
A COUPLED ANISOTROPIC CHEMOTAXIS-FLUID MODEL: THE CASE OF TWO-SIDEDLY

DEGENERATE DIFFUSION

GEORGES CHAMOUN1,2, MAZEN SAAD1, RAAFAT TALHOUK2

1 Ecole Centrale de Nantes
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1. Introduction

Chemotaxis is the movement of biological individuals towards (or away from) a chemoattractant (or
chemorepellent). A vital characteristic of living organisms is the ability to sense signals in the environment
and adapt their movement accordingly. This behavior enables them to locate nutrients, avoid predators or find
animals of the same species. A typical model describing chemotaxis are the Keller-Segel equations derived by
Keller and Segel [11] which have become one of the best-studied models in mathematical biology. In nature,
cells often live in a viscous fluid so that cells and chemical substrates are also transported with the fluid, and
meanwhile the motion of the fluid is under the influence of gravitational forcing generated by aggregation of
cells. Thus, it is interesting and important in biology to study some phenomenon of chemotaxis on the basis of
the coupled cell-fluid model. In the following, we investigate a system consisting of the parabolic chemotaxis
equations with general tensors coupled to Navier-Stokes equations,

(1.1)


∂tN −∇ ·

(
S(x)a(N)∇N

)
+∇ ·

(
S(x)χ(N)∇C

)
+ u · ∇N = f(N),

∂tC −∇ · (M(x)∇C) + u · ∇C = −k(C)N,
∂tu− ν∆u+ (u · ∇)u+∇P = −N∇φ,

∇ · u = 0, t > 0, x ∈ Ω,

where Ω is an open bounded domain in Rd, d ≤ 4 with smooth boundary ∂Ω. The experimental set-up
corresponds to mixed type boundary conditions. For simplicity here we use nul flux conditions for N and
C and zero Dirichlet for u to reflect the no-slip boundary conditions of the flow. Therefore, this system of
equations is supplemented by the following boundary conditions on Σt= ∂Ω× (0, T ),

(1.2) S(x)a(N)∇N · η = 0,M(x)∇C · η = 0, u = 0,

where η is the exterior unit normal to ∂Ω. The initial conditions on Ω are given by,

(1.3) N(x, 0) = N0(x), C(x, 0) = C0(x), u(x, 0) = u0(x).

Here N , C, u and P denotes respectively the cell density, the concentration of a chemical, the velocity field
and the pressure inside the incompressible fluid. Moreover, a(N) denotes the density-dependent diffusion
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coefficient and χ(N) is usually written in the form χ(N) = Nh(N) where h is commonly referred to as the
chemotactic sensitivity function. The source term f reflects the interaction between cells such as hydrodynam-
ics interactions. Anisotropic and heterogeneous tensors are denoted by S(x) and M(x). The fluid is described
by an incompressible Navier-Stokes equation with the viscosity ν. It couples to N and C through transport
by the fluid modelled by u ·∇N , u ·∇C and gravitational forcing modelled by g = −N∇φ as an external force
exerted on the fluid by the cells. In fact, this external force can be produced by different physical mechanisms
such as gravity, electric and magnetic forces but in our study, we are only interested in the case of gravitational
force ∇φ = “Vb(ρb−ρ)g”z exerted by a bacterium onto the fluid along the upwards unit vector z proportional
to the volume of the bacterium Vb, the gravitation acceleration g = 9, 8m/s2, and the density of bacteria is ρb
(bacteria are about 10% denser than water). Moreover, since the fluid is slow, we can use the Stokes equation
instead of the Navier-Stokes equation. So the system looks like,

(1.4)


∂tN −∇ ·

(
S(x)a(N)∇N

)
+∇ ·

(
S(x)χ(N)∇C

)
+ u · ∇N = f(N),

∂tC −∇ · (M(x)∇C) + u · ∇C = −k(C)N,
∂tu− ν∆u+∇P = −N∇φ,

∇ · u = 0 t > 0, x ∈ Ω.

In the models (1.1) and (1.4), the cell density N diffuses, it moves in the direction of the chemical gradient
and it is transported by the fluid. In addition to that, the chemical C also diffuses, it is also transported
by the fluid and it is consumed proportional to the density of cells N , where this fact is expressed by a
function k(C) which is a consumption rate of the chemical by the cells. In this paper, the chemical substrate
can be only consumed by the cells (g̃(N,C) = −k(C)N). For example, the bacteria “Bacillus subtilis” swim
towards higher concentration of oxygen to survive. In other cases, such as the “Dictyostelium discoideum”,
the chemical can be produced and consumed (g̃(N,C) = aN − bC where a and b are positive constants) to
form some kind of transition to a multicellular organism. The theoretical study of this paper is valid for both
cases (chemotactical transport and transport towards a nutrient) even we are only considering the first one
in the sequel. There are also an another possible choice of g̃ as a cut-off function for which many related
experiments have been given in [6, 10, 24] to describe the aggregation of a part of bacteria below an interface
between two fluids, while other bacteria are rendered inactive wherever the oxygen concentration has fallen
below the threshold of activity.

Motivated by experiments described in [4, 5] which explain the dynamics of anisotropic chemotaxis mod-
els in a fluid at rest (u = 0) and interested by numerical issues related to the dynamics of these models
coupled to a viscous fluid through transport and gravitational force, we investigate in this paper the cou-
pled anisotropic chemotaxis-fluid models (1.1) and (1.4). A detailed theoretical study of global existence and
uniqueness of weak solutions of these models has been established. In fact, the existence theory in suitable
functional spaces and the uniqueness can present several difficulties due to the complicated cell-fluid interac-
tion even if it only consists of chemotaxis and linear isotropic non-degenerate diffusion coupled to the fluid.
Indeed, in the case of isotropic homogeneous tensors (S(x) = M(x) = Id), linear diffusion (a(N) = 1) and
a concentration-dependent sensitivity (χ(N,C) = Nβ(C) where β(C) is the chemotactic sensitivity), several
authors of chemotaxis literature have recently studied the global existence in time via finite time blow-up of
a weak solution for the models (1.1) and (1.4). The main tool used to prove global existence is an existing
entropy inequality. In [7], the authors proved global existence for the model (1.4) for weak potential φ or
small initial data of the concentration C. Moreover, for Ω = R2 or R3, by changing the consumption rate
(−k(C)N) into a production one (N − aC where a > 0) and by considering the stationnary equation of C,
the authors in [18] proved the existence of a critical initial mass M in the model (1.4), below M we have
global existence and above M we have finite time blow-up. For Ω = R2, the global existence in time of a weak
solution for the model (1.1) is proved in [18]. In addition to that, for the case of isotropic tensors, nonlinear
diffusion (a(N) = mNm−1∇N) which degenerates only at one point (u = 0) and for the same sensitivity
(χ(N,C) = Nβ(C)), global existence of a weak solution for the model (1.4) is proved in [8] for Ω = R2

and also proved for 4
3
< m ≤ 2 where Ω is bounded in R2. Moreover, the case of m = 4

3
in the whole space

Ω = R3 is treated also in [18]. To our knowledge, these are the only results on models related to (1.1) and (1.4).

The purpose of this paper is twofold: on the one hand, we establish the global-in-time existence of weak
solutions to the models (1.1) and (1.4) in the open bounded domain Ω (Ω ⊂ Rd, d ≤ 4), in the presence
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of anisotropic and heterogeneous tensors, two-sidedly nonlinear degenerate diffusion, modified chemotactic
sensitivity χ and Navier-Stokes equations. On the other hand, we prove the uniqueness of weak solutions to
the system (1.4) in Ω (Ω ⊂ Rd, d = 2, 3) under further assumptions and regularities on the initial data.

We assume at first that chemotactical sensitivity χ(N) vanishes when N = 0 and N ≥ Nm. This threshold
condition has a clear biological interpretation: the cells stop to accumulate at a given point of Ω after their
density attains certain threshold value N = Nm. This interpretation is called the effect of a threshold cell
density or the volume-filling effect which has been also taken into account in the modeling of chemotaxis
phenomenon in [9] and [21].

