly one arrow i → j for
each pair i ≤ j in [n]. A map of posets P → Q is the same thing as a functor P → Q. In particular, a map
[m]→ [n] in the category ∆ is the same thing as a functor [m]→ [n].

If C is a category, then a n-simplex of the simplicial set N(C) is defined to be a functor x ∶ [n] → C. If
f ∶ [m] → [n] is a map in ∆, then N(C)(x) ∶= xf ∶ [m] → C. Notice that category [n] is freely generated by
a chain of n arrows

0Ð→ 1Ð→ 2Ð→ ⋯Ð→ n

It follows that a n-simplex of N(C) is a chain (fn, fn−1, . . . , f1) of length n of morphisms of C,

A0
f1 // A1

f2 // ⋯ fn−1 // An−1
fn // An

By definition,

di(fn, . . . , f1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(fn, . . . , f2) if i = 0

(fn, . . . , fi+1fi, . . . , f1) if 0 < i < n
(fn−1, . . . , f1) if i = n

si(fn−1, . . . , f1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(fn, . . . , f2, f1, id) if i = 0

(fn, . . . , fi+1, id, fi, . . . , f1) if 0 < i < n
(id, fn−1, . . . , f1) if i = n

where id denotes unit morphisms. A n-simplex (fn, fn−1, . . . , f1) is non-degenerated if and only none of the
morphisms fi is a unit.

If C andD are categories, then a functor F ∶ C→D induces a map of simplicial sets N(F ) ∶ N(C)→ N(D).
This defines a the nerve functor

N ∶ Cat→ sSet

where Cat is the category of small categories and functors.

The functor N is fully faithful. Hence we may use the same notation for a category C and its nerve N(C).
Recall that every category C has an opposite Cop. By definition, the categories C and Cop have the same

objects but Cop(A,B) ∶= C(B,A) for every pair of objects. Thus, for every arrow f ∶ B → A in C, there is an
arrow fop ∶ A → B in Cop. Moreover, if gop ∶ B → C, then gopfop ∶= (fg)op. Similarly, every simplicial set X
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has an opposite Xop defined by putting Xop =X ○ τ , where τ ∶ ∆→∆ is the non-trivial automorphism of ∆
describe above. Thus, for every arrow f ∶ B → A in C, there is an arrow fop ∶ A → B in Cop. Moreover, if
gop ∶ B → C, then gopfop ∶= (fg)op. Similarly, every simplicial set X has an opposite Xop defined by putting
Xop =X ○ τ , where τ ∶ ∆→∆ is the non-trivial automorphism of ∆ describe above. Every n-simplex x ∈Xn

has an opposite xop ∈ (Xop)n. Moreover di(xop) = dn−i(x)op and si(xop) = sn−i(x)op. It follows from this
description that N(Cop) = N(C)op.

Recall that the Yoneda functor y ∶ ∆ → sSet is defined by putting y([n]) = ∆(−, [n]) for every n ≥ 0.
We have y([n]) = N([n]) = ∆[n] for every n ≥ 0. Hence the Yoneda functor y ∶ ∆ → sSet coincide with the
restriction of the nerve functor N ∶ Cat→ sSet to the sub-category ∆ ⊂ Cat. The Yoneda functor y ∶ ∆→ sSet
is fully faithful. Hence we may use the same notation for a map f ∶ [m] → [n] in ∆ and for the map
of simplicial sets y(f) ∶ ∆[m] → ∆[n]. By Yoneda lemma, if X is a simplicial set, then the set of maps
∆[n] → X is in natural bijection with the set Xn; the bijection takes a map f ∶ ∆[n] → X to the n-simplex
f(1[n]) ∈ Xn. Notice that 1[n] is the n-simplex (0 < 1 < ⋯ < n) of the nerve of the poset [n]. If X is a
simplicial set, we shall identify Xn with the set Hom(∆[n],X) by using the same notation for an element
x ∈ Xn and the unique map x′ ∶ ∆[n] → X such that x′(1[n]) = x. In this notation, we have x(1[n]) = x for
every x ∈ Xn. If f ∶ [m] → [n] is a map in ∆, then the simplex X(f)(x) ∈ Xm is identified with the map
xf ∶= x′f ∶ ∆[n]→X.

Xn

X(f) // Xm

Hom(∆[n],X)
Hom(f,X) // Hom(∆[m],X)

For example, if an arrow f ∈ X1 is represented by a map f ∶ ∆[1] → X then its source d1(f) ∈ X0 is
represented by the map fd1 ∶ ∆[0]→X, where d1 ∶ ∆[0]→∆[1] and d1(0) = 0.

