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Abstract. This paper is devoted to the numerical study of a model arising from biology, consisting of chemotaxis

equations coupled to viscous incompressible fluid equations through transport and external forcing. A detailed conver-
gence analysis of this chemotaxis-fluid model by means of a suitable combination of the finite volume method and the

nonconforming finite element method is investigated. In the case of non positive transmissiblities, a correction of the

diffusive fluxes is necessary to maintain the monotonicity of the numerical scheme. Finally, many numerical tests are
given to illustrate the behavior of the anisotropic Keller-Segel-Stokes system.
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1. Introduction

Chemotaxis is a biological process, in which cells move towards a chemically more favorable envi-
ronment. This behavior enables them to locate nutrients or to avoid predators and the chemical can
be produced or consumed by the cells. For example, bacteria often swim towards higher concentration
of oxygen to survive. The best studied model of chemotaxis phenomenon in mathematical biology is
the Keller-Segel system introduced in [21] and the article of Horstmann [20] has provided a detailed
introduction into the mathematics of this model. In nature, cells often live in a viscous fluid and
meanwhile the motion of the fluid is under the influence of gravitational forcing generated by aggrega-
tion of cells. Unfortunately, chemotaxis systems do neglect the surrounding fluid and they are unable
to predict the influence of the fluid on the anisotropic chemotaxis phenomenon. Thus, it is interesting
and important to study some phenomenon of chemotaxis on the basis of the coupled cell-fluid model.
For that, we investigate in this paper a system consisting of the parabolic Keller-Segel equations with
general tensors coupled to Navier-Stokes equations,

(1.1)


∂tN −∇ · (S(x)a(N)∇N) +∇ · (S(x)χ(N)∇C) + u · ∇N = f(N),

∂tC −∇ · (M(x)∇C) + u · ∇C = h(N,C),
∂tu− ν∆u+ (u · ∇)u+∇P = −N∇φ,

∇ · u = 0, t > 0, x ∈ Ω,

where Ω is a spatial domain where the cells and the fluid move and interact. We assume that Ω is
an open bounded domain in Rd, d = 2 or 3 with smooth boundary ∂Ω. The experimental set-up
corresponds to mixed type boundary conditions. For simplicity we use no-flux conditions for N and C
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and zero Dirichlet for u to reflect the no-slip boundary conditions of the flow. Therefore, the system
(1.1) is supplemented by the following boundary conditions on Σt= ∂Ω× (0, T ),

(1.2) S(x)a(N)∇N · η = 0, M(x)∇C · η = 0, u = 0,

where η is the exterior unit normal to ∂Ω. The initial conditions on Ω are given by,

(1.3) N(x, 0) = N0(x), C(x, 0) = C0(x), u(x, 0) = u0(x).

Here, the unknowns N and C are the concentrations of cells and chemical, respectively and u is
the velocity field of a fluid flow governed by the incompressible Navier-Stokes equations with pressure
P and viscosity ν. Anisotropic and heterogeneous tensors are denoted by S(x) and M(x). The

function χ(N) is usually written in the form χ(N) = Nh̃(N) where h̃ is commonly referred to as the
chemotactic sensitivity function. Moreover, the density-dependent diffusion coefficient is denoted by
a(N). The function h(N,C) describes the rates of production and degradation of the chemical signal
(chemoattractant); here, we assume it is of birth-death structure, i.e., a linear function,

h(N,C) = αN − βC; α, β ≥ 0 .(1.4)

It can be seen in the model (1.1) that the coupling of chemotaxis and fluid is realized through both
the transport of cells and chemical substrates u · ∇N , u · ∇C and the external gravitational force
g = −N∇φ exerted on the fluid by cells. In fact, this external force can be produced by different
physical mechanisms such as gravity, electric and magnetic forces but in our study, we are only
interested in the case of gravitational force ∇φ = “Vb(ρb − ρ)g”z exerted by a bacterium onto the
fluid along the upwards unit vector z proportional to the volume of the bacterium Vb, the gravitation
acceleration g = 9, 8m/s2 and the density of bacteria is ρb (bacteria are about 10% denser than water).
Furthermore, since the fluid is slow, we can also consider the simplified Chemotaxis-Stokes system
taking the following form

(1.5)


∂tN −∇ ·

(
S(x)a(N)∇N

)
+∇ ·

(
S(x)χ(N)∇C

)
+ u · ∇N = f(N),

∂tC −∇ · (M(x)∇C) + u · ∇C = h(N,C),
∂tu− ν∆u+∇P = −N∇φ,

∇ · u = 0 t > 0, x ∈ Ω,

where compared with (1.1), the nonlinear convective term (u · ∇)u is ignored in the fluid equation.

The questions of global existence of weak solutions of the model (1.1) and uniqueness of solutions
of the model (1.5) have been answered in [7] and thus our model (1.1) is well-posed. Motivated
by experiments described in [5, 6] which explain the dynamics of anisotropic chemotaxis models in
a fluid at rest (u = 0) and interested by numerical issues related to the dynamics of these models
coupled to a viscous fluid through transport and gravitational force, we investigate in this paper the
numerical analysis of models (1.1) and (1.5). One should also note the experiments given in [8, 26, 17]
of bacteria only consuming the chemical with another function h(N,C) = −k(C)N where a cut-off
function k is introduced to describe the aggregation of a part of bacteria below an interface between
two fluids, while other bacteria are rendered inactive wherever the oxygen concentration has fallen
below the threshold of activity. To our knowledge, there are only a few numerical results given for
related systems (see [8, 23]). For example, the finite element method has been used to illustrate the
behavior of the elliptic-parabolic Keller-Segel-Stokes system with different numerical examples in [23].

In the sequel and for the sake of clarity, we will divide our model (1.1) into two systems:

(1.6)


∂tN −∇ · (S(x)a(N)∇N) +∇ · (S(x)χ(N)∇C) + u · ∇N = f(N),

∂tC −∇ · (M(x)∇C) + u · ∇C = h(N,C),
S(x)a(N)∇N · η = 0, M(x)∇C · η = 0,

N(x, 0) = N0(x), C(x, 0) = C0(x) ,
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and

(1.7)


∂tu− ν∆u+ (u · ∇)u+∇P = −N∇φ,

∇ · u = 0 t > 0, x ∈ Ω,
u = 0 x ∈ ∂Ω,

u(x, 0) = u0(x).

Assuming a vanishing fluid velocity field u and neglecting the hydrodynamic force f between cells,
the system (1.6) is then reduced to an anisotropic Keller-Segel model. A scheme recently developed
in the finite volume framework (see [1]) treats the discretization of the isotropic Keller-Segel model
in a homogeneous domain where the diffusion tensors are considered to be the identity matrix. In
this case, the mesh used for the space discretization is assumed to satisfy the orthogonality condition.
However, standard finite volume schemes not permit to handle anisotropic diffusion on general meshes
where the orthogonality condition is lost and consequently the consistency of the diffusive flux. A large
variety of methods have been proposed to reconstruct a consistent gradient as the hybrid finite volume
scheme (also known as SUSHI method) first proposed in [15] and then generalized in [11]. On the
other hand, it is well-known that the finite element method allows a very simple discretization of full
diffusion tensors and does not impose any restrictions on the meshes, but many numerical instabilities
may arise in the convection-dominated case. They were used a lot for the discretization of degenerate
parabolic equations (see [3]). A quite intuitive idea is hence used in [5, 6] to discretize the anisotropic
Keller-Segel model on general meshes, which is the combination of a piecewise linear nonconforming
finite element discretization of the diffusion term with a finite volume discretization of the other terms.
In the other hand, it is well known

(
see [12, 13]

)
that the discrete maximum principle is no more guar-

anteed in the case of non positive transmissibilities. Therefore, the authors in [5] elaborate, in the
spirit of methods described in [4, 22], a general approach to construct a nonlinear correction providing
a discrete maximum principle while retaining the main properties of the scheme, in particular coerciv-
ity and convergence toward the weak solution of the continuous problem as the mesh size tends to zero.

The ultimate aim of this article is the numerical analysis of the two-sidedly degenerate anisotropic
chemotaxis-fluid model (1.1). A combined finite volume-nonconforming finite element method will be
used to discretize the system (1.6) and a correction of the diffusive flux will be needed in the case of
negative transmissiblities. Clearly, the main difficulty in the system (1.7) comes from the numerical
treatment of the incompressibility condition (∇ · u = 0) and it is not possible to approximate the
associated functional space by the most simple finite elements where the results are less general and
vary according to the dimension (see [24]). Moreover, and simply for a Stokes equation, the authors in
[9, 10] were disappointed from the error estimates obtained with the conforming finite elements using
polynomials of degree 2 in each triangle of the mesh when the nonconforming finite elements enable
them to obtain the same asymptotic error estimates with polynomials of degree 1 in each triangle of
the mesh. In addition to that, the nonconforming finite element method violates the inter-element
continuity conditions of the velocities. Consequently, we have chosen this convenient method to dis-
cretize the Navier-Stokes equation (1.7).

The paper is structured as follows. In section 2, we state the assumptions on the data and we
present a weak formulation of the continuous problem. In section 3, we describe the time and space
discretizations, we introduce the combined finite volume-nonconforming finite element scheme and we
state the main theorem of convergence. In section 4, we present discrete properties of the numerical
scheme and we construct estimates in order to prove the convergence. Finally, numerical results will
be given in section 5.
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2. Preliminaries

Let us now state the assumptions on the data we will use in the sequel. We assume at first that
consumption stops when the cell density reaches a maximal value Nm and therefore the chemotactical
sensitivity χ(N) vanishes when N tends to Nm. The effect of a threshold cell density or a volume
filling effect has been taken into account in the modeling of chemotaxis phenomenon in [18, 19]. Upon
normalization, we can assume that the threshold density is Nm = 1 and consequently,

χ : [0, 1] 7−→ R is continuous and χ(0) = χ(1) = 0 .(2.1)

A standard example for χ is χ(N) = N(1 − N); N ∈ [0, 1]. The positivity of χ means that the
chemical attracts the cells; the repellent case is the one of negative χ.