A semi-discretization technique, inspired from [19], will be first used to establish the existence of a weak
solution for the regularized non-degenerate chemotaxis-Navier-Stokes system. We can refer to [23] for more
details concerning the existence of weak solutions to the Navier-Stokes equations by semi-discretizing in time
which it is valid even for any number of space dimensions. Next, we tend the regularization parameter to
zero and we use compactness arguments, as in [1], to pass to the limit and to prove the existence of a weak
solution for the degenerate system (1.1) which has two points degeneracy (N = 0 and Nm). Furthermore, the
proof of the uniqueness statement relies on a duality technique used also in [16] for classical Keller-Segel model.

This paper is structured as follows. In section 2, we summarize the statements of the mathematical problem,
we formulate the concept of weak solutions to the models (1.1) and (1.4) and we state the main theorems
of global existence and uniqueness of weak solutions. Sections 3, 4 and 5 are devoted to the proof of these
theorems.

2. Preliminaries and Main results

Let us now state the assumptions on the data we will use in the sequel, together with the main results we
obtain in this paper.

We assume that the density-dependent diffusion coefficient a(N) degenerates for N = 0 and N = Nm. This
means that the diffusion vanishes when N approaches values close to the threshold N = Nm and also in the
absence of cell-population. Upon normalization, we can assume that the threshold density is Nm = 1. The
main assumptions are:

a : [0, 1] 7−→ R+ is continuous, a(0) = a(1) = 0 and a(s) > 0 for 0 < s < 1 ,(2.1)

χ : [0, 1] 7−→ R is continuous and χ(0) = χ(1) = 0 ,(2.2)

A standard example for χ is χ(N) = N(1 − N); N ∈ [0, 1]. The positivity of χ means that the chemical
attracts the cells; the repellent case is the one of negative χ. Next, we require

k : [0,+∞[ 7−→ R+ is a C1-function with k(0) = 0 and k′(c) > 0 for all c ∈ R+ ,(2.3)

f : [0, 1] 7−→ R+ is a continuous function with f(0) = 0 ,(2.4)

∇φ ∈ (L∞(Ω))d and φ is independent of time.(2.5)

The permeabilities S, M : Ω −→Md(R) where Md(R) is the set of symmetric matrices d× d, verify

Si,j ∈ L∞(Ω), Mi,j ∈ L∞(Ω), ∀i, j ∈ {1, .., d} ,(2.6)

and there exist cS ∈ R∗+ and cM ∈ R∗+ such that a.e. x ∈ Ω, ∀ξ ∈ Rd,

S(x)ξ · ξ ≥ cS |ξ|2, M(x)ξ · ξ ≥ cM |ξ|2 .(2.7)

Furthermore, due to (2.2), (2.1) and (2.6), one deduces the existence of D̄ and D̄1 ∈ R∗+ such that a.e.
x ∈ Ω, ∀N ∈ [0, 1],

||D(x,N)||Md(R) = ||S(x)a(N)||Md(R) ≤ D̄ and ||D1(x,N)||Md(R) = ||S(x)χ(N)||Md(R) ≤ D̄1 .(2.8)

Next, for p in (0,∞) and an integer m ≥ 0, we denote by Wm,p(Ω)
(
resp. W 2m,m

p (Ω × [0, T ])
)

the Banach

space consisting of all elements of Lp(Ω)
(
resp. of Lp(Ω × [0, T ])

)
having generalized derivatives up to or-

der m (resp. derivatives of the form ∂rt ∂
s
x with 2r+ |s| ≤ 2m) inclusively that are p−th power summable on Ω.
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Finally, we introduce basic spaces in the study of the Navier-Stokes equation,

(2.9) ℘ = {u ∈ D(Ω),∇ · u = 0}, V = ℘̄H
1
0 (Ω) and H = ℘̄L

2(Ω) ,

where V and H are the closure of ℘ in H1
0 (Ω) and L2(Ω) respectively.

To prove the uniqueness of global weak solutions to the Chemotaxis-Stokes model (1.4), we will need later
the following set of additional assumptions:

(2.10)

{
i) d ≤ 3, N0 ∈ L∞(Ω), u0 ∈W 2− 2

p
,p

(Ω), C0 ∈W 2− 2
p
,p

(Ω) with sufficient p > d,
ii)∇φ ∈W 1,∞(Ω), f is affine, χ of class C1 and the coefficients Si,j ∈ C1(Ω̄).

Before we establish global existence, we first need a proper notion of a weak solution.

Definition 2.1. Assume that 0 ≤ N0 ≤ 1, C0 ≥ 0, C0 ∈ L∞(Ω), u0 ∈ L2(Ω) and ∇ · u0 = 0. A triple
(N,C, u) is said to be a weak solution of (1.1)-(1.3) if

0 ≤ N(x, t) ≤ 1, C(x, t) ≥ 0 a.e. in QT = Ω× [0, T ],

N ∈ Cw(0, T ;L2(Ω)), ∂tN ∈ L2(0, T ; (H1(Ω))
′
), A(N) :=

∫ N

0

a(r)dr ∈ L2(0, T ;H1(Ω)) ,

C ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) ∩ C(0, T ;L2(Ω)); ∂tC ∈ L2(0, T ; (H1(Ω))′) ,

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ Cw(0, T ;H);
du

dt
∈ L1(0, T ;V ′) ,

and (N,C, u) satisfy∫ T

0

< ∂tN,ψ1 >(H1)′,H1 dt+

∫∫
QT

[S(x)a(N)∇N − S(x)χ(N)∇C −Nu] · ∇ψ1 dxdt = −
∫∫
QT

f(N)ψ1 dxdt ,(2.11)

∫ T

0

< ∂tC,ψ2 >(H1)′,H1 dt+

∫∫
QT

[M(x)∇C − Cu] · ∇ψ2 dxdt =

∫∫
QT

−Nk(C)ψ2 dxdt ,(2.12)

∫ T

0

< ∂tu, ψ >V ′,V dt+

∫∫
QT

∇u · ∇ψ dxdt+

∫∫
QT

(u · ∇)uψ dxdt =

∫∫
QT

−N∇φψ dxdt =

∫∫
QT

gψ dxdt ,(2.13)

for all ψ1, ψ2 ∈ L2(0, T ;H1(Ω)) and ψ ∈ C0
c (]0, T [;V ), where C0

c (]0, T [;V ) denotes the space of continuous
functions with compact support and values in V and Cw(0, T ;L2(Ω)) denotes the space of continuous functions
with values in (a closed ball of) L2(Ω) indowed with the weak topology.

Definition 2.2. Due to the linear Stokes equation
(
(u · ∇)u = 0

)
, a triple (N,C, u) is said to be a weak

solution of (1.2)-(1.4) in the same sense of Definition 2.1 with better time regularity obtained for u. One
has also that du

dt
belongs to L2(0, T ;V ′) and consequently the component u belongs to C(0, T ;H).

We state now our main results of global existence and uniqueness of weak solutions in the following theorems.

Theorem 2.3. Assume that (2.1) to (2.9) hold true. If 0 ≤ N0 ≤ 1, C0 ≥ 0 a.e. in Ω, C0 ∈ L∞(Ω), u0 ∈ H
and g ∈ L2(0, T ;V ′), then the system (1.1) has a global weak solution (N,C, u) in the sense of Definition 2.1.

Theorem 2.4. Suppose that there exists a constant C0 > 0 such that

(χ(N1)− χ(N2))2 ≤ C0(N1 −N2)(A(N1)−A(N2)), ∀N1, N2 ∈ [0, 1] .(2.14)

Then, under the set (2.10) of additional assumptions, the system (1.4) has a global unique weak solution.

Condition (2.14) may be expressed in an another way given in the following Remark.

Remark 2.5. If a(N) = N(1 − N) and χ(N) = (N(1 − N))β then the weak solution of the system (1.4) is
unique provided β ≥ 3

2
. Indeed, this result follows from

[
[16], Proposition 4

]
which provides a useful sufficient

condition which guarantees that (2.14) holds true. It amounts to check that the function

N → χ′(N)a(N)−
1
2 belongs to L∞(0, 1) .