A simplex x ∶ ∆[n]→X is degenerated if and only there exists a simplex y ∶ ∆[r]→X of dimension r < n
together with a map f ∶ ∆[n]→∆[r] such that x = yf .

∆[n] x //

f ##

X

∆[r]
y

==

Every simplex x ∶ ∆[n]→X admits a unique decomposition x = yf , where y ∶ ∆[r]→X is a non-degenerated
simplex and f ∶ [r] → [m] is a surjection (Eilenberg-Zilber lemma). For example, if y ∶ ∆[1] → X is a non-
degenerated arrow then the simplices ys0 ∶ ∆[2] → X and ys1 ∶ ∆[2] → X are degenerated and different,
since the surjections s0, s1 ∶ ∆[2]→∆[1] are different. However, the maps ys0 and ys1 have the same image
in X.

yd1

ys0
y

  
yd1 y // yd0

yd0

1b
ys1

yd1

y

>>

y // yd0

.
A sub-simplicial set of a simplicial set X is a sub-presheaf S ⊆X.

To every non-empty subset S ⊆ [n] corresponds a face ∆[S] ⊆ ∆[n] of dimension Card(S) − 1. By
definition ∆[S]k is the set of maps x ∶ [k]→ [n] that factor through the inclusion S ⊆ [n]. The simplex ∆[n]
has n + 1 faces of codimension 1 denoted ∂i∆[n]. By definition, ∂i∆[n] = ∆[[n] ∖ i].
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1
∂0∆[2]

��
0

∂2∆[2]
@@

∂1∆[2]
// 2

The boundary of ∆[n] is defined by putting

∂∆[n] =
n

⋃
i=0

∂i∆[n]

The category of simplicial sets sSet has limits and colimits. The limit and the colimit of a diagram of
simplicial set D ∶ I → sSet are taken pointwise:

(lim←Ð
i∈I

D(i))([n]) = lim←Ð
i∈I

D(i)([n]), (limÐ→
i∈I

D(i))([n]) = limÐ→
i∈I

D(i)([n])

In particular, if (Xi∣i ∈ I) is a family of simplicial sets, then

(∏
i∈I

Xi)([n]) =∏
i∈I

Xi([n]), (⊔
i∈I

Xi)([n]) =⊔
i∈I

Xi([n])

Similary for the construction of amalgamated coproducts (of pushouts) of two maps of simplicial sets u ∶
C → A and v ∶ C → B and of the fiber products (pullbacks) of two maps f ∶X → Z and g ∶ Y → Z.

C
v //

u

��

B

in2
��

A
in1 // A ⊔C B

X ×Z Y
π2 //

π1

��

Y

g

��
X

f // Z

From a simplicial set X and a map f ∶ ∂∆[n] → X we can construct a new simplicial set ∆[n] ⊔f X by
taking a pushout

∂∆[n]

i

��

f // X

in

��
∆[n] // ∆[n] ⊔f X

where i is the inclusion ∂∆[n] ⊂ ∆[n]. The simplicial set ∆[n] ⊔f X is obtain from X by attaching a n-cell
along the map f ∶ ∂∆[n]→X. Every simplicial set can be constructed from the empty set by attaching cells
iteratively. More precisely, a simplicial set X is said to be of dimension ≤ n if every non-degenerated simplex
of X has dimension ≤ n. A simplicial set X is of dimension ≤ 0 if and only if it is a coproduct of ∆[0]; we
shall say that it is discrete. The n-skeleton Skn(X) of a simplicial set X is defined to be the sub-simplicial
set of X generated by the non-degenerated simplices of dimension ≤ n. This defines a filtration

Sk0(X) ⊆ Sk1(X) ⊆ Sk2(X) ⊆

and X = ⋃n Skn(X). It turns out that the simplicial set Skn+1(X) is obtained from the simplicial set
Skn(X) by attaching a set of (n + 1)-cells.

The category of simplicial sets sSet is also cartesian closed. Recall that this means that the functor
A × (−) ∶ sSet → sSet has a right adjoint [A,−] ∶ sSet → sSet for any simplicial set A. If B is a simplicial set,
then

[A,B]n =Map(A ×∆[n],B)
for every n ≥ 0. We shall often denote the simplicial set [A,B] by BA. Notice that a vertex of the simplicial
set A∆[1] is an arrow in the simplicial set A.
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1.2 Realisations
See [JT], [GJ].
The singular complex functor S ∶ Top → sSet has a left adjoint R ∶ sSet → Cat which associates to a

simplicial set X its geometric realisation R(X).
The nerve functor N ∶ Cat→ sSet. has a left adjoint τ1 ∶ sSet→ Cat which associates to a simplicial set X

its fundamental category τ1(X). The category τ1(X) has an explicit description in terms of generators and
relations.

