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Background – Symplectic topology
(M, ω) symplectic manifolds and Ham(M, ω) the group of Hamiltonian
transformations.
We want to understand Lagrangian submanifolds of M and, more generally
isotropic submanifolds of M.

Lagrangian sub. are invariant under the action of Ham.

The question of classification of Lagrangians upto Hamiltonian isotopy
remains open in many cases.

Example: Closed Lagrangian surfaces of R4, with its standard
symplectic form, must be diffeomorphic to a torus. But the problem of
classification is open in this case.

Examples of Lagrangian submanifolds:

M = T ∗N carries a symplectic form ω = dλ.

The zero section L of T ∗N → N is a Lagrangian submanifold.

Any closed 1-form define a Lagrangian deformation of L.

Any exact 1-form define a Hamiltonian deformation of L.

By the Lagrangian neigbohood theorem, the above remark provides general
deformations for any Lagrangian submanifold.
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Background – Symplectic geometry

Lagrangian submanifolds are too flexible.
Can we find canonical representatives in a given isotopy class? (Oh)

Consider a Kähler manifold (M, ω, g , J).

Stationary Lagrangian submanifold are the critical points for the
volume in a Ham-orbit.

Theory analogue to minimal submanifolds.

Idea: define a version of the mean curvature flow in this context.

Such flow is complicated... Numerical approach ?

Big problem: almost no examples of discrete Lagrangian surfaces in
R

4. No deformation theory.
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Main result

Theorem 1 (Jauberteau-Rollin-Tapie)

Let ℓ : Σ → R
2n be a smooth isotropic immersion, with n ≥ 2 and Σ a

surface diffeomorphic to a torus. Then for every ε > 0, there exists an

isotropic piecewise linear map ℓ̂ : Σ → R
2n, such that for every x ∈ Σ

‖ℓ(x) − ℓ̂(x)‖ ≤ ε.

If n ≥ 3, we may assume that ℓ̂ is an immersion. If n = 2, we may assume

that ℓ̂ is an immersion away from a finite union of embedded circles in Σ.

Corollary 2

Every smoothly immersed isotropic 2-torus of R2n, where n ≥ 3, admits

arbitrarily close approximations by isotropic piecewise linear immersed tori,

in Hausdorff distance.
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Rough idea of the proof

Start with an isotropic immersion ℓ : Σ → R
2n, then

Pick a triangulation of Σ with very small faces.

The corresponding Eulidean triangles of R2n are almost isotropic.

Perturb the triangular mesh to obtain an isotropic mesh.

Problems:

In which direction should we move the vertices?

The problem ill posed. The linearized problem comes with an almost
kernel whose dimension goes to infinity with the number of faces.
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Quadrangulations of R2

For a positive integer N, we define the lattice ΛN ⊂ R
2 and the checkers

graph sublattice Λch
N ⊂ ΛN

ΛN = Z
e1

N
⊕ Z

e2

N
, Λch

N = Z
e1 + e2

N
⊕ Z

e2 − e1

N
.

The points vkl ∈ ΛN are the vertices of a familiar square grid of R2

understood as a quadrangulation QN(R
2) of the plane, tiled by squares of

size N−1.
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Quadrangulations of the torus

The immersion ℓ : Σ → R
2n induces a conformal structure gΣ = ℓ∗g on Σ.

By the uniformization theorem, there exists a conformal covering map

p : R2 → Σ

with group of deck transformations Γ = Zγ1 ⊕ Zγ2. Then gσ = p∗geuc

satisfies gΣ = θgσ.

Pick γN
i ∈ Λch

N a best approximation of γi .

Put ΓN = ZγN
1 ⊕ ZγN

2 ⊂ Λch
N .

Define UN : R2 → R
2 by UN(γ

N
i ) = γi .

Then UN induces a diffeo R
2/ΓN → R

2/Γ ≃ Σ.