A simple computation is left to the reader.
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Our goal now is to give a proof to the Theorem 2.3. A major difficulty for the analysis of our system (1.1)
is the strong degeneracy of the diffusion term. To handle this difficulty, we replace the original diffusion term
a(N) by aε(N) = a(N) + ε and we consider for each fixed ε > 0, the following non-degenerate problem

(2.15)


∂tNε −∇ · (S(x)aε(Nε)∇Nε) +∇ · (S(x)χ(Nε)∇Cε) +∇ · (Nεuε) = f(Nε),

∂tCε −∇ · (M(x)∇Cε) +∇ · (Cεuε) = −Nεk(Cε),
∂tuε − ν∆uε + (uε · ∇)uε +∇pε = −Nε∇φ,

∇ · uε = 0,

with the following boundary and initial conditions,

S(x)a(Nε)∇Nε · η = 0, M(x)∇Cε · η = 0, uε = 0 sur ∂Ω× (0, T ) ,

Nε(x, 0) = N0(x), Cε(x, 0) = C0(x), uε(x, 0) = u0(x).

The assumption ∇·uε = 0 has permitted to replace uε ·∇Nε (resp. uε ·∇Cε) by ∇· (Nεuε) (resp. ∇· (Cεuε))
in the problem (2.15). In order to prove Theorem 2.3, we first need to prove the existence of weak solutions
to the non-degenerate problem (2.15), in section 3, by using a semi-discretization in time. Then, we apply
the Schauder fixed-point theorem for the N equation, we consider the C equation as a convection-diffusion
parabolic equation and we use the same guidelines of [23] for the semi-discretisation in time to the Navier-
Stokes problem. Next, Kolmogorov’s compactness criterion (see [3]) will be used as a compactness argument to
obtain the convergence to a weak solution of the system (2.15). Finally, in section 4, we tend the regularization
parameter ε to zero to produce a weak solution of the original system (1.1) in the sense of Definition 2.1 as
the limit of a sequence of such approximate solutions. Convergence is achieved by means of a priori estimates
and compactness arguments.

3. Weak solution of the non-degenerate problem

In this section, a semi-discretization in time technique, studied in [19] for systems modelling the miscible
displacement of radioactive elements in a heterogeneous porous domain, will be applied to prove the existence
of weak solutions of the non-degenerate problem (2.15). For that, we will construct an approximate solution
by semi-discretization in time and then we will pass to the limit using compactness arguments. The aim of
this section is given by the following Proposition.

Proposition 3.1. The non-degenerate problem (2.15) admits a weak solution (Nε, Cε, uε) in the sense of
Definition 2.1, such that ∀ψ1, ψ2 ∈ L2(0, T ;H1(Ω)) and ψ ∈ C0

c (0, T ;V ),

(3.1)

∫ T

0

< ∂tNε, ψ1 > dt+

∫∫
QT

[
S(x)aε(Nε)∇Nε − S(x)χ(Nε)∇Cε −Nεuε

]
· ∇ψ1 dxdt =

∫∫
QT

f(Nε)ψ1 dxdt ,

∫∫
QT

[
∂tCεψ2 + [M(x)∇Cε − Cεuε] · ∇ψ2

]
dxdt =

∫∫
QT

−Nεk(Cε)ψ2 dxdt ,(3.2)

∫ T

0

< ∂tuε, ψ >V ′,V dt+

∫∫
QT

∇uε · ∇ψ dxdt+

∫∫
QT

(uε · ∇)uεψ dxdt =

∫∫
QT

−Nε∇φψ dxdt ,(3.3)

and from the definition of V , one has

∇ · uε = 0 .(3.4)

3.1. Constructing of an approximating solution. Let T > 0 and Ñ ∈ N∗. We define h = ∆t = T

Ñ
as

a constant time step. Then, we define two interpolation operators which are a main tool in the study of the
convergence. Let E be a Banach space.

∀w = (w0, w1, ..., wÑ ) ∈ EÑ+1, the constant interpolation operator is defined from [0, T ] to E by{
Π0
Ñ
w(0) = w0 ,

Π0
Ñ
w(t) =

∑Ñ−1
n=0 wn+1χ]nh,(n+1)h](t) if 0 < t ≤ T ,
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where χ]nh,(n+1)h](t) being the characteristic function in ]nh, (n+1)h]. The linear interpolation operator from
[0, T ] to E is defined by

Π1
Ñw(t) =

Ñ−1∑
n=0

[
(1 + n− t

h
)wn + (

t

h
− n)wn+1

]
χ[nh,(n+1)h](t) .

The function Π1
Ñ
w is continuous and its derivate is given for all t 6= nh by

d

dt

(
Π1
Ñw(t)

)
=

Ñ−1∑
n=0

[ 1

h
(wn+1 − wn)

]
χ]nh,(n+1)h](t) .

Note that ∣∣∣∣Π0
Ñw
∣∣∣∣
Lp(0,T ;E)

= h(

Ñ−1∑
n=0

||wn||pE)
1
p ) if 1 ≤ p <∞ ,(3.5)

∣∣∣∣Π0
Ñw
∣∣∣∣
L∞(0,T ;E)

=
∣∣∣∣Π1

Ñw
∣∣∣∣
L∞(0,T ;E)

= max
n=1,..,Ñ

(||wn||E) .(3.6)

Now, we will define a family of approximate solutions by the following discretized scheme in time. We
begin with

(N Ñ
0,ε, C

Ñ
0,ε, u

Ñ
0,ε) = (N0, C0, u0) the given initial data.(3.7)

Then, when (N Ñ
0,ε, C

Ñ
0,ε, u

Ñ
0,ε), ..., (N

Ñ
n,ε, C

Ñ
n,ε, u

Ñ
n,ε) are known, we define (N Ñ

n+1,ε, C
Ñ
n+1,ε, u

Ñ
n+1,ε) which satisfy

(3.8)
1

h

∫
Ω

(N Ñ
n+1,ε −N Ñ

n,ε)ψ1 dx+

∫
Ω

(
S(x)aε(N

Ñ
n+1,ε)∇N Ñ

n+1,ε − S(x)χ(N Ñ
n+1,ε)∇CÑn+1,ε

)
· ∇ψ1 dx

−
∫

Ω

N Ñ
n+1,εu

Ñ
n,ε · ∇ψ1 dx =

∫
Ω

f(N Ñ
n+1,ε)ψ1 dx ,

(3.9)
1

h

∫
Ω

(CÑn+1,ε − CÑn,ε)ψ2 dx+

∫
Ω

M(x)∇CÑn+1,ε · ∇ψ2 dx−
∫

Ω

CÑn+1,εu
Ñ
n,ε · ∇ψ2 dx = −

∫
Ω

N Ñ
n,εk(CÑn+1,ε)ψ2 dx ,

1

h

∫
Ω

(uÑn+1,ε − uÑn,ε)ψ dx+

∫
Ω

∇uÑn+1,ε · ∇ψ dx+

∫
Ω

(uÑn+1,ε · ∇)uÑn+1,εψ dx = −
∫

Ω

N Ñ
n+1,ε∇φψ dx ,(3.10)

∀ψ1, ψ2 ∈ H1(Ω) and ∀ψ ∈ V .

3.2. Confinement of N Ñ
n+1,ε and CÑn+1,ε. The aim of this subsection is given by the following Proposition.

Proposition 3.2. There exists M > 0 such that for all n = 0, ..., Ñ − 1,

0 ≤ N Ñ
n+1,ε ≤ 1 and 0 ≤ CÑn+1,ε ≤M a.e. x ∈ Ω.

Proof. First, we note that N− = max(−N, 0) belongs to H1(Ω)
(
see [12], p. 54

)
. We now make use of an

induction argument. One has N Ñ
0,ε = N0 ≥ 0. Suppose that N Ñ

n,ε ≥ 0 and N Ñ
n+1,ε < 0 a.e. x ∈ Ω and choose

ψ1 = −(N Ñ
n+1,ε)

− in (3.8), then

− 1

h

∫
Ω

(N Ñ
n+1,ε −N Ñ

n,ε)(N
Ñ
n+1,ε)

−dx−
∫

Ω

Dε(x,N
Ñ
n+1,ε)∇N Ñ

n+1,ε · ∇(N Ñ
n+1,ε)

−dx

+

∫
Ω

S(x)χ(N Ñ
n+1,ε)∇CÑn+1,ε · ∇(N Ñ

n+1,ε)
−dx−

∫
Ω

N Ñ
n+1,εu

Ñ
n,ε · ∇(N Ñ

n+1,ε)
−dx = −

∫
Ω

f(N Ñ
n+1,ε)(N

Ñ
n+1,ε)

−dx.