2 On quasi-categories and Kan complexes
The notion of Kan complex was introduced by Daniel Kan []. Recall that a simplicial set X is called a

Kan complex if every horn h ∶ Λk[n]→X with n > 1 and k ∈ [n] admits an extension h′ ∶ ∆[n]→X.

Λk[n] h //
� _

��

X

∆[n]
h′

==

For example, the singular complex S(X) of a topological space X is a Kan complex . Recall that S(X)n is
the set of continuous map ∆n → X where ∆n ⊆ Rn is the geometric n-simplex defined by the inequalities
0 ≤ x1 ≤ ⋯ ≤ xn ≤ 1.

Definition 2.1. We say that a simplicial set X is a quasi-category if every horn h ∶ Λk[n] → X with
0 < k < n admits an extension h′ ∶ ∆[n]→X.

Λk[n] h //
� _

��

X

∆[n]
h′

==

The notion of quasi-category was introduced by Boardman and Vogt [BV], but without a name. It is
called an ∞-category by Lurie.

The nerve of a category C is a quasi-category N(C). Every Kan complex is a quasi-category. The
opposite Xop of a quasi-category (resp. Kan complex) X is a quasi-category (resp. a Kan complex).

Remark. A simplicial set X is the nerve of a category if and only if every horn h ∶ Λk[n]→X with 0 < k < n
admits a unique extension h′ ∶ ∆[n] → X. For example, in the case n = 2 and k = 1, the operation h ↦ h′

gives the composition law:
1

v

��
0

vu //

v

GG

2
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In the case n = 3 and k = 1 (or k = 2), the operation h↦ h′ gives the associativity law w(vu) = (wv)u.

1

v

��

wv // 3

0

99

vu //

u

GG

2

w

GG

Remark A simplicial set X is the nerve of a groupoid if and only if every map h ∶ Λk[n] → X with n > 1
admits a unique extension h′ ∶ ∆[n] → X. The operation h ↦ h′ produces left inverses in the case n = 2 and
k = 0, and right inverses in the case n = 2 and k = 2

b

u−1

��
a

u

GG

a

a

u

��
b

u−1

GG

b

The cartesian product X × Y of two quasi-categories is a quasi-categories. Moreover, if X is a quasi-
category, then so is the simplicial set XA for any simplicial set A.

If X is a simplicial set, then there is a simplicial set of arrows X(a, b) beween any two vertices a, b ∈ X.
Recall that a vertex of the simplicial set X∆[1] is an arrow in the simplicial set X. From the maps d0, d1 ∶
∆[0]→∆[1] we obtain two maps Xd0 ,Xd1 ∶X∆[1] →X∆[0] =X. The simplicial set X(a, b) is defined to be
the fiber of the map (Xd1 ,Xd0) ∶ X∆[1] → X ×X at the vertex (a, b) ∈ X ×X. In other words, we have a
pullback square

X(a, b) //

��

X∆[1]

(Xd1 ,Xd0)

��
1

(a,b) // X ×X

(1)

The simplicial set X(a, b) is a Kan complex when X is a quasi-category. The homotopy category ho(X)
of a quasi category X is obtained by putting Ob(ho(X)) ∶= X0 and by putting ho(X)(a, b) ∶= π0X(a, b) for
every a, b ∈X0. The composition operation

π0X(b, c) × π0X(a, b)→ π0X(a, c)

is obtained by filling horns Λ1[2]→X. It turns out that ho(X) = τ1(X).
Definition 2.2. An arrow f ∶ a → b in a quasi-category X is said to be invertible, or to be an isomorphism,
if its image in the homotopy category ho(X) is invertible.

Theorem 2.3. [Jo1] A quasi-category X is a Kan complex iff every arrow in X is invertible.

In other words, a quasi-category X is a Kan complex iff its homotopy category ho(X) is a groupoid. Kan
complexes are to groupoids what quasi-categories are to categories.

Categories Groupoids
Quasi-categories Kan complexes

We shall often say that a vertex of a quasi-category X, is an object of X and that an arrow f ∶ a→ b is a
morphism. We may also say that a map between quasi-categories f ∶ X → Y is a functor. We shall say that
a functor f ∶X → Y is fully faithful if the map X(a, b)→X(fa, fb) induced by f is a homotopy equivalence
for every pair of objects a, b ∈ X. We shall say that a functor f ∶ X → Y is essentially surjective if for every
object b ∈ Y there exists an object x ∈X together with an isomorphism f(x)→ y.
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Definition 2.4. We shall say that a functor between quasi-categories f ∶X → Y is a categorical equivalence,
or an equivalence of quasi−categories, if it is fully faithful and essentially surjective.

For example, a map between Kan complexes f ∶ X → Y is a homotopy equivalence (as defined by Kan)
if and only if it is a categorical equivalence.