QN(R
2) descends to the quotient as a quadrangulation QN(Σ).
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Checkers graph
One can associate a checkers graph GN(R

2) to the quadrangulation
QN(R

2) as follows

The graph splits into two connected components

GN(R
2) = G

+

N (R2) ∪ G
−

N (R2).

GN(R
2) is acted on by ΓN ⊂ Λch

N , which preserves the connected
components. We obtain quotient checkers graphs

GN(Σ) = G
+

N (Σ) ∪ G
−

N (Σ).
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Discrete functions on Σ

The space of discrete functions is by definition:

C 2(QN(Σ)) ≃ C 0(GN(Σ)).

The splitting GN(Σ) = G
+

N (Σ) ∪ G
−

N (Σ), provides a direct sum
decomposition

C 0(GN (Σ)) = C 0(G +

N (Σ))⊕ C 0(G−

N (Σ))

and accordingly
ψ = ψ+ + ψ−.
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Discrete analysis

We define finite differences ∂
∂u

and ∂
∂v

on C 0(G +(R2)).

This leads to discrete C k -norm on C 0(G+(R2)).

Similarly, we defines discrete C k,α-Hölder norm ‖ψ+‖C k,α on
C 0(G +(R2)) and also on C 0(G +(Σ)) by pullback.

We define a weak discrete Hölder norm

‖ψ‖
C

k,α
w

:= ‖ψ+‖C k,α + ‖ψ−‖C k,α

There is a notion of convergence ψ+

N → φ for a sequence of discrete
functions ψ+

N toward a function φ : Σ → R.

There is version of the Ascoli-Arzela theorem: if ‖ψ+

N‖C 0,α < c , we
may extract a converging sequence.

A Theorem of Thomée (’68) shows that finite difference elliptic
operators on C 0(G+

N (Σ)) satisfy uniform Schauder estimates under
some mild assumptions.
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Quadranglar meshes

A quadrangular mesh τ is an element of the moduli space

τ ∈ MN = C 0(QN(Σ))⊗ R
2n

Definition 3

The symplectic area of an oriented quadrilateral of R2n is the integral of
the Liouville form λ along the quadrialteral.
Thus we define

µr
N : MN → C 2(QN(Σ))

by 〈µr
N(τ), f〉 = N−2S(f, τ), where S is the symplectic area of the

quadrilateral associated to a face f via τ .
We say that a quadrangular mesh τ is isotropic if µr

N(τ) = 0.
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Existence of isotropic meshes
Given a smooth isotropic immersion ℓ : Σ → R

2n, we define its samples
τN ∈ MN by

〈τN , v〉 = ℓ(v).

Since ℓ is isotropic, it follows that

‖µr
N(τN)‖C k

w
= O(N−1).

Theorem 1 is a consequence of the following perturbation theorem, under
an assumption of non degeneracy for the pair (p, ℓ), which is always
satisfied for a suitable choice of cover p.

Theorem 4 (Jauberteau-Rollin-Tapie)

For every sufficiently large N, there exists isotropic quadrangular meshes

ρN ∈ MN such that

max
v

‖ρN(v)− τN(v)‖ = O(N−1).
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From quadrangulations to triangulations
We give a sketch of proof for Theorem 4 ⇒ Theorem 1.

For each isotropic quadrilateral of R2n, there exists an isotropic
pyramid obtained by adding an apex to the quadrilateral. This is a
linear problem and the space of apexes is generically
2n − 3-dimensional.

A0 A1

A2A3

P

We may replace an isotropic quadrangular mesh with an isotropic
triangular mesh, which defines an isotropic piecewise linear map
ℓ̂ : Σ → R

2n.

The C 0-estimate on ℓ̂ is obtained by showing that the apex P does
not escape to infinity.