Let us mention that the non-degeneracy of aε leads to the coercivity of the diffusive operator Dε = S(x)aε .
Next, one has

−
∫

Ω

N Ñ
n+1,εu

Ñ
n,ε · ∇(N Ñ

n+1,ε)
−dx =

1

2

∫
Ω

(
uÑn,ε · ∇[(N Ñ

n+1,ε)
−]2
)
dx = 0 .
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We then introduce the continuous and Lipschitz extensions χ̃ and f̃ of χ and f on R such that

χ̃(s) =


0 if s < 0

χ(s) if 0 ≤ s ≤ 1
0 if s > 1

, f̃(s) =


0 if s < 0

f(s) if 0 ≤ s ≤ 1
f(1) ≥ 0 if s > 1

,

to obtain S(x)χ(N Ñ
n+1,ε) = 0 and f(N Ñ

n+1,ε) = 0 for N Ñ
n+1,ε < 0. Therefore, we obtain

− 1

h

∫
Ω

N Ñ
n+1,ε(N

Ñ
n+1,ε)

−dx ≤ 0 .

So (N Ñ
n+1,ε)

− = max(−N Ñ
n+1,ε, 0) = 0 which is a contradiction with N Ñ

n+1,ε < 0. Consequently,

∀n = 0, .., Ñ − 1, N Ñ
n+1,ε ≥ 0 a.e. x ∈ Ω .(3.11)

In the other hand, by choosing ψ1 = (N Ñ
n+1,ε − 1)+ in (3.8), one has

1

h

∫
Ω

(N Ñ
n+1,ε −N Ñ

n,ε)(N
Ñ
n+1,ε − 1)+dx+

∫
Ω

Dε(x,N
Ñ
n+1,ε)∇(N Ñ

n+1,ε − 1)+ · ∇(N Ñ
n+1,ε − 1)+dx

−
∫

Ω

S(x)χ(N Ñ
n+1,ε)∇CÑn+1,ε · ∇(N Ñ

n+1,ε − 1)+dx−
∫

Ω

N Ñ
n+1,εu

Ñ
n,ε · ∇(N Ñ

n+1,ε − 1)+dx =

∫
Ω

f(N Ñ
n+1,ε)(N

Ñ
n+1,ε − 1)+dx.

Suppose that N Ñ
n,ε ≤ 1 and that N Ñ

n+1,ε > 1. By following the same guidelines, one can again achieve to a
contradiction. Therefore,

∀n = 0, .., Ñ − 1, N Ñ
n+1,ε ≤ 1 a.e. x ∈ Ω .(3.12)

Finally, one can similarly prove that

∀n = 0, .., Ñ − 1, 0 ≤ CÑn+1,ε ≤M a.e. x ∈ Ω .(3.13)

�

The following Lemma contains a classical result, proved in [23], that will be used in the sequel.

Lemma 3.3. Let us consider the following trilinear function:

B : H1
0 (Ω)×H1(Ω)×H1(Ω)→ R

(u, v, w)→ B(u, v, w) =

∫
Ω

(u · ∇v)w dx .

It satisfies the following properties:

1) If ∇ · u = 0 then B(u, v, v) = 0 .(3.14)

2)B is continuous in the space dimension d ≤ 4 .(3.15)

3.3. Existence of a weak solution of the equation (3.10). We are able to prove the existence of a discrete

solution uÑn+1,ε of the equation (3.10) obtained by semi-discretization in time of the equation (3.3), under the
fact of the L∞-uniform bound (3.12). We can see all the details of the proofs in [23]. For the sake of clarity,

we will just give the headlines. In space dimension d ≤ 4, the existence of uÑn+1,ε ∈ V solution of (3.10) is

given by the following Lemma proved in
[
[23], Lemma 4.3

]
.

Lemma 3.4. For each fixed h and each n ≥ 1, there exists at least one uÑn+1,ε satisfying (3.10).

Moreover, we have the following estimates and results of convergence,∣∣∣∣Π0
Ñu

Ñ
ε

∣∣∣∣
L2(0,T ;V )

≤ d1,(3.16)

∀h > 0, ||τ−hΠ0
Ñu

Ñ
ε −Π0

Ñu
Ñ
ε ||L2(0,T−h;(L2(Ω))) ≤ d1h ,(3.17)

∣∣∣∣ ∂
∂t

(Π1
Ñu

Ñ
ε )
∣∣∣∣
L2(0,T ;(H1(Ω))′)

≤ d1,(3.18)
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where d1 = ||u0||2H +
∫ T

0
||g(s)||2V ′ ds and g =

(
Π0
Ñ
N Ñ
ε

)
∇φ ∈ L∞(QT ). In addition to that, there exists

uε ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) such that, modulo a subsequence,

Π0
Ñu

Ñ
ε ⇀ uε weak * in L∞(0, T ;H) ,(3.19)

Π0
Ñu

Ñ
ε ⇀ uε weakly in L2(0, T ;V ) ,(3.20)

Π0
Ñu

Ñ
ε −→ uε strongly in L2(0, T ;H).(3.21)

By (3.14), (3.15) and (2.7), we can obtain the existence of a unique CÑn+1,ε satisfying (3.9) as a straightforward
consequence of the Lax-Milgram theorem. Moreover, we can easily establish the following uniform estimate

||CÑn+1,ε||H1(Ω) ≤ C
′,(3.22)

where C′ is a constant independent of Ñ . Ideed, it suffices to choose CÑn+1,ε as a function test in (3.9) and the
estimate (3.22) is a straightforward consequence of the uniform bound of the function k, (2.7), (3.12), (3.13)
and (3.14).

The Schauder fixed point theorem is the main tool to prove the existence of N Ñ
n+1 solution of (3.8). For

this purpose, we introduce the following closed convex bounded subset of the Banach space L2(Ω):

D = {N Ñ
n+1,ε ∈ L2(Ω); 0 ≤ N Ñ

n+1,ε(x) ≤ 1, for a.e. x ∈ Ω}.

A direct application of the Lax-Milgram theorem, (3.11) and (3.12) allow to define the application θ :

D −→ D as θ(w) = N Ñ
n+1,ε where N Ñ

n+1,ε is the unique function of H1(Ω) such that ∀ψ1 ∈ H1(Ω),

(3.23)
1

h

∫
Ω

(N Ñ
n+1,ε −N Ñ

n,ε)ψ1 dx+

∫
Ω

S(x)aε(w)∇N Ñ
n+1,ε · ∇ψ1 dx−

∫
Ω

S(x)χ(w)∇CÑn+1,ε · ∇ψ1 dx

+

∫
Ω

N Ñ
n+1,εu

Ñ
n,ε · ∇ψ1 dx =

∫
Ω

f(N Ñ
n+1,ε)ψ1 dx.

Each fixed point of θ is a solution of (3.8). Let us show first that θ(D) is relatively compact in L2(Ω). Choosing

ψ1 = N Ñ
n+1,ε as a function test in (3.23), considering three positive real numbers a1, a2, a3 and using (2.7),

(2.8), (3.14) and Young inequality, we have

1

h

∫
Ω

|N Ñ
n+1,ε|2dx+ γ′

∫
Ω

|∇N Ñ
n+1,ε|2dx ≤ D̄1||∇CÑn+1,ε||L2 ||∇N Ñ

n+1,ε||L2 +
1

h
||N Ñ

n,ε||L2 ||N Ñ
n+1,ε||L2

+||f(N Ñ
n+1,ε)||L2 ||N Ñ

n+1,ε||L2 ≤ D̄1a1||∇N Ñ
n+1,ε||2L2 +

D̄1

a1
||∇CÑn+1,ε||2L2 +

a2

h
||N Ñ

n+1,ε||2L2

+
1

a2h
||N Ñ

n,ε||2L2 + a3||N Ñ
n+1,ε||2L2 +

1

a3
||f(w)||2L2 .

Then choose a1 = γ′

2D̄1
, a2 = 1

4
, a3 = 1

4h
and use (3.22), the uniform bound of f and of the function N Ñ

n,ε

(where Ñ , n are integers), the above estimate is reduced to

||N Ñ
n+1,ε||H1(Ω) ≤

1

2h

∫
Ω

|N Ñ
n+1,ε|2dx+

γ′

2

∫
Ω

|∇N Ñ
n+1,ε|2dx ≤ C ,(3.24)

where C is a constant independent of w. Thus θ(D) is bounded in H1(Ω) and therefore θ(D) is relatively
compact in L2(Ω).