IfX and Y are quasi-categories, then a natural transformation α ∶ f → g between two functors f, g ∶X → Y
is defined to be a morphism f → g in the quasi-category Y X . A natural transformation α ∶ f → g is said to
be a natural isomorphism if the morphism α is invertible in Y X .

Proposition 2.5. A natural transformation α ∶ f → g is invertible if and only if the morphism α(x) ∶ f(x)→
g(x) is invertible in Y for every object x ∈X.

Proposition 2.6. A functor between quasi-categories f ∶ X → Y is a categorical equivalence if and only if
there exists a functor g ∶ Y →X together with two natural isomorphisms α ∶ 1X → gf and β ∶ 1Y → fg,

2.1 On fibrations
Recall that a map of simplicial sets f ∶X → Y is said to be a Kan fibration if every commutative square

Λk[n] h //
� _

��

X

f

��
∆[n]

==

y // Y

(2)

has a diagonal filler h′ ∶ ∆[n]→X.

Recall also that a map of simplicial sets f ∶ X → Y is said to be a trivial fibration if every commutative
square

∂∆[n] h //
� _

��

X

f

��
∆[n]

<<

y // Y

(3)

has a diagonal filler h′ ∶ ∆[n]→X.

Definition 2.7. We say a map of simplicial sets f ∶X → Y is a left fibration (resp. mid fibration, right fibration)
if every commutative square (3) with 0 ≤ k < n (resp. 0 < k < n, 0 < k ≤ n) has a diagonal filler.

These five classes of fibrations are closed under composition and base changes. Recall that the base
change of a map p ∶ X → B along a map u ∶ A → B is defined to be the map π1 ∶ A ×B X → A in a pullback
square

A ×B X
π1

��

π2 // X

p

��
A

u // B

(4)

If p is a Kan fibration (resp. trivial fibration, left fibration, mid fibration, right fibration) then so is the map
π1.

A simplicial set X is a Kan complex if and only if the map X → 1 is a Kan fibration. It follows that if
p ∶X → B is a Kan fibration and B is a Kan complex, then X is a Kan complex.

Similarly, A simplicial set X is a quasi-category if and only if the map X → 1 is a mid fibration. It follows
that if p ∶X → B is a mid fibration and B is a quasi-category, then X is a quasi-category.

It turns out that a simplicial set X is a Kan complex if and only if the map X → 1 is a left fibration
(resp. right fibration). It follows that the fibers of a left fibration (resp. right fibration) p ∶ X → B are Kan
complexes.
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2.2 On the coherent nerve functor
See [Cor], [Lu1].
Recall that a simplicial category C is a category enriched over the category of simplicial sets sSet: this

means that the set of arrows C(A,B) between two objects of C is actually a simplicial set rather than an
ordinary set, and also that the composition operation

C(B,C) × C(A,B)→ C(A,C)

is a map of simplicial sets. We shall denote the category of (small) simplicial categories by SCat.

Let us denote by KCat the category of categories enriched over Kan complexes and by QCat the category
of quasi-categories.

We shall describe the coherent nerve functor Ñ ∶ SCat→ sSet which associate a simplicial set Ñ(C) to any
simplicial category C. The simplicial set Ñ(C) is a quasi-category when the simplicial category C is enriched
over Kan complexes.

The simplicial set Ñ(C) is constructed by using a functor C∗ ∶ ∆ → SCat. The objects of the simplicial
category C⋆[n] are the elements of [n] and C⋆[n](i, j) = ∅ unless i ≤ j, in which case C⋆[n](i, j) is (the
nerve of) the poset of subsets S ⊆ [i, j] such that {i, j} ⊆ S. If i ≤ j ≤ k, the composition operation

C⋆[n](j, k) ×C⋆[n](i, j)→ C⋆[n](i, k)

is the union (T,S)↦ T ∪ S.
The coherent nerve of a simplicial category C is the simplicial set Ñ(C) defined by putting

Ñ(C)n = SCat(C⋆[n],X)

for every n ≥ 0. This notion was introduced by Cordier in [Cor]. The simplicial set Ñ(C) is a quasi-category
when C is enriched over Kan complexes [Cor]. The functor Ñ ∶ SCat→ sSet has a left adjoint τ̃ and the pair
of adjoint functors

τ̃ ∶ sSet←→ SCat ∶ Ñ
is a Quillen equivalence of model categories [Lu1].