Secondly, we suppose that the density diffusion coefficient a(N) degenerates forN = 0 andN = Nm.
This means that the diffusion vanishes when N approaches values close to the threshold Nm = 1 and
also in the absence of cell-population. Therefore,

a : [0, 1] 7−→ R+ is continuous, a(0) = a(1) = 0 and a(s) > 0 for 0 < s < 1 ,(2.2)

Next, we require

f : [0, 1] 7−→ R+ is a continuous function with f(0) = 0 ,(2.3)

∇φ ∈ (L∞(Ω))d and φ is independent of time.(2.4)

The permeabilities S, M : Ω −→Md(R) where Md(R) is the set of symmetric matrices d× d, verify

Si,j ∈ L∞(Ω), Mi,j ∈ L∞(Ω), ∀i, j ∈ {1, .., d} ,(2.5)

and there exist cS ∈ R∗+ and cM ∈ R∗+ such that a.e. x ∈ Ω,∀ξ ∈ Rd,

S(x)ξ · ξ ≥ cS |ξ|2, M(x)ξ · ξ ≥ cM |ξ|2 .(2.6)

Finally, we introduce basic spaces associated to the Navier-Stokes equation,

(2.7) ℘ = {u ∈ D(Ω),∇ · u = 0}, V = ℘̄H
1
0 (Ω) and H = ℘̄L

2(Ω) ,

where V and H are the closure of ℘ in H1
0 (Ω) and L2(Ω) respectively.

In the following definition, we give a proper notion of a weak solution.

Definition 2.1. Assume that 0 ≤ N0 ≤ 1, C0 ≥ 0, C0 ∈ L∞(Ω), u0 ∈ L2(Ω) and ∇·u0 = 0. A triple
(N,C, u) is said to be a weak solution of (1.1)-(1.3) if

0 ≤ N(x, t) ≤ 1, C(x, t) ≥ 0 a.e. in QT = Ω× [0, T ],

N ∈ Cw(0, T ;L2(Ω)), ∂tN ∈ L2(0, T ; (H1(Ω))′), A(N) :=

∫ N

0

a(r)dr ∈ L2(0, T ;H1(Ω)) ,

C ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) ∩ C(0, T ;L2(Ω)); ∂tC ∈ L2(0, T ; (H1(Ω))′) ,

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ Cw(0, T ;H);
du

dt
∈ L1(0, T ;V ′) ,

and (N,C, u) satisfy∫ T

0

< ∂tN,ψ1 >(H1)′,H1 dt+

∫∫
QT

[S(x)a(N)∇N − S(x)χ(N)∇C −Nu] · ∇ψ1 dxdt = −
∫∫
QT

f(N)ψ1 dxdt ,(2.8)

∫ T

0

< ∂tC,ψ2 >(H1)′,H1 dt+

∫∫
QT

[M(x)∇C − Cu] · ∇ψ2 dxdt =

∫∫
QT

h(N,C)ψ2 dxdt ,(2.9)
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0

< ∂tu, ψ >V ′,V dt+

∫∫
QT

∇u · ∇ψ dxdt+

∫∫
QT

(u · ∇)uψ dxdt =

∫∫
QT

−N∇φψ dxdt =

∫∫
QT

gψ dxdt ,(2.10)

for all ψ1, ψ2 ∈ L2(0, T ;H1(Ω)) and ψ ∈ C0
c (]0, T [;V ), where C0

c (]0, T [;V ) denotes the space of
continuous functions with compact support and values in V and Cw(0, T ;L2(Ω)) denotes the space of
continuous functions with values in (a closed ball of) L2(Ω) indowed with the weak topology.

Remark 2.2. Since the fluid in the experiment is slow, the Navier-Stokes equation can be simplified
to the Stokes equation. In this case, a triple (N,C, u) is said to be a weak solution in the same sense
of Definition 2.1 with better time regularity obtained for u. Due to the linearity of the Stokes equation(
the nonlinear convective term (u · ∇)u is ignored

)
, one obtains that du

dt belongs to L2(0, T ;V ′) and
consequently the component u belongs to C(0, T ;H).

3. Combined Finite Volume-Nonconforming Finite Element Scheme

This section is devoted to the formulation of a combined scheme for the anisotropic chemotaxis-
fluid model (1.1). First, we describe the space and time discretizations, we define the approximation
spaces associated to the Navier-Stokes equations and then we introduce the combined scheme.

3.1. Space Discretization of Ω. Recall that Ω be an open bounded subset of Rd with d = 2 or 3.
In order to discretize the problem (1.6), we consider a family Th of meshes of the domain Ω, consisting
of disjoint closed simplices such that Ω̄ = ∪K∈ThK̄ and such that if K,L ∈ Th, K 6= L, then K ∩ L
is either an empty set or a common face or edge of K and L. The size of the mesh Th is defined
by h:=maxK∈Th diam(K), which has the sense of an upper bound for the maximum diameter of the
control volumes in Th. We denote by Eh the set of all sides, by E inth and Eexth the set of all interior
and exterior sides, respectively. We also define a geometrical factor, linked with the regularity of the
mesh, by making the following shape regularity assumption on the family of triangulations {Th}h:
There exists a positive constant kT ;

min
K∈Th

|K|
(diam(K))d

≥ kT , ∀h > 0 .(3.1)

Assumption (3.1) is equivalent to the more common requirement of the existence of a constant θT > 0;

max
K∈Th

diam(K)

ρK
≤ θT , ∀h > 0 ,(3.2)

where ρK is the diameter of the largest ball inscribed in the simplex K.

We also use a dual partition Dh of disjoint closed simplices called control volumes of Ω such that
Ω̄ = ∪D∈Dh

D̄. There is one dual element D associated with each side σD = σK,L ∈ Eh. We construct
it by connecting the barycenters of every K ∈ Th that contains σD through the vertices of σD. The
point PD is referred to as the barycenter of the side σD. For all D ∈ Dh, denote by |D| the d-
dimensional Lebesgue measure of D and by N (D) the set of neighbors of the volume D. A generic
neighbor of D is often denoted by E. For all E ∈ N (D), denote by σD,E the interface between a
dual volume D and E, by dD,E := |PE − PD| the distance between the centers PD and PE and by
ηD,E the unit normal vector to σD,E outward to D. We denote by KD,E the element of Th such
that σD,E ⊂ KD,E i.e. KD,E = {K ∈ Th; σD,E ⊂ K}. For an interface σD,E , denote by |σD,E | its
(d − 1)-dimensional measure. As for the primal mesh, Dinth and Dexth denote respectively the set of
all interior and exterior dual volumes and we define Fh, F inth and Fexth as the set of all dual, interior
and exterior mesh sides, respectively. For σD ∈ Fexth , the contour of D is completed by the side σD
itself. We refer to the Figure 1 for the two-dimensional case.

Next, we define the following finite-dimensional spaces:

(3.3) Xh := {ϕh ∈ L2(Ω); ϕh|K is linear ∀K ∈ Th, ϕh is continuous at the points PD, D ∈ Dinth } ,
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Figure 1. Dual volumes associated with edges of the primal mesh.

X0
h := {ϕh ∈ Xh; ϕh(PD) = 0, ∀D ∈ Dexth } .

The basis of Xh is spanned by the shape functions ϕD, D ∈ Dh, such that ϕD(PE) = δDE , E ∈ Dh,
δ being the Kronecker delta. We recall that the approximations in these spaces are nonconforming
since Xh 6⊂ H1(Ω). Indeed, only the weak continuity of the solution is provided through the interfaces
and therefore the solution may be discontinuous on the faces. We equip X0

h with the scalar product

((Nh, Vh))h =
∑
K∈Th

∫
K

∇Nh · ∇Vh dx and the seminorm ||Nh||2Xh
:=

∑
K∈Th

∫
K

|∇Nh|2 dx

becomes a norm on X0
h. We have the following lemma proved in [13].

Lemma 3.1. For all Nh =
∑
D∈Dh

NDϕD ∈ Xh, one has∑
σD,E∈Dh

diam(KD,E)d−2(NE −ND)2 ≤ d+ 1

2dκτ
||Nh||2Xh

,(3.4)

∑
σD,E∈Dh

|σD,E |
dD,E

(NE −ND)2 ≤ d+ 1

2(d− 1)kT
||Nh||2Xh

.(3.5)

3.2. Time Discretization of [0, T ]. Let us consider a constant time step ∆t ∈ [0, T ]. A discretization

of [0, T ] is given by Ñ ∈ N∗ such that tn = n∆t, for n ∈ {0, ...., Ñ + 1}. The discrete unknowns are

denoted by
{
wnD, D ∈ Dh, n ∈ {0, ..., , Ñ + 1}

}
, the value wnD is an approximation of w(PD, n∆t)

where w = N, C or u.

3.3. Discretization of the Navier-Stokes’ equation. In this subsection, we state the main tools
for the discretization of Navier-Stokes equation by means of nonconforming finite element methods.
Due to the incompressibility condition ∇ · u = 0, it was shown by M. Fortin [16] and R. Temam [24]
that it is not possible to approximate the space V defined in (2.7) by the most simple finite elements,
the piecewise linear continuous functions where the results, even for the Stokes equations, are less
general and vary according to the dimension since no basis of the approximate space Vh is available.
For this reason, the approximation studied in this subsection is certainly very useful for Stokes and
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Navier-Stokes problems. Several numerical computations of viscous incompressible flows, using these
elements have been performed by F. Thomasset [25]. Let us start by giving in the following Definition,
a summary from

[
[24], chapter I

]
about the external approximation of a normed space.