Let us show that θ is a continuous mapping. Let (wn)n be a sequence in D and w ∈ D be such that
wn −→ w in L2(Ω) for n −→ +∞. Setting Nn = θ(wn). The objective is to show that Nn −→ θ(w) in L2(Ω)
as n −→ +∞.
Extract first from (wn)n a sequence (wnj )j converging almost everywhere in Ω to w. Since Dε(x,w) =
S(x)aε(w) and D1(x,w) = S(x)χ(w) are bounded and continuous with respect to w, then the dominated
convergence theorem claims that

Dε(x,wnj ) −→ Dε(x,w) in (L2(Ω))d
2

,
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D1(x,wnj ) −→ D1(x,w) in (L2(Ω))d
2

.

The sequence (Nn)n is bounded in H1(Ω) which is a Hilbert space thus there exists a subsequence (Nnj )q
such that N(nj)q ⇀ N in H1(Ω) and N(nj)q −→ N in L2(Ω) and a.e. in Ω as q −→ +∞.

The equation (3.23) yields

1

h

∫
Ω

(N(nj)q −N
Ñ
n,ε)ψ1 dx+

∫
Ω

Dε(x,w(nj)q )∇N(nj)q · ∇ψ1 dx−
∫

Ω

D1(x,w(nj)q )∇CÑn+1,ε · ∇ψ1 dx

+

∫
Ω

N(nj)q

(
uÑn,ε · ∇ψ1

)
dx =

∫
Ω

f(w(nj)q )ψ1 dx.

Passing to the limit as q → +∞ yields N = θ(w). Therefore, the subsequence N(nj)q converges to θ(w) = N

in L2(Ω) as q → +∞, and the same arguments also show that every subsequence of (Nn)n converging in L2(Ω)
has for limit θ(w). Hence the sequence (Nn)n has a unique accumulation point and since it is included in a
relatively compact subset of L2(Ω), the whole sequence (Nn)n converges to θ(w) in L2(Ω) which proves θ is
continuous. The compactness of θ is a consequence of (3.24) and of the compact injection of H1(Ω) in L2(Ω).

Finally, the Schauder fixed point theorem allows to conclude on the existence of a fixed point N Ñ
n+1,ε ∈ H1(Ω)

for θ, which is a solution of (3.8).

3.4. Estimates. In the following Proposition, uniform a priori estimates on the interpolation of N Ñ and CÑ

with respect to Ñ are obtained.

Proposition 3.5. There exist positive constants A′ and A′′ independent of Ñ such that∣∣∣∣Π0
ÑN

Ñ
ε

∣∣∣∣
L∞(QT )

= max
n=1...N

∣∣∣∣N Ñ
n,ε

∣∣∣∣
L∞(Ω)

≤ 1,
∣∣∣∣Π0

ÑC
Ñ
ε

∣∣∣∣
L∞(QT )

= max
n=1...N

∣∣∣∣CÑn,ε∣∣∣∣L∞(Ω)
≤M ,(3.25)

∣∣∣∣Π0
ÑN

Ñ
ε

∣∣∣∣
L2(0,T ;(H1(Ω)))

≤ A′,
∣∣∣∣Π0

ÑC
Ñ
ε

∣∣∣∣
L2(0,T ;(H1(Ω)))

≤ A′′ ,(3.26)

∀h′ > 0, ||τ−h′Π0
ÑN

Ñ
ε −Π0

ÑN
Ñ
ε ||L2(0,T−h′;(L2(Ω))) ≤ A

′h′ ,(3.27) ∣∣∣∣∣∣ ∂
∂t

(Π1
ÑN

Ñ
ε )
∣∣∣∣∣∣
L2(0,T ;(H1(Ω))′)

≤ A′,
∣∣∣∣∣∣ ∂
∂t

(Π1
ÑC

Ñ
ε )
∣∣∣∣∣∣
L2(0,T ;(H1(Ω))′)

≤ A′′ ,(3.28)

∣∣∣∣Π1
ÑN

Ñ
ε −Π0

ÑN
Ñ
ε

∣∣∣∣
L2(0,T ;(H1(Ω))′)

≤ A′h2

3
.(3.29)

Proof. The estimate (3.25) is a simple consequence of the Proposition 3.2. By Choosing ψ2 = CÑn+1,ε as a

function test in (3.9) and by considering (2.7), the inequality (a − b)a ≥ 1
2

(
a2 − b2

)
, (3.14), Proposition 3.2

and the uniform bound of k, one obtains

1

h

∫
Ω

[
(CÑn+1,ε)

2 − (CÑn,ε)
2] dx+ µ

∫
Ω

(∇CÑn+1,ε)
2 dx ≤ C1 ,

where C1 is a constant independent of Ñ . Multiplying by h and summing from n = 0 to n = Ñ − 1,∫
Ω

(CÑÑ,ε)
2 dx+ µ

∣∣∣∣∇Π0
ÑC

Ñ
ε

∣∣∣∣2
L2(0,T ;L2(Ω))

≤ C1T +

∫
Ω

(CÑ0,ε)
2 dx = A′′ .

Therefore the estimate (3.26) is proved by following the same steps for Π0
Ñ
N Ñ
ε in (3.8).

Let us now prove (3.27), a time translate estimate of approximate solutions which is crucial to obtain

compactness property for the sequence Π0
Ñ
N Ñ
ε in L2(0, T ;L2(Ω)). Let be h > 0, one has

I :=
∣∣∣∣τ−hΠ0

ÑN
Ñ
ε −Π0

ÑN
Ñ
ε

∣∣∣∣2
L2(0,T−h;(L2(Ω)))

=

∫ T−h

0

∫
Ω

(
Π0
ÑN

Ñ
ε (t+ h, x)−Π0

ÑN
Ñ
ε (t, x)

)2

dxdt =

∫ T−h

0

A(t) dt

for almost every t ∈ [0, T − h],

A(t) =

∫
Ω

(
N Ñ

[ t+h
h

],ε
(x)−N Ñ

[ t
h

],ε(x)
)2
dx
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(denoting by [x] the integer part of a real x) which also reads

A(t) =

∫
Ω

[ t+h
h

]−1∑
n=[ t

h
]

(
N Ñ
n+1,ε(x)−N Ñ

n,ε(x)
)(
N Ñ

[ t+h
h

],ε
(x)−N Ñ

[ t
h

],ε(x)
)
dx .

Denote by n0(t) = [ t
h

] and n1(t) = [ t+h
h

], choosing ψ1 = (N Ñ
n1,ε − N

Ñ
n0,ε) in (3.8) and summing from n0 to

n1 − 1, we have

n1−1∑
n=n0

1

h

∫
Ω

(N Ñ
n+1,ε −N Ñ

n,ε)(N
Ñ
n1,ε −N

Ñ
n0,ε) dx ≤ −

n1−1∑
n=n0

[ ∫
Ω

Dε(x,N
Ñ
n+1,ε)∇N Ñ

n+1,ε · ∇(N Ñ
n1,ε −N

Ñ
n0,ε) dx

+

∫
Ω

S(x)χ(N Ñ
n+1,ε)∇CÑn+1,ε · ∇(N Ñ

n1,ε −N
Ñ
n0,ε) dx+

∫
Ω

N Ñ
n+1,εu

Ñ
n,ε · ∇(N Ñ

n1,ε −N
Ñ
n0,ε) dx

+

∫
Ω

f(N Ñ
n+1,ε)(N

Ñ
n1,ε −N

Ñ
n0,ε) dx

]
.

One defines

vi,ε =

∫
Ω

|∇N Ñ
i,ε|2 dx and

pj,ε =

∫
Ω

[
D̄2|∇N Ñ

j,ε|2 + D̄2
1|∇CÑj,ε|2+ | uÑj,ε|2+ | f(N Ñ

j,ε)|
]
dx .

The Young inequality implies that I ≤ h(I1 + I2 + I3), where

I1 =

∫ T−h

0

( n1∑
n=n0+1

pÑn,ε

)
dt, I2 =

∫ T−h

0

( n1∑
n=n0+1

vÑn0,ε

)
dt, I3 =

∫ T−h

0

( n1∑
n=n0+1

vÑn1,ε

)
dt .