3 On limits and colimits

3.1 On slices and coslices
We first recall the slice category C/A of a category C with respect to an object A ∈ C. Recall that an

object over A is an object X ∈ C equipped with a morphism p ∶ X → A; a morphism (X,p) → (Y, q) in C/A
is a morphism f ∶X → Y such that the following triangle commutes

X
f //

p
  

Y

q
��

A

Dually, there is a coslice category A/C for any object A ∈ C.
Similarly, there is a slice simplicial set X/a for any vertex a of a simplicial set X. By construction, a n-

simplex ∆[n]→X/a is a simplex x ∶ ∆[n+1]→X such that x(n+1) = a. Dually, there is a coslice simplicial
set a/X for any vertex a ∈X. By construction, a n-simplex ∆[n]→X/a is a simplex x ∶ ∆[n + 1]→X such
that x(0) = a. The simplicial sets X/a and a/X are quasi-categories when X is a quasi-category.
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Recall that a functor F ∶ E → C is said to be a discrete fibration if for every object X ∈ E and every map
g ∶ Y → F (X) in C, there exists a unique map f ∶ X ′ → X in E such that F (f) = g. If A is an object in a
category C, then the forgetful functor C/A→ C is a discrete fibration.

If a is a vertex of a quasi-category X, then the map p ∶ X/a → X is defined by putting px = xdn+1 for
a n-simplex x ∶ ∆[n + 1] → X of X/a is a right fibration. Dually, the map p ∶ a/X → X defined by putting
px = xd0 for a n-simplex x ∶ ∆[n + 1]→X in a/X is a left fibration.

3.2 On initial and terminal objects
See [Jo1] [Lu1].
We introduce the notions of initial, terminal and null objects.

Definition 3.1. If X is a quasi-category, we say that an object b ∈X is terminal if the simplicial set X(x, b)
is contractible for every object x ∈ X. Dually, we say that an object b ∈ X is initial if the simplicial set
X(b, x) is contractible for every object x ∈X.

Proposition 3.2. If X is a quasi-category, then an object b ∈ X is terminal if and only if the following
equivalent conditions hold:

• every simplical sphere x ∶ ∂∆[n]→X with n > 0 and x(n) = b can be filled;

• the projection X/b→X is a categorical equivalence;

• the projection X/b→X is a trivial fibration.

The notion of terminal vertex is invariant under categorical equivalence. More precisely, if u ∶ X → Y is
an equivalence of quasi-categories, then an object a ∈ X is terminal in X iff the object u(a) is terminal in
Y . Moreover, the object 1a ∈X/a is terminal in X/a for any object a ∈X.

The full simplicial subset spanned by the terminal (resp. initial) objects of a quasi-category is a con-
tractible Kan complex when non-empty.

3.3 On join and cones
See [Jo1] [Lu1].
In this section we study the notions of limit and colimit in a quasi-category. We define the notions of

cartesian product, of fiber product, of coproduct and of pushout. The notion of limit in a quasi-category
subsume the notion of homotopy limits. For example, the loop space of a pointed object is a pullback and
its suspension a pushout. We consider various notions of complete and cocomplete quasi-categories. Many
results of this section are taken from [Jo2] and [Jo3].

If X is a quasi-category and A is a simplicial set, we say that a map d ∶ A → X is a diagram indexed by
A in X

The join of the simplices ∆[m] and ∆[n] is defined by putting ∆[m] ⋆∆[n] = ∆[m + 1 + n]. In general,
the join of two simplicial sets X and Y can be defined by the formula

(X ⋆ Y )n =Xn ⊔ Yn ⊔ ⊔
i+1+j=n

Xi × Yj

By construction, X ⊔ Y ⊆ X ⋆ Y and there is a n-simplex ∆[i] ⋆ ∆[i] → X ⋆ Y for each pair of simplices
∆[i] → X and ∆[j] → Y with i + 1 + j = n. For example, (X ⋆ Y )1 = X1 ⊔ Y1 ⊔X0 × Y0. The join operation
(X,Y ) ↦ X ⋆ Y gives the category sSet the structure of a monoidal category (sSet,⋆) with the empty
simplicial set as the unit object. Notice that A ⋆B ≠ B ⋆A is general. The simplicial set 1 ⋆A = ∆[0] ⋆A is
a cone with base A = ∅ ⋆A and apex 1 = 1 ⋆ ∅. Dually, we shall say that the simplicial set A ⋆ 1 = A ⋆∆[0]
is a cocone with base A = A ⋆ ∅ and apex 1 = ∅ ⋆ 1.
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If X is a quasi-category, we shall say that a map of simplicial sets d ∶ A → X is a diagram indexed by A
in X.