Definition 3.2. (1) An external approximation of a normed space V is a set consisting of
• a normed space F and a isomorphism w̄ of V into F ,
• a family of triples {Vh, ph, rh}h such that for each h, where

Vh is a normed space, ph is a linear continuous prolongation mapping of Vh into F and rh is a
restriction mapping of V into Vh.

(2) An external approximation of a normed space V is said to be stable if the prolongation
operators are stable i.e. if their norms ||ph|| = supuh∈Vh,||uh||Vh

=1 ||phuh||F can be majorized

independently of h.
(3) An external approximation of a normed space V is said to be convergent if: As h→ 0,

• ∀u ∈ V , phrhu→ w̄u in F ,
• For each sequence uh′ in Vh′ such that ph′uh′ converges to some element Φ in the weak

topology of F , we have Φ ∈ w̄V .

3.3.1. Approximation of the space H1
0 (Ω). In the sense of Definition 3.2, the family {X0

h}h defined in
(3.3) is a stable and convergent external approximation of H1

0 (Ω). It suffices to take:

• F = (L2(Ω))d+1, w̄ : u ∈ V → w̄u = {u, ∂1u, ...., ∂du} ∈ F ,
• phuh = {uh, ∂1uh, .., ∂duh} and rhu = uh ∈ X0

h with uh(PD) = u(PD).

One can refer to
[
[24], ch. I, subsection IV.5

]
for more details.

3.3.2. Approximation of the space V . Let Vh be a subspace of the preceding space Xh such that

Vh = {uh ∈ Xh, divh(uh) = 0} ,(3.6)

where the discrete divergence is defined by the following step function,

divh(uh) =
∑
K∈Th

ηK1K ; ηK =
1

|K|

∫
K

∇ · uh dx .

The space Vh is a stable and convergent external approximation of the space V defined in (2.7). It
suffices to take:

• F = (L2(Ω))d+1, w̄ : u ∈ V → w̄u = {u, ∂1u, ...., ∂du} ∈ F ,
• phuh = {uh, ∂1uh, .., ∂duh} and rhu = uh with

uh(PD) =
1

|σ|

∫
σ

u dγ ,(3.7)

This last integral exists due to the theorem on traces in the space H1(K) and rhu belongs to the space
Xh (see [2]). Let us show that uh belongs to Vh. Indeed, since ∇ · uh is constant on each simplex K,
the condition concerning the discrete divergence of uh in (3.6) is equivalent to

∇ · uh = 0 in K, ∀K ∈ Th .(3.8)

Then, it follows from the Green formula and (3.7) that ∀K ∈ Th,∫
K

∇ · uh dx =
∑
σ∈∂K

∫
σ

uh · η dγ =
∑
σ∈∂K

∫
σ

u · η dγ =

∫
K

∇ · u dx = 0,

and this last integral is zero since ∇ · u = 0 .
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3.3.3. Approximation of the Navier-Stokes problem. Using the above approximation of V , we can
propose a nonconforming finite element scheme for the approximation of the Navier-Stokes’ problem.
The approximate problem is then:

(3.9) u0
h = the orthogonal projection of u0 onto Vh in L2(Ω),

and to find un+1
h ∈ Vh, ∀n ∈ {0, .., Ñ} such that

(3.10)
1

∆t
(un+1
h − unh, vh) + ν((un+1

h , vh))h + bh(unh, u
n+1
h , vh) = (gn, vh), ∀vh ∈ Vh,

where bh(unh, u
n+1
h , vh) is an approximation of the nonlinear term (u · ∇)u.

3.3.4. Approximation of the pressure. We want now to present the “approximate” pressure which is
implicitly contained in (3.10). The form

vh →
1

∆t
(un+1
h − unh, vh) + ν((un+1

h , vh))h + bh(unh, u
n+1
h , vh)− (gn, vh)

appears as a linear form defined on Xh and vanishes on Vh. Hence introducing the Lagrange multipliers
corresponding to the linear constraints (3.8) we find, with the aid of a classical theorem of linear
algebra, that there exist numbers {λK}K∈Th ∈ R such that the following equation holds,

1

∆t
(un+1
h − unh, vh) + ν((un+1

h , vh))h + bh(unh, u
n+1
h , vh)− (gn, vh) =

∑
K∈Th

λK

(∫
K

∇ · vh dx
)
, ∀vh ∈ Xh.

Let 1K denotes the characteristic function of K, we introduce a function pnh which belongs to space
of piecewise constant functions Yh such that:

pnh =
∑
K∈Th

pnh(K)1K with pnh(K) =
λK
|K|

.

We then have

(3.11)
1

∆t
(un+1
h − unh, vh) + ν((un+1

h , vh))h + bh(unh, u
n+1
h , vh)− (pnh, divhvh) = (gn, vh), ∀vh ∈ Xh .

Remark 3.3. We remark that the discretization of the Navier Stokes’ equation does not solve com-
pletely the problem of numerical approximation of these equations. For the actual computation of the
solution, we must have an explicit basis of Vh. The solution of (3.10) is not always easy since we only
know a simple basis of Vh in dimension two (see [9]). One possibility for solving (3.10) would be to
interpret the Navier-Stokes’ problem as a variational problem (3.11) with linear constraints (3.8) and
to solve it with a classical Uzawa algorithm .

3.4. Combined Scheme for the system (1.1). The aim of this subsection is the discretization of
the anisotropic chemotaxis-fluid model (1.1) only supposing the shape regularity condition for the
primal mesh (3.1). For this purpose, we use the implicit Euler scheme in time and we consider the
piecewise linear nonconforming finite element method in space for the discretization of the diffusive
terms of the model (1.6) and the Navier-Stokes equation (1.7). The other terms are discretized by
means of a finite volume scheme on the dual mesh.

Let us denote the approximation of the flux S(x)∇C · ηD,E on the interface σD,E by δCD,E . Then,
we approximate the numerical flux S(x)χ(N)∇C · ηD,E by means of the values ND, NE and δCD,E
that are available in the neighborhood of the interface σD,E . For that, we use a numerical flux function
G(ND, NE , δCD,E) which satisfies the following properties:
• G(., b, c) is non-decreasing for all b, c ∈ R and G(a, ., c) is non-increasing for all a, c ∈ R ;
• G(a, b, c) = −G(b, a,−c) for all a, b, c ∈ R; hence the flux is conservative.
• G(a, a, c) = χ(a)c for all a, c ∈ R ; hence the flux is consistent.
• there exists C > 0, such that for all a, b, c ∈ R, |G(a, b, c)| ≤ C(|a|+ |b|)|c|;
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• |G(a, b, c)−G(a′, b′, c)| ≤ |c|(|a− a′|+ |b− b′|) for all a, b, a′, b′, c ∈ R.

Moreover, a possibility to construct the numerical flux G has been given in [5].

Next, we denote the approximation of the flux u · ηD,E on the interface σD,E by uD,E . Then, we
approximate the flux Nu · ηD,E by a new numerical convection function G1(ND, NE , uD,E) which has
the same standard properties of the function G. This convective flux G1 is the well-known upwind
scheme written as,

G1(ND, NE , uD,E) = u+
D,END − u

−
D,ENE = uD,EN̄D,E ,(3.12)

where u+
D,E and u−D,E denote the positive and negative parts of uD,E (i.e. u+

D,E = max(uD,E , 0) and

u−D,E = max(−uD,E , 0)). In addition, N̄D,E = ND if uD,E ≥ 0 and N̄D,E = NE if uD,E ≤ 0.

For all Nh =
∑
D∈Dh

NDϕD ∈ Xh, we define a discrete function of A(Nh) as

Ah(Nh) =
∑
D∈Dh

A(ND)ϕD .(3.13)

Finally, a combined finite volume-nonconforming finite element scheme for the discretization of the
model (1.1) is given by the following iterative algorithm:

3.4.1. First step: Let
(
Nn
D, C

n
D

)
D∈Dh,n∈{0,..,Ñ}

be the discrete solution of the model (1.6) given by

the system of equations (3.17)-(3.18) defined below at time tn. We interpret the system (1.7) as a
variational problem (3.11) with linear constraints (3.8) and we study the convergence by a classical

algorithm d’Uzawa. If the elements Ñn
h =

{
Nn
D

}
D∈Dh

, unh and pnh have been computed at time tn,

then we compute un+1
h ∈ Xh and pn+1

h ∈ Yh as the limits of two sequences of elements

un+1,r
h ∈ Xh and pn+1,r

h ∈ Yh, r = 0, 1, ..,+∞ .

We start the algorithm with an arbitrary element pn+1,0
h . When un+1,r

h is known, we define un+1,r+1
h

and pn+1,r+1
h by

(3.14)
1

∆t
(un+1,r+1
h − unh, vh) + ν((un+1,r+1

h , vh))h + bh(unh, u
n+1,r+1
h , vh)− (pn,r+1

h , divhvh) = (gn, vh), ∀vh ∈ Xh .

where gn = −Ñn
h∇φ ∈ L2(Ω).

(3.15) (pn+1,r+1
h − pn,rh , qh) + ρ

(
divh(un+1,r+1

h ), qh
)

= 0, ∀qh ∈ Yh .

The existence and the uniqueness of the solution un+1,r+1
h follow from the projection theorem and we

can observe that (3.15) defines pn+1,r+1
h explicitly. Regarding the convergence of this algorithm, we

have the following Proposition proved in
[
[24], ch. VII, Proposition 6.7

]
,

Proposition 3.4. If the number ρ satisfies

0 < ρ <
2ν

d

then, as r → +∞, un+1,r+1
h converges to un+1

h in Xh and pn+1,r+1
h converges to pn+1

h in Yh/R.