Define χn(t, t+ h) = 1 if nh ∈]t, t+ h] and χn(t, t+ h) = 0 if not. Thus, I1 may be rewritten as

I1 =

∫ T−h

0

Ñ∑
n=1

N Ñ
n,εχn(t, t+ h)dt =

Ñ∑
n=1

N Ñ
n,ε

∫ T−h

0

χn(t, t+ h) dt ≤ h
Ñ∑
n=1

N Ñ
n,ε ,

since
∫ T−h

0
χn(t, t+h) dt ≤ h . In a similar way, one can get I2 ≤ h

∑Ñ
n=1 C

Ñ
n,ε and I3 ≤ h

∑Ñ
n=1 C

Ñ
n,ε. Finally,

we deduce that

I ≤
Ñ∑
i=1

h2(pÑi,ε + 2vÑi,ε) .

Estimate (3.26) and (2.4) lead to (3.27).

To prove estimate (3.28), remark first that

(3.30)
∣∣∣∣∣∣ ∂
∂t

(
Π1
ÑN

Ñ
ε

)∣∣∣∣∣∣2
L2(0,T ;(H1(Ω))′)

=

Ñ−1∑
n=0

h
∣∣∣∣∣∣ ∂
∂t

(N Ñ
n+1,ε)

∣∣∣∣∣∣2
(H1(Ω))′

=

Ñ−1∑
n=0

1

h
||N Ñ

n+1,ε −N Ñ
n,ε||2(H1(Ω))′ .

Let us choose ψ1 ∈ H1(Ω) as a test function in (3.8). The Cauchy-Schwarz inequality and property (2.8)
imply that ∣∣∣ 1

h
< N Ñ

n+1,ε −N Ñ
n,ε, ψ1 >(H1(Ω))′,(H1(Ω))

∣∣∣ =
∣∣∣ 1
h

∫
Ω

(N Ñ
n+1,ε −N Ñ

n,ε)ψ1 dx
∣∣∣

≤ D̄||∇N Ñ
n+1,ε||(L2(Ω))d ||∇ψ1||(L2(Ω))d + D̄1||∇CÑn+1,ε||(L2(Ω))d ||∇ψ1||(L2(Ω))d

+||uÑn,ε||(L2(Ω))d ||∇ψ1||(L2(Ω))d + ||f(N Ñ
n+1,ε)||(L2(Ω))d ||ψ1||(L2(Ω))d .(3.31)

Simplifying by ||ψ1||H1(Ω), raising to the square and using the following inequality (a + b)2 ≤ 2(a2 + b2) for
a, b ≥ 0, one obtains for all n that

1

h2
||N Ñ

n+1,ε −N Ñ
n,ε||2(H1(Ω))′ ≤ 2(D̄2||∇N Ñ

n+1,ε||2(L2(Ω))d + D̄2
1||∇CÑn+1,ε||2(L2(Ω))d + ||uÑn,ε||2(L2(Ω))d

+||f(N Ñ
n+1,ε)||2(L2(Ω))d) .
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Multiplying by h, summing from n = 0 to n = Ñ − 1, recalling (3.5) and using estimates (3.16) and (3.26),

one obtains the existence of a positive constant A′ not depending on Ñ satisfying (3.28).

Finally, we prove (3.29). Indeed,∣∣∣∣∣∣Π1
ÑN

Ñ
ε −Π0

ÑN
Ñ
ε

∣∣∣∣∣∣
L2(0,T ;(H1(Ω))′)

=

Ñ−1∑
n=0

∫ (n+1)h

nh

∣∣∣∣∣∣(1 + n− t

h
)
[
N Ñ
n,ε −N Ñ

n+1,ε

]∣∣∣∣∣∣2
(H1(Ω))′

dt ≤ A′h2

3
,

as a consequence of∫ (n+1)h

nh

(1 + n− t

h
)2 dt = −h

∫ (n+1)h

nh

−1

h
(1 + n− t

h
)2 dt = −h

[1

3
(1 + n− t

h
)3
](n+1)h

nh
=
h

3

and
Ñ−1∑
n=0

∣∣∣∣∣∣N Ñ
n+1,ε −N Ñ

n,ε

∣∣∣∣∣∣2
(H1(Ω))′

≤ A′h (using estimate (3.28)).

�

3.5. Passing to the limit. As Ñ tends to +∞, we conclude on the existence of a weak solution of the
non-degenerate problem.

Proposition 3.6. There exist subsequences of (Π0
Ñ
CÑε )Ñ and (Π0

Ñ
N Ñ
ε )Ñ still denotes by (Π0

Ñ
CÑε )Ñ and

(Π0
Ñ
N Ñ
ε )Ñ , and functions Nε and Cε such that

Π0
ÑC

Ñ
ε ⇀ Cε and Π0

ÑN
Ñ
ε ⇀ Nε weakly-* in L∞(QT ) ,(3.32)

Π0
ÑC

Ñ
ε ⇀ Cε and Π0

ÑN
Ñ
ε ⇀ Nε weakly in L2(0, T ;H1(Ω)) ,(3.33)

Π0
ÑC

Ñ
ε −→ Cε and Π0

ÑN
Ñ
ε −→ Nε strongly in L2(QT ) and a.e. in QT ,(3.34)

∂

∂t

(
Π1
ÑC

Ñ
ε

)
⇀

∂Cε
∂t

and
∂

∂t

(
Π1
ÑN

Ñ
ε

)
⇀

∂Nε
∂t

weakly in L2(0, T ; (H1(Ω))′) ,(3.35)

Π1
ÑC

Ñ
ε ⇀ Cε and Π1

ÑN
Ñ
ε ⇀ Nε weakly-* in L∞(QT ) ,(3.36)

as Ñ −→ +∞. Moreover, Nε and Cε verify

Nε(0, x) = N0,ε(x) and Cε(0, x) = C0,ε(x) a.e. ,(3.37)

0 ≤ Nε(t, x) ≤ 1 and Cε(t, x) ≥ 0 for a.e. (t, x) ∈ [0, T ]× Ω = QT .(3.38)

Proof. Each assertion of this Proposition will be proved for the N equation and by the same arguments, we
can prove the same convergences related to the C equation. Assertions (3.32), (3.33) and (3.35) are straight-
forward applications of the estimates (3.25), (3.26) and (3.28) of Proposition 3.5. By proving (3.33) and (3.27)
which are respectively space and time translate estimates of approximate solutions, the assumptions of the

Kolmogorov’s compactness criterion are satisfied. Therefore, we can deduce that the sequence (Π0
Ñ
N Ñ
ε )N is

relatively compact in L2(0, T ;L2(Ω)). So, modulo a subsequence, one has (3.34).

Next, the proof of the assertion (3.36) is similar to the proof of (3.32) because we have the same L∞-norm
of the interpolation operators defined in (3.6). Moreover, estimates (3.28) and Proposition 3.2 permit to prove

that there exist w and a subsequence N Ñ
ε such that as Ñ −→ +∞,

Π1
ÑN

Ñ
ε ⇀ w weakly-* in L∞(QT ),

∂

∂t

(
Π1
ÑN

Ñ
ε

)
⇀

∂w

∂t
weakly in L2(0, T ; (H1(Ω))′).

The space L∞(Ω) being compactly embedded into (H1(Ω))′, one deduces (see [22])

Π1
ÑN

Ñ
ε −→ w strongly in C(0, T ; (H1(Ω))′), as Ñ −→ +∞ .(3.39)
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Estimates (3.29) and (3.34) imply that Π1
Ñ
N Ñ
ε −→ Nε strongly in L2(0, T ; (H1(Ω))′) as Ñ −→ +∞. Due to

the uniqueness of the limit, we obtain in (3.39)

w = Nε .(3.40)

The sequence (Nε)ε belongs to the space C(0, T ; (H1(Ω))′) ⊆ Cw(0, T ; (H1(Ω))′). Indeed, this last inclusion
is true because: For a sequence (tn)n converging to t in [0, T ], as n→ +∞, one has

| < Nε(tn)−Nε(t), v > | ≤ ||Nε(tn)−Nε(t)||(H1(Ω))′ ||v||H1(Ω) −→ 0 .