Recall that for any vertex b of a simplicial set X there is a slice simplicial set X/b. By construction, a
n-simplex ∆[n] → X/b is a simplex x ∶ ∆[n + 1] → X such that x(n + 1) = b. More generally, for any map of
simplicial sets d ∶ A → X, there is a slice simplicial set X/d; by construction, a n-simplex of X/d is a map
f ∶ ∆[n] ⋆ A → X such that f ∣A = d (recall that A ⊂ ∆[n] ⋆ A). In particular, a vertex of X/d is a map
f ∶ 1⋆A→X such that f ∣A = d; we shall say that f is a cone with base d in X. We shall say that X/d is the
simplicial set of cones with base d in X. The simplicial set X/d is a quasi-category if X is a quasi-category.

3.4 On limit cones
If X is a quasi-category, we shall say that a cone c ∶ 1 ⋆ A → X with base d = c ∣ A ∶ A → X is a limit

cone if c is a terminal object of the quasi-category X/d; in which case, the vertex c(1) ∈X is said to be the
(homotopy) limit of d and we write

c(1) = lim←Ð
a∈A

d(a) = lim←Ð
A

d.

Remark If d ∶ A→X is a diagram in a quasi-category X, then the full simplicial subset of X/d spanned by
the limit cones with base d is a contractible Kan complex when non-empty. It follows that the limit of the
diagram d ∶ A→X is homotopy unique when it exists.

For example, a family of objects (ai ∣ i ∈ I) in a quasi-category X is the same thing as a map of simplicial
sets d ∶ I ⋅1→X where I ⋅1 = ⊔I 1 = ⊔I ∆[0]. We shall write that d ∶ I →X. The product a = lim←ÐI d is equipped
with a family of morphisms πi ∶ a→ ai (the projections) one for each (i ∈ I); for every object b ∈X, the maps
X(b, πi) ∶X(b, a)→X(b, ai) are defined up to homotopy and the resulting map X(b, a)→∏i∈I X(b, ai) is a
homotopy equivalence.

The cone {●} ⋆Λ2[2] is isomorphic to the square ∆[1] ×∆[1],

●

�� ��

// 1

��
0 // 2

(0,0)

�� ##

// (1,0)

��
(0,1) // (1,1)

We say that a square S ∶ ∆[1] ×∆[1]→X is cartesian, or a pullback, if it is a limit cone.

A map Λ2[2] → X is the same thing as a couple (f, g) of morphisms f ∶ a → b and g ∶ c → b having a
commun target (in this case b). The limit of the diagram (f, g) ∶ Λ2[2]→X is called the fiber product f and
g and it is often denoted a ×b c.

a ×b c //

��

c

g

��
a

f // b.

The diagonal morphism a ×b c→ b is actually the cartesian product of f and g as objects of X/b.
A quasi-categoryX is said to have fiber products if every diagram Λ2[2]→X has a limit. A quasi-category

X has fiber product if and only if the quasi-category X/b has binary fiber products for every object b ∈X.

We say that a quasi-category X has finite limits if every finite diagram A→X has a limit.

Proposition 3.3. A quasi-category has finite limits if and only if it has a terminal object and fiber products.

We say that a (large) quasi-category X is complete if every (small) diagram A→X has a limit. There is
a dual notion of a cocomplete quasi-category.
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We shall say that a functor between quasi-categories f ∶ X → Y preserves limits if it takes every limit
cone in X to a limit cone.

A right adjoint preserves all limits that exists.

The canonical functor X → ho(X) preserves all products that exist.

Let us say that a commutative square in the category of sets Set

A

f

��

g // C

v

��
B

u // D

(5)

is pseudo-cartesian if the induced map A → B ×D C is surjective. More generally we shall say that a square
(5) in category C is pseudo-cartesian if its image by the functor C(K,−) ∶ C → Set is pseudo-cartesian for
every object K ∈ C.

Lemma 3.4. If X is a quasi-category, then the canonical functor X → ho(X) takes cartesian squares to
pseudo-cartesian squares.

3.5 On fiber sequences
We shall say that a vertex 0 ∈X in a quasi-category X is null if it is both initial and terminal. We shall

say that a quasi-category X is pointed if it has a nul object 0 ∈X. If X is a pointed quasi-category then the
projection (Xd0 ,Xd1) ∶ X∆[1] → X ×X admits a (homotopy unique) section which associates to a pair of
objects x, y ∈X a null morphism 0 ∶ x→ y obtained by composing the morphisms x→ 0→ y.

Let X be a pointed quasi-category. A null sequence a → b → c in X can be defined to be a commutative
square [S] ∶ ∆[1] × ∆[1] → X with boundary ∂[S] = ([S](d1 × id), [s](d0 × id), [s](id × d1), [s](id × d0)) =
(0, v, u,0),

a
u //

��
[S]

b

v

��
0 // c.

(6)

A null sequence a → b → c is a fiber sequence is the square [s] is a pullback. For example, the loop space
Ω(x) of an object x ∈X is defined by a fiber sequence Ω(x)→ 0→ x, that is, by a pullback square

Ω(x) //

��

0

��
0 // x.