3.4.2. Second step: Given un+1
h the fluid velocity at time tn+1 detailed in the first step. Then,

∀D ∈ Dh,

N0
D =

1

|D|

∫
D

N0(x) dx, C0
D =

1

|D|

∫
D

C0(x) dx,(3.16)
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and for all D ∈ Dh, n ∈ {0, 1, ..., Ñ},

(3.17) |D|
Nn+1
D −Nn

D

∆t
−
∑
E∈Dh

SD,EA(Nn+1
E ) +

∑
E∈N (D)

G(Nn+1
D , Nn+1

E ; δCn+1
D,E )

+
∑

E∈N (D)

G1(Nn+1
D , Nn+1

E ;un+1
D,E) = f(Nn+1

D ) ,

(3.18) |D|
Cn+1
D − CnD

∆t
−
∑
E∈Dh

MD,EC
n+1
E +

∑
E∈N (D)

G1(Cn+1
D , Cn+1

E ;un+1
D,E) = h(Nn

D, C
n+1
D ) .

The diffusion matrix S (resp. M) of elements SD,E (resp. MD,E) for D,E ∈ Dh is the stiffness
matrix of the nonconforming finite element method. So that,

SD,E = −
∑
K∈Th

(S(x)∇ϕE ,∇ϕD)0,K and MD,E = −
∑
K∈Th

(M(x)∇ϕE ,∇ϕD)0,K .(3.19)

Otherwise, δCn+1
D,E and un+1

D,E denote the approximation of the fluxes S(x)∇C · ηD,E and u · ηD,E on
the interface σD,E , respectively,

δCn+1
D,E = SD,E

(
Cn+1
E − Cn+1

D

)
and un+1

D,E =

∫
σD,E

un+1
h · ηD,E dγ .(3.20)

Definition 3.5. We will define now two approximate solutions by means of the combined finite
volume-nonconforming finite element scheme:

i) A nonconforming finite element solution (Nh,∆t, Ch,∆t, uh,∆t) as a function piecewise linear and
continuous in the barycenters of the interior sides in space and piecewise constant in time, such that:(

Nh,∆t(x, 0), Ch,∆t(x, 0), uh,∆t(x, 0)
)

=
(
N0
h(x), C0

h(x), u0
h(x)

)
for x ∈ Ω ,(

Nh,∆t(x, t), Ch,∆t(x, t), uh,∆t(x, t)
)

=
(
Nn+1
h (x), Cn+1

h (x), un+1
h (x)

)
for x ∈ Ω and t ∈]tn, tn+1] ,

where Nn+1
h =

∑
D∈Dh

Nn+1
D ϕD, Cn+1

h =
∑
D∈Dh

Cn+1
D ϕD and un+1

h =
∑
D∈Dh

un+1
h (PD)ϕD .

ii) A finite volume solution (Ñh,∆t, C̃h,∆t, ũh,∆t) defined as piecewise constant on the dual volumes
in space and piecewise constant in time, such that:(

Ñh,∆t(x, 0), C̃h,∆t(x, 0), ũh,∆t(x, 0)
)

=
(
N0
D, C

0
D, u

0
h(PD)

)
for x ∈ D, D ∈ Dh,(

Ñh,∆t(x, t), C̃h,∆t(x, t), ũh,∆t(x, t)
)

=
(
Nn+1
D , Cn+1

D , un+1
h (PD)

)
for x ∈ D, D ∈ Dh, t ∈]tn, tn+1] .

Now, we state a first convergence result of the combined scheme under the assumption that all
transmissibilities coefficients are positive:

SD,E ≥ 0 and MD,E ≥ 0, ∀D ∈ Dh, E ∈ N (D) .(3.21)

Further, we will present a method to overcome this assumption (3.21) by the introduction of a family
of monotone schemes.

For the discrete problem (3.9)-(3.10), we will state first a convergence Theorem proved in [24].

Theorem 3.6. (Convergence of the Navier-Stokes equation)
Assume that u0 ∈ H, ∇ · u0 = 0 a.e. on Ω and g ∈ L2(0, T ;H). Then:
1) There exists a unique discrete solution uh,∆t of (3.9)-(3.10) if d = 2 and there exists at least one
such solution if d = 3.
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2) The following convergences hold for subsequences, denoted as sequences, as h and ∆t tend to zero,

uh,∆t → u ∈ L2(QT ) strongly, uh,∆t
∗
⇀ u in L∞(0, T ;L2(Ω)) and phuh,∆t ⇀ w̄u in L2(0, T ;F ) .

Now, our aim is to prove the following main convergence Theorem of this paper.

Theorem 3.7. (Convergence of the combined scheme)
Assume (2.1) till (2.7). Consider 0 ≤ N0 ≤ 1, C0 ∈ L∞(Ω) and C0 ≥ 0. Under the assumptions of
Theorem 3.6 and (3.21), then:

1) There exists a solution (Ñh,∆t, C̃h,∆t) of the discrete system (3.17)-(3.18) with initial data (3.16).
2) Any sequence (hm)m decreasing to zero possesses a subsequence such that (Nhm

, Chm
, uhm

) con-
verges a.e. on QT to a solution (N,C, u) of the chemotaxis-fluid system (1.1) in the sense of Definition
2.1 .

Remark 3.8. If assumption (3.21) is not satisfied, one can use a nonlinear technique to correct
the diffusive flux blocking the discrete maximum principle and to maintain the monotonicity and the
convergence of the corrected numerical scheme. One can see [5] (section 4) for more details.

4. Proof of Theorem 3.7

We state here the properties and estimates which are satisfied by the combined scheme. We first
present some technical Lemmas that show the conservativity of the scheme, the coercivity and the
continuity of the diffusion term. Then, we show a priori estimates needed to prove the existence of a
discrete solution of (3.16)-(3.18) and to prove the convergence.

4.1. Discrete properties of the scheme. The first two Lemmas and the details of their proofs are
given in [5].

Lemma 4.1 (Nonconforming finite element diffusion matrix). For all D ∈ Dh, one has:

(4.1) SD,D = −
∑

E∈N (D)

SD,E and MD,D = −
∑

E∈N (D)

MD,E .

Using the fact that SD,E 6= 0 and MD,E 6= 0, only if E ∈ N (D) or if E = D, we deduce from (4.1),∑
E∈Dh

SD,EA(Un+1
E ) =

∑
E∈N (D)

SD,EA(Nn+1
E ) + SD,DA(Nn+1

D ) =
∑

E∈N (D)

SD,E(A(Nn+1
E )−A(Nn+1

D )) ,(4.2)

∑
E∈Dh

MD,EC
n+1
E =

∑
E∈N (D)

MD,E(Cn+1
E − Cn+1

D ) .(4.3)

Consequently, the diffusive flux discretization in (3.17)-(3.18) is conservative with respect to the
dual mesh Dh. In fact, we remark that SD,E = SE,D using the symmetry of the tensor S, this yields
an equality up to the sign between two discrete diffusive flux, from D to E and from E to D. In other
terms, SD,E

(
A(Nn+1

E )−A(Nn+1
D )

)
= −SE,D

(
A(Nn+1

D )−A(Nn+1
E )

)
.

Lemma 4.2. For all Ah(Nh) =
∑
D∈Dh

A(ND)ϕD and Ch =
∑
D∈Dh

CDϕD ∈ Xh, then

The discrete degenerate diffusion operator is coercive,

−
∑
D∈Dh

A(ND)
∑
E∈Dh

SD,EA(NE) ≥ CS ||Ah(Nh)||2Xh
and −

∑
D∈Dh

CD
∑
E∈Dh

MD,ECE ≥ CM ||Ch||2Xh
.(4.4)

The discrete degenerate diffusion operator is continuous,

|
∑
D∈Dh

A(ND)
∑
E∈Dh

SD,EA(NE)| ≤ cS ||Ah(Nh)||2Xh
and |

∑
D∈Dh

CD
∑
E∈Dh

MD,ECE | ≤ cM ||Ch||2Xh
.(4.5)
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In addition to that, the transmissibilities are bounded

(4.6) |SD,E | ≤
cS
kT

(diam(KD,E)d−2

(d− 1)2
and |MD,E | ≤

cM
kT

(diam(KD,E)d−2

(d− 1)2
,∀D ∈ Dh, E ∈ N (D) .

Lemma 4.3. One can write,∑
E∈N (D)

G1(Nn+1
D , Nn+1

E , un+1
D,E) = −

∑
E∈N (D)

(un+1
D,E)−(Nn+1

E −Nn+1
D ) .(4.7)

Proof. For all n ∈ {0, .., Ñ}, the discrete solution un+1
h belongs to the space Vh defined in (3.6). Then,

∇ · un+1
h = 0 for all K ∈ Th. Consequently,∑

E∈N (D)

(
(un+1
D,E)+ − (un+1

D,E)−
)

=
∑

E∈N (D)

un+1
D,E =

∑
E∈N (D)

∫
σD,E

un+1
h · ηD,E dγ =

∫
D

∇ · un+1
h dx(4.8)

=

∫
D∩K

∇ · un+1
h dx+

∫
D∩L
∇ · un+1

h dx = 0.

We still need to add and subtract (un+1
D,E)−Nn+1

D to (3.12) and Lemma 4.3 will be a straightforward

consequence of (4.8). �

Proposition 4.4. (Discrete maximum principle)
Let

(
Nn+1
D , Cn+1

D

)
D∈Dh,n∈{0,..,Ñ}

be the discrete solution of (3.16)-(3.18). Under the assumption

(3.21), for all D ∈ Dh and for all n ∈ {0, .., Ñ}, this discrete solution satisfies:

0 ≤ Nn+1
D ≤ 1 and 0 ≤ Cn+1

D ≤M, ∀D ∈ Dh, n ∈ {0, 1, ..., Ñ}.

