Au delà de l'infini, par Cantor

Yann Rollin

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots$

Qu'est-ce compter?

- Compter s'apprend en établissant une relation entre les doigts de la main et un autre ensemble qu'on souhaite compter.
- Certains animaux savent compter.
- Préhistoire des mathématiques : objets utilisés pour le comptage (entailles, encoches, os d'Ishango, bâtons de comptage)
- Les objets utilisés pour le comptage sont interchangeables.
- Le concept de cardinal inventé par Georg Cantor (1845-1918) : classe d'équivalence d'ensembles *équipotents*.
- Vives polémiques entre Cantor et ses contemporains finitistes et constructivistes.

Injection, surjections, bijections

Soient A et B deux ensembles et $f : A \rightarrow B$ une application.

• On dit que f est injective si tout élément de B a au plus un antécédent

$$\forall a, a' \in A, f(a) = f(a') \Rightarrow a = a'.$$

• On dit que f est surjective si tout élément de B a au moins un antécédent :

$$\forall b \in B, \exists a \in A, b = f(a).$$

• L'application est dite bijective si elle est à la fois injective et surjective

$$\forall b \in B, \exists! a \in A, b = f(a).$$

- Il existe une bijection $id_A : A \to A$.
- Une bijection $f: A \to B$ admet un *inverse* $g: B \to A$, c'est a dire une application telle que $g \circ f = \mathrm{id}_A$ et $f \circ g = \mathrm{id}_B$. En outre g est unique et on le note f^{-1} .

Exemples, contre-exemples, diagrammes de Venn

Yann Rollin Cantor et l'infini 4 / 20

Quelques propriétés

Théorème 1

Soient $f: E \to F$ et $g: F \to H$ deux applications et $g \circ f$ leur composée.

- **1** Si f et g sont injectives, alors $g \circ f$ est injective.
- 2 Si f et g sont surjectives, alors g o f est surjective.
- **3** Si f et g sont bijectives, alors $g \circ f$ est bijective.
- **⑤** Si g ∘ f est injective, alors f est injective.
- **5** Si $g \circ f$ est surjective, alors g est surjective.

Cardinal

Définition 2

On dit que deux ensembles A et B ont le même cardinal, ou bien sont équipotent, s'il existe une bijection de A vers B. On note alors

 $A \sim B$.

Proposition 3

La relation d'équipotence est une relation d'équivalence.

Ensembles finis

L'entier n est défini comme un ensemble qui possède n éléments via la construction de Von Neumann :

$$0 = \emptyset$$
, $1 = \{0\}$, $2 = \{0, 1\}$, $3 = \{0, 1, 2\} \dots$

Définition 4

Un ensemble A est dit fini s'il existe un entier n tel que $n \sim A$.

Théorème 5

$$n \sim m \Leftrightarrow n = m$$

De plus, un ensemble A est fini si est seulement si il n'est équipotent à aucune de ses parties propres.

Puissance du dénombrable

Définition 6

Un ensemble A tel que $A \sim \mathbb{N}$ est dit dénombrable.

Théorème 7

Un ensemble dénombrable est infini.

Preuve:

$$f: \mathbb{N} \to \mathbb{N} \setminus \{0\}$$
$$n \mapsto n+1$$

réalise une bijection entre $\mathbb N$ et une partie propre. Donc $\mathbb N$ n'est pas fini.

Exemples dénombrables

Exemples

- $\mathbb{N} \sim \mathbb{Z}$
- $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$.

Théorème 8

 $\mathbb{N} \sim \mathbb{Q}.$

La suite, destinée aux curieux, est facultative.

Théorème de Cantor

Motivation : Existence d'infinis de natures différentes

Théorème 9

Soit E un ensemble et $\mathscr{P}(E)$ l'ensemble des parties de E. Il n'existe pas de surjection de E vers $\mathscr{P}(E)$. En particulier, les deux ensembles n'ont pas le même cardinal.

Preuve : soit $f: E \to \mathscr{P}(E)$ une application et

$$F = \{x \in E, x \notin f(x)\}.$$

Alors $F \in \mathcal{P}(E)$ n'a pas d'antécédent par f.

Donc f ne peut être surjective.

Ordre

Définition 10

On dit que A est moins puissant que B s'il existe une injection de A vers B. On note alors

$$A \leq B$$
.

Théorème 11

 $A \leq B$ si, et seulement si, il existe une surjection $f : B \rightarrow A$.

Théorème 12 (Théorème de Cantor-Bernstein)

La relation $A \leq B$ est une relation d'ordre au sens où

- A ≤ A
- $A \le B$ et $B \le C \Rightarrow A \le C$
- $A \leq B$ et $B \leq A \Rightarrow A \sim B$

Yann Rollin Cantor et l'infini 12 / 20

Défi 1/2

Théorème 13

Un ensemble A est infini si, et seulement si, $\mathbb{N} \leq A$.