Every fiber sequence a→ b→ c has a canonical extension Ω(c)→ a→ b→ c

Ω(c) //

∂

��
[S′]

0

��
a

u //

��
[S]

b

v

��
0 // c.

(7)
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By iterating, we obtain a long fiber sequence

⋯ // Ω2(a)
Ω2

(u) // Ω2(b)
Ω2

(v) // Ω2(c)
Ω(∂) // Ω(a)

Ω(u) // Ω(b)
Ω(v) // Ω(c) ∂ // a

u // b
v // c

Ω3(c) //

Ω2
(∂)

��

0

��
Ω2(a)

Ω(u) // Ω2(b) //

Ω(v)

��

0

��
Ω2(c)

Ω(∂) //

��

Ω(a)

Ω(u)

��

// 0

��
0 // Ω(b)

Ω(v) //

��

Ω(c) //

∂

��

0

��
0 // a

u //

��

b

v

��
0 // c

(8)

Dually, a null sequence [S] ∶ a→ b→ c is said to be a cofiber sequence if the square

a
u //

��
[S]

b

v

��
0 // c.

(9)

is a pushout, in which case the morphism v ∶ b → c is said to be the cofiber of the morphism u ∶ a → b. For
example, the suspension Σ(x) of an object x ∈X is defined to be the cofiber of the morphism x→ 0,

x //

��

0

��
0 // Σ(x)

(10)

In a pointed category with finite limits X, every cofiber sequence a → b → c has a canonical extension
a→ b→ c→ Σ(a).

a
u //

��
[S]

bv

��

// 0

��
0 // c

∂ //

[S′]

Σ(a)

(11)

By iterating, we obtain a long cofiber sequence

a
u // b

v // c
∂ // Σ(a)

Σ(u) // Σ(b)
Σ(v) // Σ(c)

Σ(∂) // Σ2(a)
Σ2

(u) // Σ2(b)
Σ2

(v) // Σ2(c) // ⋯
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3.6 On adjoint functors
See [RV1].
Recall that an adjunction θ ∶ F ⊣ G between two functors F ∶ C → D and G ∶ D → C is a family of

bijections
θ = θAB ∶Hom(F (A),B) ≃Hom(A,G(B))

natural in A ∈ C and B ∈ D. We can then define a natural transformation η ∶ IdC → GF by putting
ηA ∶= θ(1F (A) ∶ A → G(F (A)) for every object A ∈ C and a natural transformation ε ∶ FG → IdD by putting
εB ∶= θ−1(1G(B) ∶ FG(B) → B for every object B ∈ D. The natural transformation η ∶ IdC → GF is called
the unit of the adjunction and the natural transformation ε ∶ FG→ IdD called the counit of the adjunction.
The adjunction θ ∶ F ⊣ G is determined by its unit and by its counit.

A functor F ∶ C→D has a right adjoint if and only if the category F /B defined by the pullback square

F /B

��

// D/B

��
C

F // D

has terminal object (G(B), εB) for every object B ∈D. Dually, a functor G ∶D→ C has a left adjoint if and
only if the category A/G defined by the pullback square

A/G //

��

A/C

��
D

G // C

has an initial object (F (A), ηA) for every object A ∈ C.
We shall say that functor between quasi-categories f ∶ X → Y has a right adjoint if the quasi-category

f/b defined by the pullback square
f/b

��

// Y /b

��
X

f // Y

has terminal object (g(b), εb) for every object b ∈D, where εb ∶ f(g(b))→ b. We can then construct a functor
g ∶ Y →X together with a natural transformation ε ∶ fg → idX .

Dually, a functor g ∶ Y →X has a left adjoint if and only if the quasi-category a/g defined by the pullback
square

a/g //

��

a/X

��
Y

g // X

has an initial object (f(a), ηa) for every object a ∈X, where ηa ∶ a→ gf(a). We can then construct a functor
g ∶ Y →X together with a natural transformation ε ∶ fg → idX .

4 On stable quasi-categories
See [Lu2].
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4.1 On bicartesian squares
A pointed quasi-category E is said to be stable if it has pullbacks, pushouts and cartesian squares coincide

with cocartesian squares.

Obviously, the opposite of a stable quasi-category is stable.

Example 4.1. The quasi-category of spectra Sp is the basic example of a stable quasi-category.

Definition 4.2. We shall say that a commutative square in a stable category E

a //

��

b

��
c // d

is bicartesian if the square is cartesian (hence also cocartesian).