Proof. We fix a dual volume D0 such that Nn+1
D0

= maxD∈Dh
Nn+1
D . Due to (4.7), one has

Nn
D0

= Nn+1
D0
− ∆t

|D0|
∑

E∈N (D0)

SD0,E(A(Nn+1
E )−A(Nn+1

D0
)) +

∆t

|D0|
∑

E∈N (D0)

G(Nn+1
D0

, Nn+1
E ; δCn+1

D0,E
)

− ∆t

|D0|
∑

E∈N (D0)

(un+1
D0,E

)−(Nn+1
E −Nn+1

D0
)− f(Nn+1

D0
) .

One has 0 ≤ N0
D0
≤ 1 and C0

D0
≥ 0 under the assumptions 0 ≤ N0 ≤ 1 and C0 ≥ 0.

We now make use of an induction argument. Let us suppose that Nn
D0
≤ 1, we will show that

Nn+1
D0

> 1. Using the monotonicity of A, the function G(., ., .) is increasing with respect to the

first variable and the extension of χ and f by 0 for Nn+1
D0

≥ 1, we deduce that 1 ≥ Nn
D0
≥ Nn+1

D0
.

Then, Nn+1
D ≤ 1, ∀D ∈ Dh and ∀n ∈ {0, 1, ..., Ñ}. Following the same guidelines and with the same

arguments, the proof of this Proposition is achieved. �

Proposition 4.5. If u0 ∈ L∞(Ω) then

||u0||L∞(Ω) − (T + 1)||∇φ||L∞(Ω) ≤ ukh ≤ ||u0||L∞(Ω) + (T + 1)||∇φ||L∞(Ω),

for all k ∈ {0, ..., Ñ} and k∆t ≤ T .

Proof. The variational problem (3.10) can be written as:

1

∆t

∫
Ω

(un+1
h − unh)vh dx+ ν

∫
Ω

∇un+1
h · ∇vh dx+ bh(un+1

h , un+1
h , vh) dx = −

∫
Ω

Ñn
h∇φvh dx .(4.9)

First, we introduce H̄n = (Hn
i )i=1,..,d such that for all i = {1, ..., d}, the piecewise constant discrete

function in space Hn
i is denoted by (Hn+1

D )D∈Dh, n∈{0,...,Ñ}:

∀n ∈ {0, ..., Ñ + 1}, ∀D ∈ Dh, Hn
D ≡ Hn = ||∇φ||L∞(Ω)n∆t+ ||u0||L∞(Ω) .(4.10)
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Our aim now is to prove that this function (4.10) is a super-solution of (4.9). Indeed,

(4.11)

{
H0
D ≡ H0 = ||u0||L∞(Ω),

1
∆t (H

n+1
D −Hn

D) = ||∇φ||L∞(Ω) .

Let us prove by induction that:

ukh ≤ H̄k, ∀k ∈ {0, ..., Ñ + 1} .
For k = 0, u0

h ≤ H0 = ||u0||L∞(Ω). We assume that unh ≤ H̄n and we prove by contradiction that

un+1
h ≤ H̄n+1. Subtracting equations (4.9) and (4.11), one has:

1

∆

∫
Ω

(un+1
h − H̄n+1)vh dx+

∫
Ω

∇un+1
h · ∇vh dx+ bh(un+1

h , un+1
h , vh) dx =

1

∆

∫
Ω

(unh − H̄n)vh dx+∫
Ω

[−∇φ− ||∇φ||L∞(Ω)]vh dx

Then, we choose vh = (un+1
h −H̄n+1)+ = max(un+1

h −H̄n+1, 0) ∈ Vh as a test function. We ramark that

for un+1
h > H̄n+1, bh(un+1

h , un+1
h , (un+1

h −H̄n+1)+) = bh(un+1
h , (un+1

h −H̄n+1)+, (un+1
h −H̄n+1)+) = 0.

Consequently, one can easily deduces that:

0 ≤ 1

∆t

∫
Ω

(
(un+1
h − H̄n+1)+

)2

dx ≤ 0 .

Then (un+1
h −Hn+1)+ = 0 and therefore un+1

h < H̄n+1 which is a contradiction. So

sup
Ñ∈N

( max
0≤n≤Ñ

H̄n+1) ≤ ||u0||L∞(Ω) + (T + 1)||∇φ||L∞(Ω) .

Now, it suffices to consider Hn
D = −||∇φ||L∞(Ω)n∆t+||u0||L∞(Ω) to prove similarly the other inequality

of this Proposition. �

Consequently, we obtain a useful estimate needed in the sequel.

Corollary 4.6. For all n ∈ {0, ..., Ñ},∣∣un+1
D,E

∣∣ ≤ ∫
σD,E

∣∣un+1
h · ηD,E | ≤ Cu

∣∣σD,E∣∣ ,(4.12)

where Cu is a constant depending on the initial data.

4.2. Discrete a priori estimates.

Proposition 4.7. (A priori estimate under assumption (3.21))
Let (Nn+1

D , Cn+1
D )D∈Dh,n∈{0,...,Ñ} be a solution of the scheme (3.16)-(3.18). Then, there exists a

constant C > 0, depending on ||C0||∞, α, d and the constant of the bound of G such that

1

2

∑
D∈Dh

|D|
∣∣CÑ+1
D

∣∣2 + CM

Ñ−1∑
n=0

∆
∣∣∣∣Cn+1

h

∣∣∣∣2
Xh
≤ C .(4.13)

Furthermore, there exists a constant C > 0 such that,

(4.14)

Ñ−1∑
n=0

∆t
∣∣∣∣Ah(Nn+1

h )
∣∣∣∣2
Xh
≤ C ,

Consequently, there exists a constant C > 0, depending on Ω, T , ||C0||∞, α, d and the constant from
the fourth property of G such that

(4.15)

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N(D)

SD,E |A(Nn+1
D )−A(Nn+1

E )|2 +

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N(D)

SD,E |Cn+1
D − Cn+1

E |2 ≤ C .
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Proof. First, let us prove (4.13). We multiply (3.18) by ∆tCn+1
D and we sum for all D ∈ Dh and

n ∈ {0, ..., Ñ}. We obtain E2,1 + E2,2 + E2,3 = E2,4.

From the following inequality (a− b)a ≥ a2−b2
2 , for all a, b ∈ R, we have

E2,1 =

Ñ−1∑
n=0

∑
D∈Dh

|D|
(
Cn+1
D − CnD

)
Cn+1
D

≥ 1

2

Ñ−1∑
n=0

∆t
∑
D∈Dh

|D|
(
|Cn+1
D |2 − |CnD|2

)
=

1

2

∑
D∈Dh

|D|
(
|CÑ+1
D |2 − |C0

D|2
)
.

Using the estimate (4.4), one has

E2,2 = −
Ñ−1∑
n=0

∆t
∑
D∈Dh

Cn+1
D

∑
E∈Dh

MD,EC
n+1
E ≥ CM

Ñ−1∑
n=0

∆t||Cn+1
h ||2Xh

.

Next,

E2,3 =

Ñ−1∑
n=0

∆t
∑
D∈Dh

Cn+1
D

∑
E∈N (D)

un+1
D,EC̄

n+1
D,E =

Ñ−1∑
n=0

∆t
∑
D∈Dh

Cn+1
D

∑
E∈N (D)

G1(Cn+1
D , Cn+1

E ;un+1
D,E) .

Therefore,

E2,3 ≤MCu
∑
D∈Dh

∑
E∈N (D)

|σD,E |
∣∣Cn+1
D − Cn+1

E

∣∣ ≤ CuM
ε

( ∑
D∈Dh

∑
E∈N (D)

|σD,E |dD,E
)

+Cu
M

ε

( ∑
D∈Dh

∑
E∈N (D)

|σD,E |
dD,E

∣∣Cn+1
D − Cn+1

E

∣∣2) ≤ CuM
ε
|Ω|+ CuMε||Ch||2Xh

.

Finally, it follows from the form (1.4) of h and the Proposition 4.4 that

E2,4 = −
Ñ−1∑
n=0

∆t
∑
D∈Dh

|D|h(Nn
D, C

n+1
D )Cn+1

D ≤ αMT |Ω| .

Collecting the previous inequalities we readily deduce (4.13).

To obtain (4.15), we multiply (3.17) by ∆tA(Nn+1
D ) and we sum for all D ∈ Dh and n ∈ {0, ..., Ñ}.

We obtain E1,1 + E1,2 + E1,3 + E1,4 = E1,5.

From the convexity of the function B(s) =
∫ s

0
A(r)dr (B′′

(s) = a(s) ≥ 0), we have the following
inequality: (a− b)A(a) ≥ B(a)− B(b). Then,

(4.16) E1,1 =

Ñ−1∑
n=0

∑
D∈Dh

|D|(Nn+1
D −Nn

D)A(Nn+1
D )

≥
Ñ−1∑
n=0

∑
D∈Dh

|D|(B(Nn+1
D )− B(Nn

D)) =
∑
D∈Dh

|D|(B(ÑN+1
D )− B(N0

D)) .

The discrete property (4.2) yields

(4.17) E1,2 = −
Ñ−1∑
n=0

∆t
∑
D∈Dh

A(Nn+1
D )

∑
E∈Dh

SD,EA(Nn+1
E ) =

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

SD,E
(
A(Nn+1

E )−A(Nn+1
D )

)2

.
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It follows from the coercivity property (4.4) that

(4.18) E1,2 ≥ CS
Ñ−1∑
n=0

∆t||Ah(Nn+1
h )||2Xh

.