The fact that ℓ can be chosen as an immersion relies on the degrees of
freedom for the choice of the apex P and the shear action.
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Donaldson moment map geometry

Assume that (Σ, σ) is a closed surface with area form σ.
The moduli space

M = {f : Σ → R
2n}

is endowed with a natural Kähler structure (J,Ω, g), given by

JV = JV , Ω(V ,W ) =

∫

Σ

ω(V ,W )σ, g(V ,W ) =

∫

Σ

g(V ,W )σ

for every V ,W : Σ → R
2n ∈ Tf M .

The group Ham(Σ, σ) act on M and preserves the Kähler structure. Its
action is Hamiltonian, with moment map

µ : M → C∞

0 (Σ) ≃ Lie(Ham(Σ, σ))∗

given by µ(f ) = f ∗ω
σ

.
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Elliptic equation in the infinite dimensional world
We define an operator

δf : Tf M → C∞

0 (Σ) by δf V = −Dµ|f ◦ JV

and its adjoint

δ⋆f : C∞

0 (Σ) → Tf M defined by 〈〈δf V , ψ〉〉 = g(V , δ⋆f ψ).

Proposition 5

The operator ∆ℓ = δf δ
⋆
f is elliptic of order 2 at an immersion ℓ, with kernel

reduced to constants.

Let Xh be the Hamiltonian vector field of (Σ, σ) such that dh = ιXh
σ.

The fundamental vector field Yn = f∗Xh ∈ Tf M satisfies

Yh = δ⋆f h.

In particular, by the IFT, the equation µ(f − Jδ⋆f h) = 0 admits a unique
solution h ∈ C∞

0 (Σ) for every f ∈ M sufficiently close to an isotropic
immersion ℓ.
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Moment map flow

Such general setting gives rise to a moment map flow, which converge
(conjecturally) toward a zero of the moment map.

df

dt
= Jδ⋆f µ(f ) = −

1

2
grad‖µ‖2

A finite dimensional approximation of this flow provides an evolution
equation for quadrangular meshes. The flow is an ODE on MN . Its flow
lines are approximated by the Euler method in the DMMF program.
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Transplantation in the finite dimensional case

For τ ∈ MN and V ∈ TτMN = C 0(QN(Σ))⊗ R
2n, put

δτV = −Dµr
N |τ ◦ JV .

We define a discrete analogue of the L2-inner product by

〈〈f∗1 , f
∗

2 〉〉 = N−2δf1,f2 ,

which induces the adjoint defined by 〈〈δ⋆τψ,V 〉〉 = 〈〈ψ, δτV 〉〉.
We consider the equation

µr
N(τN − Jδ⋆Nψ) = 0, (1)

which is solved via the fixed point principle.
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Linear theory
The linearization of Equation (1) gives the operator

∆N : C 2(QN(Σ)) → C 2(QN(Σ)) given by ∆Nψ = δNδ
⋆
Nψ.

Proposition 6

Suppose that ψN ∈ C 2(QN(Σ)) converge up to order k towards a pair a

functions (φ+, φ−). Then ∆NψN converge up to order k − 2 towards a pair

of functions given by

Ξ(φ+, φ−) =
(

θ∆σφ
+ − gσ(dφ

+, dθ) + (K + E )(φ+ − φ−),

θ∆σφ
− − gσ(dφ

−, dθ) + (K + E )(φ− − φ+)
)

where ℓ∗g = gΣ = θgσ, K is the Gauß curvature of gΣ and

E =

∥

∥

∥

∥

II(
∂

∂u
,
∂

∂v
)

∥

∥

∥

∥

2

g
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Spectral gap

If E = 0, we say that the pair (p, ℓ) is degenerate.

Lemma 7

There exists a rotation r of R2 such that (p ◦ r , ℓ) is non degenerate.

If (p, ℓ) is non degenerate, then ker Ξ consists of functions such that

φ+ = φ− = cste.