As we have L2(Ω) ↪→ (H1(Ω))′ is continuous and Nε ∈ Cw(0, T ; (H1(Ω))′) ∩ L∞(0, T ;L2(Ω)) therefore
Nε ∈ Cw(0, T ; (L2(Ω))) (see [2], Chapter 2, Lemma 2.5.7).

Assertion (3.37) is proved using (3.39), Π1
Ñ
N Ñ
ε (0) −→ Nε(0, x) strongly in (H1(Ω))′, and since ∀N, Π1

Ñ
N Ñ
ε (0) =

N0,ε(x) given by the definition of Π1
Ñ

. Therefore, Nε(0, x) = N0,ε(x) a.e. x ∈ Ω .

Finally, let us prove assertion (3.38). Define ñ = [t Ñ
T

] + 1 = [ t
h

] + 1, ∀t ∈ [0, T ] and remark that

Π0
Ñ
N Ñ
ε (t, x) = N Ñ

ñ,ε(x). By noticing that ñh =
(
[(t Ñ

T
)] + 1

)
T

Ñ
−→ t as Ñ −→ +∞ and Π0

Ñ
N Ñ
ε (t, x) −→

Nε(t, x) a.e. (t, x) ∈ QT , as Ñ −→ +∞ using (3.34) . As we have, 0 ≤ N Ñ
ñ,ε(x) ≤ 1 then 0 ≤ Nε(x, t) ≤ 1.

Similarly to (3.35), one obtains

∂

∂t

(
Π1
ÑC

Ñ
ε

)
⇀

∂Cε
∂t

in L2(0, T ; (H1(Ω))′) as Ñ −→ +∞ .(3.41)

�

It remains now to check whether the variational equalities still hold to prove that the triple (Nε, Cε, uε) is
a weak solution of (2.15).

The equation (3.10) can be written as, ∀ψ ∈ L2(0, T ;V ),∫ T

0

< ∂t(Π
1
Ñu

Ñ
ε ), ψ > dt+

∫∫
QT

∇(Π0
Ñu

Ñ
ε ) · ∇ψ dxdt+

∫∫
QT

(Π0
Ñu

Ñ
ε · ∇)Π0

Ñu
Ñ
ε ψ dxdt

=

∫∫
QT

Π0
ÑN

Ñ
ε ∇φ · ψ dxdt .

In other words, P1 + P2 + P3 = P4. As Ñ goes to +∞, one obtains

P1 −→
∫ T

0

<
∂uε
∂t

, ψ > dt using (3.18), P2 −→
∫∫
QT

∇uε.∇ψ dxdt using (3.20),

P3 −→
∫∫
QT

(uε · ∇)uεψ dxdt using (3.20) and (3.21), P4 −→
∫∫
QT

Nε∇φ · ψ dxdt using (2.5) and (3.34).

We mention that the detailed convergence of P3 is proved in [23].
The equation (3.9) can be written as: ∀ψ2 ∈ L2(0, T ;H1(Ω)),∫ T

0

< ∂t(Π
1
ÑC

Ñ
ε ), ψ2 > dt+

∫∫
QT

M(x)∇(Π0
ÑC

Ñ
ε ) · ∇ψ2 dxdt−

∫∫
QT

Π0
ÑC

Ñ
ε

(
τhΠ0

Ñu
Ñ
ε · ∇ψ2

)
dxdt

= −
∫∫
QT

(τhΠ0
ÑN

Ñ
ε )k(Π0

ÑC
Ñ
ε )ψ2 dxdt .

For the sake of simplicity, we can rewrite this equality as V1 + V2 + V3 = −V4. As Ñ goes to +∞,

V1 −→
∫ T

0

<
∂Cε
∂t

, ψ2 > dt using (3.41).

V2 −→
∫∫
QT

M(x)∇Cε · ∇ψ2 dxdt using (3.33) and the boundedness of the tensor M(x).

V3 −→ −
∫∫
QT

Cεuε · ∇ψ2 dxdt ,
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indeed, the weak convergence of τhΠ0
Ñ
uÑε to uε in L2(QT ) may be sufficient to prove this convergence,

V3 −
(
−
∫∫
QT

Cεuε · ∇ψ2 dxdt
)

= −
∫∫
QT

Π0
ÑC

Ñ
ε (τhΠ0

Ñu
Ñ
ε · ∇ψ2) dxdt+

∫∫
QT

Cεuε · ∇ψ2 dxdt

= −
∫∫
QT

(Π0
ÑC

Ñ
ε − Cε)τhΠ0

Ñu
Ñ
ε · ∇ψ2 dxdt−

∫∫
QT

Cε(τhΠ0
Ñu

Ñ
ε − uε) · ∇ψ2 dxdt .

The convergence of the first term is a consequence of the dominated convergence theorem of Lebesgue. The

weak convergence of τhΠ0
Ñ
uÑε to uε in L2(QT ) is sufficient for the second term to converge to 0. Otherwise,

we can also prove the convergence of the term V3 by using the strong L2(QT )-convergence of τhΠ0
Ñ
uÑε to uε

deduced from (3.17) and (3.21). Therefore,∣∣∣V3 −
(
−
∫∫
QT

uε · ∇Cεψ2 dxdt
)∣∣∣ ≤ ∣∣∣∣(Π0

ÑC
Ñ
ε − Cε) · ∇ψ2

∣∣∣∣
L2(QT )

∣∣∣∣τhΠ0
Ñu

Ñ
ε

∣∣∣∣
L2(QT )

+
∣∣∣∣Cε∣∣∣∣L∞(QT )

∣∣∣∣τhΠ0
Ñu

Ñ
ε − uε

∣∣∣∣
L2(QT )

∣∣∣∣∇ψ2

∣∣∣∣
L2(QT )

−→ 0 .

Finally, we prove that

V4 −→
∫∫
QT

Nεk(Cε)ψ2 dxdt ,

indeed, ∣∣∣V4 −
∫∫
QT

Nεk(Cε)ψ2 dxdt
∣∣∣ ≤ ||Π0

ÑN
Ñ
ε ||L∞(QT )||k(Π0

ÑC
Ñ
ε )− k(Cε)||L2(QT )||ψ2||L2(QT )

+||k(Cε)||L∞(QT )||Π0
ÑN

Ñ
ε −Nε||L2(QT )||ψ2||L2(QT ) .

Using (3.34) and the L∞-uniform bound of k (k is a C1-function on a compact) and Π0
Ñ
N Ñ
ε , one obtains the

desired convergence.

Equation (3.8) yields: ∀ψ1 ∈ L2(0, T ;H1(Ω)),∫ T

0

< ∂t(Π
1
ÑN

Ñ
ε ), ψ1 > dt+

∫∫
QT

Dε(x,Π
0
ÑN

Ñ
ε )∇(Π0

ÑN
Ñ
ε ) · ∇ψ1 dxdt

=

∫∫
QT

D1(x,Π0
ÑN

Ñ
ε )∇(Π0

ÑC
Ñ
ε ) · ∇ψ1 dxdt+

∫∫
QT

Π0
ÑN

Ñ
ε

(
τhΠ0

Ñu
Ñ
ε · ∇ψ1

)
dxdt

+

∫∫
QT

f(Π0
ÑN

Ñ
ε )ψ1 dxdt .

In other words, U1 + U2 = U3 + U4 + U5 . As Ñ goes to +∞,

U1 −→
∫ T

0

<
∂Nε
∂t

, ψ1 > dt using (3.35).

U2 −→
∫∫
QT

Dε(x,Nε)∇Nε · ∇ψ1 dxdt ,

indeed, one has Π0
Ñ
N Ñ
ε −→ Nε a.e. in QT and therefore Dε(x,Π

0
Ñ
N Ñ
ε ) −→ Dε(x,Nε) a.e. in QT because

Dε = S(x)aε is continuous with respect to the second variable. Then, it follows from the dominated conver-
gence of Lebesgue, (3.33) and Dε(x,Nε)∇ψ1 ∈ L2(QT ) that∣∣∣U2 −

∫∫
QT

Dε(x,Nε)∇(Nε)∇ψ1 dxdt
∣∣∣ ≤ ∣∣∣∣(Dε(x,Π0

ÑN
Ñ
ε )−Dε(x,Nε)

)
∇ψ1

∣∣∣∣
L2(QT )

||∇Π0
ÑN

Ñ
ε ||L2(QT )

+

∫∫
QT

Dε(x,Nε)(∇Π0
ÑN

Ñ
ε −∇Nε) · ∇ψ1 dxdt −→ 0 .