Finally, using the fact that the numerical flux G is conservative, we integrate by parts to obtain:

E1,3 =

Ñ−1∑
n=0

∆t
∑
D∈Dh

A(Nn+1
D )

∑
E∈N (D)

G(Nn+1
D , Nn+1

E ; δCn+1
D,E )

=
1

2

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

G(Nn+1
D , Nn+1

E ; δCn+1
D,E )

(
A(Nn+1

D )−A(Nn+1
E )

)
,

and consequently from the bound of the numerical flux G and from (3.20), we have

|E1,3| ≤
1

2

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

|SD,E |
∣∣Cn+1
D − Cn+1

E

∣∣∣∣A(Nn+1
D )−A(Nn+1

E )
∣∣ .

By a weighted Young’s inequality and due to the positivity of the transmissibilities coefficients SD,E ,

|E1,3| ≤
ε

2

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

SD,E(Cn+1
D − Cn+1

E )2 +
1

2ε

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

SD,E
(
A(Nn+1

D )−A(Nn+1
E )

)2

,

Due to the inequalities (3.5) and (4.6),

(4.19) |E1,3| ≤
C

ε
||Cn+1

h ||2Xh
+ Cε||Ah(Nn+1

h )||2Xh
,

for some positive constant C. Otherwise,

E1,4 =

Ñ−1∑
n=0

∆t
∑
D∈Dh

A(Nn+1
D )

∑
E∈N (D)

un+1
D,EN̄

n+1
D,E

=
1

2

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

G1(Nn+1
D , Nn+1

E ;un+1
D,E)(A(Nn+1

D )−A(Nn+1
E )) .

Under the fact of Proposition 4.4 and (4.12), one has

|E1,4| ≤
Cu
2

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

|σD,E ||A(Nn+1
D )−A(Nn+1

E )|

≤ εCu
2

( Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

|σD,E |
dD,E

|A(Nn+1
D )−A(Nn+1

E )|2
)

+
Cu
ε

( Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

|σD,E |dD,E
)

It follows from Lemma 3.5 that

(4.20) |E1,4| ≤ εC||Ah(Nn+1
h )||2Xh

+ C ′ .

The boundedness of the last term is a consequence of the Lipschitz continuity of f and Nn+1
D ≤ 1,

(4.21) |E1,5| =
∣∣∣ Ñ−1∑
n=0

∆t
∑
D∈Dh

|D|Nn+1
D f(Nn+1

D )
∣∣∣ ≤ LfT |Ω| .

We can readily deduce (4.14) by collecting (4.16), (4.18), (4.19), (4.20) and (4.21). Consequently,
one can also easily deduce the estimate (4.15). �
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4.3. Existence of a discrete solution. The existence of a discrete solution for the combined scheme
is given in the following proposition.

Proposition 4.8. The discrete problem (3.16)-(3.18) has at least one solution.

Proof. Denote by Nn
h = {Nn

D} and Cnh = {CnD}. We will show the existence of a discrete solution by

induction on n. Assume that the couple (Nn
h , C

n
h ) exists and show the existence of (Nn+1

h , Cn+1
h ).

The discrete system (3.18) is a finite dimensional linear system with respect to the unknowns Cn+1
D , D ∈

Dh. The resulting matrix of this system is symmetric and definite positive, thus Cn+1
h is the unique

solution of (3.18).

As A(.) is strictly monotone then A(.) is invertible. We can rewrite the scheme (3.17) in terms of

wih with N i
h = A−1(wih), i ∈ [0, Ñ ]. Assume that wnh and Cn+1

h exist. We choose the componentwise
product [·, ·] as the scalar product on RT . We define the mapping M, that associates to the vector
W = (Wn+1

D )D∈Dh
, the following expression:

M(W) =
(
|D|

A−1(Wn+1
D )−A−1(Wn

D)

∆t
−

∑
E∈N (D)

SD,E(Wn+1
E −Wn+1

D )

+
∑

E∈N (D)

G
(
A−1(Wn+1

D ), A−1(Wn+1
E ); δCn+1

D,E

)
+

∑
E∈N (D)

G1

(
A−1(Wn+1

D ), A−1(Wn+1
E );un+1

D,E

)
−f(A−1(Wn+1

D ))
)
D∈Dh

.

We multiply by Wn+1
D and we sum over all the volumes D ∈ Dh . We shall use this further estimate,∑

D∈Dh

∑
E∈N (D)

G1(A−1(Wn+1
D ), A−1(Wn+1

E );un+1
D,E)

(
A(Nn+1

E )−A(Nn+1
D )

)

≤
∑
D∈Dh

∑
E∈N (D)

|un+1
D,E |

∣∣∣A(Nn+1
E )−A(Nn+1

D )
∣∣∣

≤ Cu
( ∑
D∈Dh

∑
E∈N (D)

|σD,E |
dD,E

(
A(Nn+1

E )−A(Nn+1
D )

)2) 1
2
( ∑
D∈Dh

∑
E∈N (D)

|σD,E |dD,E
) 1

2

≤ Cu|Ω|
1
2

∣∣∣∣W∣∣∣∣
Xh

.

We will also use the estimate (4.15) and the Young inequality to obtain,

[M(W),W] ≥ C|W|2 − C ′|W| − C ′′ ≥ 0 for |W| large enough,

for some constants C, C
′
, C

′′
> 0. This implies that,

[M(W),W] > 0 for |W| large enough,

and therefore we obtain the existence of W such that,

M(W) = 0 .

�
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4.4. Compactness estimates on discrete solutions. In this subsection we derive estimates on
differences of space and time translates necessary to apply Kolmogorov’s compactness theorem which
will allow us to pass to the limit.

Lemma 4.9. (Time and space translate estimate)

(1) There exists a constant c > 0 depending on Ω, T and A such that:∫∫
Ω×[0,T−τ ]

(
A(Ñh(t+ τ, x))−A(Ñh(t, x))

)2

dxdt ≤ C(τ + ∆t),∀τ ∈ [0, T ] .

(2) There exists a positive constant c′ > 0 depending on Ω, T , A and ξ such that:∫∫
Ω×[0,T ]

(
A(Ñh(t, x+ ξ))−A(Ñh(t, x))

)2

dxdt ≤ c′|ξ|(|ξ|+ h),∀ξ ∈ Rd .

Proof. Comparing to [5], it remains just to check the new convective term for the time translate
estimate,

B2(t) := −
∑

t≤n∆t≤t+τ

∆t

∫ T−τ

0

χ(n, t)
∑
D∈Dh

∑
E∈N (D)

G1(Nn+1
D , Nn+1

E ;un+1
D,E)

(
A(U

n1(t)
D )−A(U

n0(t)
D )

)
(4.22)

= −
∑

t≤n∆t≤t+τ

∆t

∫ T−τ

0

χ(n, t)
∑
D∈Dh

∑
E∈N (D)

(
G1(Nn+1

D , Nn+1
E ;un+1

D,E)
(
A(U

n1(t)
E )−A(U

n1(t)
D )

)

+G1(Nn+1
D , Nn+1

E ;un+1
D,E)

(
A(U

n0(t)
E )−A(U

n0(t)
D )

))
.

We use Young’s inequality, |G1(a, b, c)| ≤ C(|a|+ |b|)|c|, (4.12) and the Proposition 4.4 to deduce that

B2(t) ≤ C ′(B3(t) + B4(t))

for some constant C ′ > 0, with

B3(t) = Cu

Ñ−1∑
n=0

∆t

∫ T−τ

0

χ(n, t)
∑

σD,E∈Fint
h

|σD,E |
∣∣∣A(N

n1(t)
E )−A(N

n1(t)
D )

∣∣∣dt ,

B4(t) = Cu

Ñ−1∑
n=0

∆t

∫ T−τ

0

χ(n, t)
∑

σD,E∈Fint
h

|σD,E |
∣∣∣A(N

n0(t)
E )−A(N

n0(t)
D )

∣∣∣dt .
Consequently,

B3(t) ≤ Cu
Ñ−1∑
n=0

∆t

∫ T−τ

0

χ(n, t)
( ∑
σD,E∈Fint

h

|σD,E |
dD,E

(
A(N

n1(t)
E )−A(N

n1(t)
D )

)2) 1
2
( ∑
σD,E∈Fint

h

|σD,E |dD,E
) 1

2

dt ,

≤ τCuC ′|Ω|
1
2 = τC .

Reasoning along the same lines yields B4(t) ≤ τC for some constant C > 0. This concludes the proof
of this Lemma. �
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4.5. Convergence. This subsection is mainly devoted to the proof of the strong L2(QT ) convergence
of approximate solutions, using the estimates proved in the previous subsection and Kolmogorov’s
compactness criterion for the convergence. Then, we prove that the limit is a weak solution to the
continuous problem. We start by giving the following Lemma proved in [5].

Lemma 4.10. The sequence
(
Ah(Nh,∆t) − A(Ñh,∆t)

)
h,∆t

converges strongly to zero in L2(QT ) as

h, ∆t→ 0.

Theorem 4.11. (Strong L2(QT )-Convergence)
There exists a subsequence of

(
Ah(Nh,∆t)

)
h,∆t

which converges strongly in L2(QT ) to some function

Γ = A(N) ∈ L2(0, T ;H1(Ω)).

Proof. The a priori estimate (4.14) and Lemma 4.9 imply that
(
A(Ñh,∆t)

)
h,∆t

satisfies the assump-

tions of the Kolmogorov’s compactness criterion, and consequently
(
A(Ñh,∆t)

)
h,∆t

is relatively com-

pact in L2(QT ). This implies the existence of subsequences of
(
A(Ñh,∆t)

)
h,∆t

which converges strongly

to some function Γ ∈ L2(QT ). Due to Lemma 4.10,
(
Ah(Nh,∆t)

)
h,∆t

converges strongly to some func-

tion Γ ∈ L2(QT ). Using the monotonicity of A, we get Γ = A(N). Moreover, due to the space
translate estimate of Lemma 4.9,

[
[14], Theorem 3.10

]
gives that A(N) ∈ L2(0, T ;H1(Ω)). �

As A−1 is well defined and continuous, applying the L∞ bound on Ñh,∆t and the dominated con-

vergence theorem of Lebesgue to Ñh,∆t = A−1(A(Ñh,∆t)), there exist subsequences Ñh,∆t and Nh,∆t,
which have the same notation of the sequences and converges strongly in L2(QT ) and a.e. in QT to
the same function N .