Discrete analysis + Limit operator Ξ + Thomée ⇒

Proposition 8

If (p, ℓ) is non degenerate, there exists c > 0 such that for every N

sufficiently large and ψ ∈ C 2(QN(Σ)) with 〈〈ψ,1〉〉 = 0, we have

‖∆Nψ‖C
0,α
w

≥ c‖ψ‖
C

2,α
w
.
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Proof of Lemma 7

If II vanishes identically on every orthonormal basis, this implies that
K ≥ 0 by Gauß Theorema Egregium.

Since Σ is a torus ⇒ K = 0 by Gauß-Bonnet.

By Theorema Egregium be deduce that II = 0 ⇒ ℓ(Σ) totally
geodesic.

This is impossible since Σ is closed.

We have the formulae

d∗σθdf = θ∆σf − gσ(df , dθ)and

θd∗σθ−1dθf = θ∆σf − gσ(df , dθ) + 2Kf ,

(using 2K = θ∆σ log θ)
Ξ(φ+, φ−) = 0 implies φ+ + φ− = c0 by the first formula.
The second formula implies φ+ − φ− = c1θ

−1 if E = 0
and φ+ = φ− otherwise.
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Fixed point principle

Theorem 9

Assume that (p, ℓ) is non degenerate. Then for ε > 0 sufficiently small and

for every sufficiently large N, there exists a unique ψN ∈ C 2(QN(Σ)), such

that

ψN is orthogonal to constants,

‖ψN‖C
2,α
w

< ε and

µr
N(τN − Jδ⋆NψN) = 0.

Furthermore, we have ‖ψN‖C
2,α
w

= O(N−1).

This result proves Theorem 4 with ρN = τN − Jδ⋆NψN .
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Discretization and artifacts

It seems impossible to get better estimates than the weak Hölder estimates.
We have some sort of geometrical evidence for this given by the shear
action on MN .
The vertices of QN(Σ) are acted on by Λch

N and we have two equivalence
classes of vertices, say red and blue.
For T = (T+,T−) ∈ R

2n × R
2n, we define

〈T · τ, v〉 =

{

〈τ, v〉 + T+ if v is blue
〈τ, v〉 + T− if v is red

The symplectic area of a quarilateral of R2n with diagonals D0, D1 is given
by 1

2
ω(D0,D1).

In particular the symplectic area remains invariant when translating two
opposite vertices simulatneously.
⇒ isotropic quadrangular meshes are invariant under the shear action.
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Wild isotropic meshes
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Discrete moment map flow

We mimic the moment map flow in the infinite dimensional setting and
define the ODE on MN by

dτ

dt
= Jδ⋆τµ

r
N(τ) = −

1

2
grad‖µr

N‖
2.

The operators involved here are all explicit. In particular

δ⋆τψ =
N2

2

∑

v,f

ψ(f)Dτ
v,f ⊗ v

∗

τ(v)

Dτ
v,f
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Open questions

Is there a converse to Theorem 1 ?

Are the weak Hölder controls inherent to our construction or
geometrically signigicant ?

Short time existence of the infinite dimensional flow ?

Long time existence of the finite dimensional flow ?

Convergence of the flows as N → ∞ ?

Our construction provides a map M → MN defined along the zero
sets of µ and µr

N . Is there an nice interpretation of this map in terms
of GIT ?
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Toward quantization

Infinite dimensional case finite dimensional case

Area form σ on Σ Quadrangulation QN(Σ)

M = {f : Σ → R
2n} MN = C 0(QN(Σ)⊗R

2n

Canonical Kähler structure Canonical Kähler structure

Ham(Σ, σ)-action ???

Fundamental V.F Yh(f ) = δ⋆f h δ⋆τφ

A moment map µ : M → C∞(Σ) µr
N : MN → C 2(QN(Σ))

The moment map flow The discrete flow

Conjecture: the right column is (in some sense) a quantization of the left
column.
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Enjoy the DMMF program available on my webpage:
http://www.math.sciences.univ-nantes.fr/~rollin

Thanks for you attention !
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