Lemma 4.3. (3-for-2 for bicartesian squares) Consider the following commutative diagram in a stable quasi-
category.

a0
//

��
[A]

a1
//

��
[B]

a2

��
b0 // b1 // b2

a0
//

��
[A+B]

a2

��
b0 // b2

If two of the three squares [A], [B] and [A +B] are bicartesian, then so is the third.

The suspension Σ(a) of an object a in a stable category E is defined by a pushout square

a //

��

0

��
0 // Σ(a)

and the loop Ω(a) by a pullback square
Ω(a) //

��

0

��
0 // a

We have ΣΩ(a) = a and ΩΣ(a) = a, since the squares are bicartesian. We shall put a[n] = Σn(a) and
a[−n] = Ωn(a) for every n ≥ 0.

A null sequence [S] ∶ a → b → c in a stable quasi-category E is said to be exact if the corresponding
square

a
u //

��
[S]

b

v

��
0 // c.

(12)

is bicartesian. A null sequence is exact if and only if it is a fiber sequence if and only if it is a cofiber
sequence.
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Every exact sequence a → b → c in a stable quasi-category E can be extended naturally as a two sided
long exact sequence

⋯ // Ω(a)
Ω(u) // Ω(b)

Ω(v) // Ω(c) ∂ // a
u // b

v // c
∂ // Σ(a)

Σ(u) // Σ(b)
Σ(v) // Σ(c)

Σ(∂) // ⋯

If [a, b] denotes the (pointed) hom space between two objects a and b in a stable category E, then

Ω[a, b] = [a,Ω(b)] = [Σ(a), b]

The sequence of spaces [a, b[n]] for n ≥ 0 has the structure of a spectrum, since

Ω[a, b[n + 1]] = [a,Ωb[n + 1]] = [a,Ωb[n]]

for every n ≥ 0. It follows that the space [a, b] has the structure of an infinite loop space. Thus, Ext0(a, b) ∶=
π0[a, b] is an abelian group. We shall put Extn(a, b) ∶= π0[a, b[n]] for every n ∈ Z. Notice that for every
n ≥ 0,

πn[a, b] = π0Ωn[a, b] = π0[a,Ωnb] = π0[a, b[−n]] = Ext−n(a, b).

For every object x ∈ E, the functor

Ext0(x,−) ∶ E→ Abelian groups

takes exact sequences to exact sequences of abelian groups. Dually, the contravariant functor

Ext0(−, x) ∶ E→ Abelian groups

takes exact sequences to exact sequences of abelian groups.

An exact sequence a → b → c in a stable quasi-category E gives rise to long exact sequences of abelian
groups for every object x ∈ E.

⋯ // Ext−1(x, c) ∂ // Ext0(x, a) // Ext0(x, b) // Ext0(x, c) ∂ // Ext1(x, a) // ⋯

⋯ // Ext−1(a, x) ∂ // Ext0(c, x) // Ext0(b, x) // Ext0(a, x) ∂ // Ext1(c, x) // ⋯

4.2 On t-structures
See [Lu2], Definition 1.2.1.4. and Remark 1.2.1.8.

Definition 4.4. Let E be a triangulated quasi-category. We say that a pair (E≥0,E≤−1) of full sub-quasi-
categories of E is a truncation structure if the following conditions hold:

1. E(X,Y ) = 0 for every X ∈ E≥0 and Y ∈ E≤−1.

2. the inclusion functor E≥0 ⊆ E has a right adjoint τ≥0 ∶ E → E≥0 and the the inclusion functor E≤−1 ⊆ E

has a left adjoint τ≤−1 ∶ E→ E≤−1.

3. The null sequence τ≥0(X)→X → τ≤−1(X) is exact for every X ∈ E.

5 On universes
To be completed.
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5.1 On universal left fibrations
See [Ci].

5.2 On Grothendieck fibrations
See [Ngu].

Definition 5.1. Let p ∶ E → B be a mid fibration between simplicial sets. We say that an arrow f ∶ a→ b in
E is cartesian with respect to p if the map E/f → B/p(f) ×B/p(b) E/b obtained from the commutative square

E/f //

��

E/b

��
B/p(f) // B/p(b)

is a trivial fibration.

An arrow f ∈ E is cartesian if and only if every commutative square

Λn[n]

��

x // E

p

��
∆[n] // B

with n > 1 and x(n − 1, n) = f has a diagonal filler.

Definition 5.2. We say that a map of simplicial sets p ∶ E → B is a Grothendieck fibration if it is a mid
fibration and for every vertex b ∈ E and every arrow g ∈ B with target p(b) there exists a cartesian arrow
f ∈ E with target b such that p(f) = g.

6 On sheaves of quasi-categories
To be completed.

6.1 On sheaves of Kan complexes

6.2 On sheaves of quasi-categories

6.3 On sheaves of stable quasi-categories
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