We will prove now that the limit couple (N,C, u) is a weak solution of the continuous problem.
We introduce

Ψ := {ψ ∈ C2,1(Ω̄× [0, T ]), ψ(., T ) = 0} .(4.23)

We then multiply (3.17) by ∆tψ(PD, tn+1) and we sum the result over D ∈ Dh, n ∈ {0, ..., Ñ − 1},
to obtain:

TT + TD + TC + T̃C = TR,

We successively search for the limit of each of these terms as h and ∆t tend to zero.
Time evolution, Diffusion and Chemoattractant Convection terms. We refer to [5] for a
proof of the limits

TT =

N−1∑
n=0

∑
D∈Dh

|D|(Nn+1
D −Nn

D)ψ(PD, tn+1)
h,∆t→0−→ −

∫∫
QT

Ñh,∆t
∂ψ

∂t
dxdt−

∫
Ω

Ñ0,h(0, x)ψ(0, x) dx,

TD =

N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈Dh

SD,EA(Nn+1
E )ψ(PD, tn+1)

h,∆t→0−→
∫∫
QT

S(x)∇A(N) · ∇ψ dxdt,

TC =

N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

G(Nn+1
D , Nn+1

E , δCn+1
D,E )ψ(PD, tn+1)

h,∆t→0−→ −
∫∫
QT

S(x)χ(N)∇C · ∇ψ dxdt .

It remains to check the convergence of the other terms.
Fluid Convection term. Let us prove that

T̃C =

N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

G1(Nn+1
D , Nn+1

E , un+1
D,E)ψn+1

D

h,∆t→0−→ −
∫∫

QT

N(x, t)u(x, t) · ∇ψ(x, t) dxdt .
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For each couple of neighbor volumes D and E, we introduce

(4.24) Nn+1
D,E = min(Nn+1

D , Nn+1
E ) ,

and using the consistency of the flux G1, we introduce

T̃ ∗C =

N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

Nn+1
D,Eu

n+1
D,Eψ

n+1
D .

The diamond constructed from the neighbor edge centers PD, PE and the interface σD,E of the dual
mesh is denoted by TD,E ⊂ KD,E . Then, we introduce

Nh

∣∣∣
]tn,tn+1]×TD,E

:= max(Nn+1
D , Nn+1

E ), Nh

∣∣∣
]tn,tn+1]×TD,E

:= min(Nn+1
D , Nn+1

E ) ,

By the monotonicity of A and thanks to estimates (3.4) and (4.14), we have∫ T

0

∫
Ω

|A(Nh)−A(Nh)|2 ≤
N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

|TD,E |
∣∣A(Nn+1

D )−A(Nn+1
E )

∣∣2

≤
N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

(diam(KD,E))2
∣∣A(Nn+1

D )−A(Nn+1
E )

∣∣2 ≤ Ch4−d h→0−→ 0 ,

with d = 2 or 3. Because A−1 is continuous, up to extraction of another subsequence, we deduce

|Nh −Nh|
h→0−→ 0 a.e. on QT .(4.25)

In addition, Nh ≤ Ñh ≤ Nh; moreover, Ñh
h→0−→ N a.e. on QT . Let us first prove that

T̃ ∗C −→
N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

∫
σD,E

Nun+1
h · ηD,Eψ(x, tn+1)dγ(x) .(4.26)

We add and we subtract Nψ(PD, tn+1)un+1
D,E and Nn+1

D,E

∫
σD,E

un+1
h · ηD,Eψ(x, tn+1), we obtain

TC = TC1
+ TC2

+ TC3
,

with,

TC3 =

Ñ−1∑
n=0

∆t
∑
D∈Dh

Nψ(x, tn+1)
∑

E∈N (D)

un+1
D,E = 0 due to (4.8),

TC2
=

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

Nn+1
D,E

∫
σD,E

un+1
h · ηD,Eψ(x, tn+1) dγ(x) = 0 ,

indeed, we need just to denote uψ;D,E =
∫
σD,E

un+1
h ·ηD,Eψ(x, tn+1) dγ(x) to remark that each interior

side appears twice in T2 and uψ;D,E = −uψ;E,D.

TC1
=

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

(
Nn+1
D,E −N)

(
ψ(PD, tn+1)un+1

D,E −
∫
σD,E

un+1
h · ηD,Eψ(x, tn+1) dγ(x)

)
.

Consequently, the Cauchy-Schwarz inequality implies that T 2
C1
≤ TC4

TC5
with

TC4
=

∫∫
QT

(
Nh −N

)
dxdt

h,∆t→0−→ 0 due to the dominated convergence theorem of Lebesgue,
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and

TC5
=

Ñ−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

(∫
σD,E

un+1
h · ηD,E

(
ψ(PD, tn+1)− ψ(x, tn+1)

)
dγ(x)

)2

⇒ |TC5
| ≤ C2

2,ψh
2C2

u

N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

|σD,E |2 ≤ C2
2,ψh

2C2
u|Ω|T

h,∆t→0−→ 0 .

Consequently, we have

TC1

h,∆t→0−→ 0 .

Using the divergence theorem and the property ∇ · (f ~A) = f(∇ · ~A) + ~A · ∇f , one has

Ñ−1∑
n=0

∆t
∑
D∈Dh

N
∑

E∈N (D)

∫
σD,E

un+1
h · ηD,Eψ(x, tn+1) dγ(x) =

Ñ−1∑
n=0

∆t
∑
D∈Dh

∫
D

∇ · (Nun+1
h )ψ(x, tn+1) dx .

=

Ñ−1∑
n=0

∆t
∑
D∈Dh

∫
D

Nun+1
h · ∇ψ(x, tn+1) dx+

Ñ−1∑
n=0

∆t
∑
D∈Dh

N

∫
D

(∇ · un+1
h )ψ(x, tn+1) dx .

As ∇ · un+1
h = 0, it suffices now to prove that

Ñ−1∑
n=0

∆t
∑
D∈Dh

∫
D

Nun+1
h · ∇ψ(x, tn+1) dx

h,∆t→0−→ −
∫∫

QT

N(x, t)u(x, t) · ∇ψ(x, t) dxdt .(4.27)

We introduce

TC6
=

∫ T

0

∫
Ω

Nun+1
h (x) ·

(
∇ψ(x, tn+1)−∇ψ(x, t)

)
dxdt→ 0 .

Indeed, |∇ψ(x, tn+1)−∇ψ(x, t)| ≤ g(∆t) and |TC6 | ≤ g(∆t)Cuh. And

TC7
=

∫ T

0

∫
Ω

N(x, t)
(
un+1
h (x)− u(x, t)

)
· ∇ψ(x, t) dxdt→ 0 ,

due to the weak convergence of un+1
h to u, N belongs to L2(QT ) and |∇ψ(x, t)| ≤ C2,ψ.

Gathering (4.26) and (4.27), one obtains that

T̃ ∗C
h,∆t→0−→ −

∫∫
QT

N(x, t)u(x, t) · ∇ψ(x, t) dxdt .

It remains now to prove that

lim
h→0

∣∣T̃C − T̃ ∗C∣∣ = 0 .

By properties of G1, we have:∣∣G1(Nn+1
D , Nn+1

E , un+1
D,E)−Nn+1

D,Eu
n+1
D,E

∣∣ =
∣∣G1(Nn+1

D , Nn+1
E , un+1

D,E)−G1(Nn+1
D,E , N

n+1
D,E , u

n+1
D,E)

∣∣
≤ 2
∣∣Nn+1

D −Nn+1
D,E

∣∣|un+1
D,E | ≤ 2Cu

∣∣Nh −Nh∣∣|σD,E | .
Therefore, it follows from (4.25) and the theorem of dominated convergence of Lebesgue that,

∣∣T̃C − T̃ ∗C∣∣ ≤ 2Cu

N−1∑
n=0

∆t
∑
D∈Dh

∑
E∈N (D)

∣∣Nh −Nh∣∣|σD,E |∣∣ψn+1
E − ψn+1

D

∣∣
≤ 2CuCψh

2

∫∫
QT

∣∣Nh −Nh∣∣ dxdt −→ 0 .
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Source term: Let us now prove that

TR =

Ñ−1∑
n=0

∆t
∑
D∈Dh

|D|f(Nn+1
D )ψ(QD, tn+1)

h,∆t→0−→
∫ T

0

∫
Ω

f(N(x, t))ψ(x, t) dxdt .

For this purpose, we introduce

TR1
=

Ñ−1∑
n=0

∆t
∑
D∈Dh

f(Nn+1
D )

∫
D

(
ψ(QD, tn+1)− ψ(x, t)

)
dxdt

h,∆t→0−→ 0 ,

indeed,
∣∣ψ(QD, tn+1)− ψ(x, t)

∣∣ ≤ C3,ψ(h+ ∆t) and |TR1
| ≤ C3,ψLf (h+ ∆t)|Ω|T .

TR2
=

Ñ−1∑
n=0

∆t
∑
D∈Dh

∫
D

(
f(Nn+1

D )− f(N)
)
ψ(x, t) dxdt

h,∆t→0−→ 0 ,

in fact, |TR2 | ≤ C1,ψLf
∫ T

0

∫
Ω
|Ñh,∆t(x, t)−N(x, t)| dxdt and Ñh,∆t converges strongly to N in L2(QT ).