Défi : démontrez que A infini $\Rightarrow \mathbb{N} \leq A$.

Défi 2/2

Théorème 14

Soit A un ensemble infini et $x \in A$. Alors

$$A \setminus \{x\} \sim A$$
.

Q est dénombrable

Preuve du Théorème 8 :

Il existe une application injective de $f: \mathbb{N} \to \mathbb{Q}$, donnée par f(n) = n. Il existe une application injective $g: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N}^*$:

toute fraction $q\in\mathbb{Q}$ s'écrit de manière unique sous forme irreductible

$$q = \frac{a}{b}$$

avec la convention $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$.

On pose alors g(q) = (a, b).

On a vu que $\mathbb{N}^* \sim \mathbb{N}$ et $\mathbb{Z} \sim \mathbb{N}$, donc

$$\mathbb{Z} \times \mathbb{N}^* \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N}.$$

Il en résulte que $\mathbb Q$ s'injecte dans $\mathbb N.$

Par le théorème de Cantor-Bernstein $\mathbb{Q} \sim \mathbb{N}$.

Puissance du continu

$$f: A \to \mathscr{P}(A)$$
$$x \mapsto \{x\}$$

est une injection donc $A \leq \mathcal{P}(A)$ et par the théorème de Cantor $A < \mathcal{P}(A)$.

En particulier

$$\mathbb{N} < \mathscr{P}(\mathbb{N}) < \mathscr{P}(\mathscr{P}(\mathbb{N})) < \dots$$

On peut montrer que

$$\mathbb{R} \sim \mathscr{P}(\mathbb{N})$$

d'où

$$\mathbb{N} < \mathbb{R}$$
.

Cantor (hypothèse du continu) : il n'existe pas d'ensemble A tel que

$$\mathbb{N} < A < \mathbb{R}$$
.

Cette propriété est indécidable (Gödel, Cohen).

Yann Rollin Cantor et l'infini 16 / 20

Puissance du Continu

Théorème 15

$$\mathbb{R}\simeq \mathscr{P}(\mathbb{N})$$

Preuve:

Lemme 16

Il existe des injections

$$f: \mathbb{R} \to \mathscr{P}(\mathbb{N}), \quad g: \mathscr{P}(\mathbb{N}) \to \mathbb{R}.$$

Par Cantor-Bernstein, on en déduit que $\mathbb{R} \sim \mathscr{P}(\mathbb{N})$.

Injection $\mathbb{R} o \mathscr{P}(\mathbb{N})$

$$h: \mathbb{R} \to \mathscr{P}(\mathbb{Q})$$
$$x \mapsto \mathbb{Q} \cap [x, +\infty)$$

est injective.

Soit $\psi:\mathbb{Q}\to\mathbb{N}$ une bijection. Alors

$$\Psi: \mathscr{P}(\mathbb{Q}) \to \mathscr{P}(\mathbb{N})$$

$$A \mapsto \psi(A) = \{\psi(a), a \in A\}$$

est aussi une bijection.

On en déduit que $f = \Psi \circ h : \mathbb{R} \to \mathscr{P}(\mathbb{N})$ est une injection.

Yann Rollin Cantor et l'infini 18 / 20

Injection $\mathscr{P}(\mathbb{N}) \to \mathbb{R}$

Soit F l'ensemble des suites

$$\mathscr{F} = \{u : \mathbb{N} \to \{0,1\}\}.$$

 $(u_n) \in \mathscr{F}$ définit une partie A_u de \mathbb{N} par

$$A_u = \{n \in \mathbb{N}, u_n = 1\}.$$

L'application

$$\mathscr{F} \to \mathscr{P}(\mathbb{N})$$
 $u \mapsto A_u$

est une bijection. On montre qu'il existe une injection

$$k: \mathscr{F} \to \mathbb{R}$$
.

Injection $\mathscr{F} \to \mathbb{R}$

Etant donné $(u_n) \in \mathscr{F}$, on pose

$$x_u = \sum_{n=0}^{+\infty} \frac{u_n}{2^n} \in [0, 2].$$

- L'application $u \mapsto x_u$ n'est pas injective.
- Le défaut d'injectivité provient des suite (u_n) qui ne sont pas à support fini.
- Par exemple $(1,0,0,\dots)$ et $(0,1,1,1,\dots)$ définissent la même valeur $x_u=1$.
- On peut définir une injection $k: \mathscr{F} \to \mathbb{R}$ par

$$k(u) = \begin{cases} x_u + 3 \text{ si } (u_n) \text{ est à support fini et} \\ x_u \text{ sinon.} \end{cases}$$

On en déduit l'existence d'une injection $g: \mathscr{P}(\mathbb{N}) \to \mathbb{R}$.

Yann Rollin Cantor et l'infini 20 / 20

Références

- Introduction à la théorie des ensembles, Paul Halmos (1970)
- Logique et théorie axiomatique, J.L. Krivine (2014).

Cantor et l'infini 21 / 20