Reasoning along the same lines for the chemo-attractant and fluid equations, we conclude that the
limit couple (N,C, u) is a weak solution of the continuous problem in the sense of Definition 2.1 by

using the density of the set Ψ in W = {φ ∈ L2(0, T ;H1(Ω)), ∂φ∂t ∈ L
2(QT ), φ(., T ) = 0}.

5. Numerical experiments

In this section, we present many numerical tests to show the dynamics of solutions of the following
chemotaxis-fluid system:

(5.1)


∂tN −∇ ·

(
S(x)a(N)∇N

)
+∇ ·

(
S(x)χ(N)∇C

)
+ c1(u · ∇N) = 0,

∂tC − d∇ · (M(x)∇C) + c2(u · ∇C) = αN − βC,
∂tu− ν∆u+∇P = −N∇φ,

∇ · u = 0,

with A(N) = D
∫ N

0
a(N) dx = D

∫ N
0
N(1 − N) dx = D(N

2

2 −
N3

3 ), χ(N) = cN(1 − N)2 and D, α,
β, c, c1, c2, d are positive constants. This system is discretized by the combined method along the
algorithm detailed in the section 3.4.

5.1. Test 1: Influence of the gravitational force. We start by this numerical test in order to
show the influence of the gravitation exerted by the cells on the fluid. We suppose no-slip boundary
conditions for the velocity of the fluid (homogeneous Dirichlet). The simulations are done on a
mesh given in Figure 3(b) and the initial conditions are defined by regions in Figure 2(a). The
initial density is defined by N0(x, y) = 0.5 in the square (x, y) ∈

(
[0.45, 0.55] × [0.65, 0.75]

)
and

0 otherwise. The initial concentration of the chemo-attractant is defined by C0(x, y) = 10 in the
square (x, y) ∈

(
[0.45, 0.55] × [0.25, 0.35]

)
and 0 otherwise. The initial components of the velocity

are neglected. In addition to that, we consider isotropic diffusive tensors (S(x) = M(x) = Id) in
this test. Next, we choose dt = 0.0005, α = 0.01, β = 0.05, D = 0.05, c = 0.5, c1 = 20, c2 = 0,
d = 10−4, ν = 10−2 and ∇φ = (0, 100). In the Figure 2, we clearly observe the diffusion a part of cells
towards the chemo-attractant and the other part fall down under the influence of the flux created by
the gravitation force proportional to the density of cells.

5.2. Test 2: Driven cavity. In this test, we consider the standard problem of fluid flow in a two-

dimensional square cavity where the speed at the top wall remains constant

(
1
0

)
and this requires

movement of the fluid at that constant speed over the edge at the top of the domain. This is one of
the most important tests in fluid mechanics and this is mainly due to two reasons: the simplicity of
its geometry and the multitude physical phenomena observed in this flow.
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5.2.1. Stokes problem. In fact, we do not know the analytical solution of the following problem:

(5.2)


∂tu− ν∆u+∇P = 0 dans Ω,

∇ · u = 0 dans Ω,

u =

(
u1

0

)
dans ∂Ω ,

with a viscosity ν = 5× 10−3 and

u1(x, y) =

{
1 if y = 1,
0 if not .

For that, we discretize the system using nonconforming finite elements, we consider a non-structured
mesh of a square unit and a dual mesh associated to the primal mesh (see Figure 3(a)). Moreover, the
initial pressure is neglected and dt = 0.0005 is chosen as a constant step in time. The characteristics
of the mesh are given in Table 1 and the velocity evolution in time is clearly shown in Figures 3(c)
and 3(d). We observe the rotational motion of the fluid and its attachment to the upper wall.

5.2.2. Anisotropic chemotaxis in a driven cavity. We are now interested in the dynamics of anisotropic
behavior of chemotactic cells, modeled by (5.1) system, in a driven cavity. For this, we consider the
following tensors:

S =

[
8 −7
−7 20

]
, M = Id .

Simulations of this test is carried out on the mesh given in Figure 3(a) and initial conditions are
defined by regions in Figure 4(a). The initial density is defined by N0(x, y) = 0.1 in the square
(x, y) ∈

(
[0.6, 0.7]×[0.6, 0.7]

)
. The initial concentration of chemo-attractant is defined by C0(x, y) = 20

in the square (x, y) ∈
(
[0.25, 0.35] × [0.25, 0.35]

)
. The initial velocity and pressure are supposed

neglected. Then, we choose dt = 0.0005, α = 0.01, β = 0.05, D = 0.001, c = 0.1, c1 = 1, c2 = 0,
d = 2× 10−4, ν = 5× 10−3 and ∇φ = (0, 1). In the Figure 4, we remark the evolution in time of the
cell density and the profils of the chemo-attractant and the velocity of the fluid. At time t = 0.5, the
anisotropic diffusion starts according to the tensor S. Then, they are influenced and transported by
the velocity field at time t = 4. At a certain time and under the influence of chemical signals, a part
of cells are attracted to the area of chemoattractant and the other part remains carried by the fluid.

5.3. Anisotropic chemotaxis in an oblique fluid. Motivated by the dynamics of the cell popu-
lation in a fluid that carries both the cells and chemical, we consider the system (5.1) with nonzero
constants c1 and c2. First, we consider the following tensors:

S =

[
1 0
0 5

]
, M = Id .

Simulations of this test are done on the mesh given in Figure 3(b) and initial conditions are de-
fined by regions in Figure 5(a). The initial density is defined by N0(x, y) = 0.1 in the square
(x, y) ∈

(
[0.45, 0.45] × [0.45, 0.45]

)
and 0 otherwise. The initial concentration of chemo-attractant

is defined by C0(x, y) = 20 in the square (x, y) ∈
(
[0.2, 0.3] × [0.2, 0.3]

)
∪
(
[0.7, 0.8] × [0.7, 0.8]

)
.

The initial components of the velocity are defined by u1(x, y) = 5 and u2(x, y) = 5 in the square
(x, y) ∈

(
[0.1, 0.6]× [0.1, 0.6]

)
. Next, we choose dt = 0.0005, α = 0.01, β = 0.05, D = 0.001, d = 10−3,

ν = 5 × 10−3 and ∇φ = (0, 10). As a first case, we assume that convection fluid is greater than the
attraction by the chemical. For this, we select 1 = c < c1 = 4 and c2 = 10−4. Therefore, we observe in
Figure 5 that cells are quickly transported by the fluid to the upper region of chemoattractant before
their convection to the lower region. For the second case, we consider c = 4 and c1 = c2 = 0.01. We
remark in this last case (Figure 6) that first the cells are attracted to the lower area of the chemoat-
tractant to swim together in the fluid towards the upper region of chemical substrates.
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Meshes Number of triangles Number of diamonds max(diam(D)) max(diam(K))
Figure 3(a) 224 352 3.75× 10−3 5.47× 10−3

Figure 3(b) 3584 5440 2.3× 10−4 3.41× 10−4

Table 1. Characteristics of the meshes .

Acknowledgement: The authors would like to thank the National Council for Scientific Research
(Lebanon), Ecole Centrale de Nantes, Lebanese University and Geanpyl (Université de Nantes) for
their support for this work.

(a) Conditions initiales: N0(x, y) = 0.5 pour

(x, y) ∈ {0.45, 0.55} × {0.65, 0.75} et C0(x, y) =

10 pour (x, y) ∈ {0.45, 0.55} × {0.25, 0.35}.

(b) 0 ≤ N(t = 0.75) ≤ 0.2329, 0.87 ≤ C(t = 0.75) ≤
8.72.

(c) 0 ≤ N(t = 1.5) ≤ 0.1974, 0.8220 ≤ C(t =
1.5) ≤ 8.220.

(d) 0 ≤ N(t = 4) ≤ 0.3141, 0.6039 ≤ C(t = 4) ≤ 6.039.

Figure 2. Test 0- Effect of the gravitational force (∇φ = (0, 100)).
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(a) Initial conditions. (b) 0 ≤ N(t = 0.5) ≤ 0.077.

(c) 0 ≤ N(t = 4) ≤ 0.01. (d) 0 ≤ N(t = 10) ≤ 0.034.

(e) 0 ≤ N(t = 25) ≤ 0.028. (f) 0 ≤ N(t = 35) ≤ 0.036.

Figure 4. Test 2- Evolution in time of cell density in a driven cavity.
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(a) Test 3- Initial conditions. (b) 0 ≤ N(t = 0.75) ≤ 0.021, 0.411 ≤ C(t = 0.75) ≤
5.671.

(c) 0 ≤ N(t = 1) ≤ 0.06, 0 ≤ C(t = 1) ≤ 4.537. (d) 0 ≤ N(t = 3) ≤ 0.44, 0 ≤ C(t = 3) ≤ 2.334.

(e) Cell density evolution in time at point (0.26, 0.29) (red curve) and
at point (0.71, 0.82) (blue curve).

Figure 5. Test 3- First case (c < c1).
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(a) 0 ≤ N(t = 0.25) ≤ 0.12, 0 ≤ C(t = 0.5) ≤
27.34.

(b) 0 ≤ N(t = 0.5) ≤ 0.06, 0 ≤ C(t = 0.75) ≤ 21.16.

(c) 0 ≤ N(t = 1) ≤ 0.17, 1.08 ≤ C(t = 1) ≤
10.4.

(d) 0 ≤ N(t = 2) ≤ 0.08, 0.51 ≤ C(t = 3) ≤ 5.13.

(e) Cell density evolution in time at point (0.26, 0.29) (red curve) and
at point (0.71, 0.82) (blue curve).

Figure 6. Test 3- Second case (c < c1 = c2).