With similar arguments, one can prove that

U3 −→
∫∫
QT

D1(x,Nε)∇Cε · ∇ψ1 dxdt ,
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by using (3.33) and the continuity of D1 = S(x)χ(Nε) with respect to Nε.

U4 −→
∫∫
QT

Nεuε · ∇ψ1 dxdt proved in a similar way as the convergence of V3.

U5 −→
∫∫
QT

f(Nε)ψ1 dxdt ,

indeed, the Lipschitz continuity of the function f on [0, 1] and (3.34) lead to this last convergence. Through the
same guidelines, we obtain the convergence of (3.10) to the weak formulation of the evolution Navier-Stokes
equation given in Definition 2.1 (see [23]).

4. Weak solution of the degenerate problem

The aim of this section is to send the regularization parameter ε to zero in sequences of weak solutions of
problem (2.15) to obtain a weak solution of the original system (1.1) in the sense of Definition 2.1. Note that,
for each fixed ε > 0, we have shown the existence of a solution (Nε, Cε, uε) such that 0 ≤ Nε(x, t) ≤ 1 and
0 ≤ Cε(x, t) ≤M a.e. in QT . Then to conclude on the existence of a weak solution of (1.1), we shall need to
prove the following uniform a priori estimates.

4.1. Estimates. Choosing the approximate solution Cε as a function test ψ2 in (3.2), using (3.14) and
Nε(x, t) ≥ 0, one has

d

dt

∫
Ω

|Cε|2dx+ cM

∫∫
QT

|∇Cε|2 dxdt+

∫∫
QT

|Cε|2 dxdt ≤ C ,(4.1)

where C is a constant independent of ε. Consequently,

(Cε)ε is a bounded sequence in L∞(QT ) ∩ L2(0, T ;H1(Ω)) .(4.2)

Thus there exist a solution C ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) and a subsequence of Cε still denotes as the
sequence such that, as ε goes to 0,

Cε ⇀ C weakly-* in L∞(QT ) ,(4.3)

Cε ⇀ C weakly in L2(0, T ;H1(Ω)) .(4.4)

One can easily deduce from the weak formulation (3.2) applied to a test function ϕ ∈ L2(0, T ; (H1(Ω)))
that

(
∂Cε
∂t

)ε is a bounded sequence in L2(0, T ; (H1(Ω))′) .(4.5)

Therefore,

∂Cε
∂t

⇀
∂C

∂t
weakly in L2(0, T ; (H1(Ω))′) .(4.6)

For the Navier-Stokes equation, we consider uε,0 ∈ H as an initial condition and g = Nε∇φ ∈ L∞(QT ) ⊂
L2(0, T, V ′) as a second member. By taking ψ = uε as a test function in (3.3), by using the fact that

(
∂uε
∂t

, uε) =
1

2

d

dt
||uε(t)||2H and b(uε, uε, uε) =< (uε · ∇)uε, uε >V ′,V = 0

and by integrating between 0 and t, one obtains

1

2

∣∣∣∣uε(t)∣∣∣∣2H + α

∫ t

0

∣∣∣∣uε(s)∣∣∣∣2V ds ≤ 1

2

∣∣∣∣uε(0)
∣∣∣∣2
H

+

∫ t

0

∣∣∣∣g(s)
∣∣∣∣
V ′

∣∣∣∣uε(s)∣∣∣∣V ds .
Consequently, by a simple application of the Young inequality, one can easily deduce that the sequence of
solutions (uε)ε of (3.3)-(3.4) is bounded in L∞(0, T ;H)∩L2(0, T ;V ). Therefore, there exists u ∈ L2(0, T ;V )∩
L∞(0, T ;H) such that as ε goes to 0,

uε ⇀ u weakly-* in L∞(0, T ;H) and(4.7)

uε ⇀ u weakly in L2(0, T ;V ) .(4.8)
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Remark 4.1. In fact, there exist two limits u1 and u2 for these last convergences but one can easily prove
that u1 = u2 = u. Indeed, by writing clearly the definition of each of weak and weakly-* convergence, one has,∫ T

0

(u1(t)− u2(t), h(t)) dt = 0, ∀h ∈ L2(0, T ;H) ⊂ L1(0, T ;H) ∩ L2(0, T ;V ′) .

Next, it follows from the choice of h = u1 − u2 that ||u1 − u2||L2(0,T ;H) =
∫ T

0

∣∣∣∣u1(t)− u2(t)
∣∣∣∣2
H

= 0 .

Moreover, due to the compacity Theorem of Aubin-Simon, the space E2,1 = {uε ∈ L2(0, T ;V ); duε
dt
∈

L1(0, T ;V ′)} is compactly injected in L2(0, T ;H) (see [2], Theorem 2.5.15). Therefore, modulo a subsequence,

uε −→ u in L2(0, T ;H), as ε→ 0 .(4.9)

One can also deduce this last assertion by a compactness theorem involving fractional derivatives and the
inverse Fourier transform of a function (see [23]).

Then, by choosing ψ1 = Aε(Nε) = A(Nε) + εNε as a test function in (3.1), one has∫ T

0

< ∂t(Nε), Aε(Nε) > dx+

∫∫
QT

S(x)∇Aε(Nε) · ∇Aε(Nε) dxdt =

∫∫
QT

Nεuε · ∇Aε(Nε) dxdt

+

∫∫
QT

S(x)χ(Nε)∇Cε · ∇Aε(Nε) dxdt+

∫∫
QT

f(Nε)Aε(Nε) dxdt .

Considering A(s) =
∫ s

0
A(r) dr and using (2.7), Young’s inequality for ∇Cε · ∇Aε(Nε), uε · ∇Aε(Nε) and the

uniform bound of χ, f and Aε, imply that

sup
0≤t≤T

∫
Ω

A(Nε)(x, t)dx+ ε sup
0≤t≤T

∫
Ω

|Nε(x, t)|2

2
dx+

1

2

∫∫
QT

|∇Aε(Nε))|2 dxdt

+
ε

2

∫∫
QT

|∇Nε|2 dxdt ≤ C ,(4.10)

where C is a constant independent of ε. Then we will deduce, as ε goes to 0 that

Nε ⇀ N weakly-* in L∞(QT ),(4.11)

√
εNε ⇀ 0 in L2(0, T ;H1(Ω)), A(Nε) ⇀ Γ1 in L2(0, T ;H1(Ω)).(4.12)

Using the weak formulation (3.1), (4.2) and (4.10),∣∣∣ ∫ T

0

< ∂tNε, ψ1 > dt
∣∣∣ ≤ ||∇A(Nε)||L2(QT )||∇ψ1||L2(QT ) + ||

√
ε∇Nε||L2(QT )||∇ψ1||L2(QT )

+||S(x)χ(Nε)||L∞(QT )||∇Cε||L2(QT )||∇ψ1||L2(QT ) + ||uε||L2(QT )||∇ψ1||L2(QT )

+||f(Nε)||L2(QT )||ψ1||L2(QT ) ≤ C||ψ1||L2(0,T ;H1(Ω)) ,

where C is a constant independent of ε. Hence,

||∂tNε||L2(0,T ;(H1(Ω))′) ≤ C ,(4.13)

∂Nε
∂t

⇀
∂N

∂t
in L2(0, T ; (H1(Ω))′) .(4.14)

From (4.11), (4.14) and the compact injection L∞(Ω) ↪→ (H1(Ω))′, one can prove similarly to the assertion
(3.39) that

Nε −→ N in C(0, T ; (H1(Ω))′) as ε→ 0.

Moreover, N ∈ Cw(0, T ;L2(Ω)) (see [2], Lemma 2.5.7). With the same guidelines of the proof of the estimate
(3.37) in the Proposition 3.6, one can also prove that N(0, x) = N0(x).

In addition to that, it is easy to prove that A(Nε) is bounded uniformly inW = {N ∈ L2(0, T ;H1(Ω)), ∂N
∂t
∈

L2(0, T ; (H1(Ω))′)} and as we have W ↪→ L2(QT ) is compact (see [2], Theorem 2.5.12) then we deduce that

there exists a subsequence of (Nε)/A(Nε) −→ Γ1 in L2(QT ) .(4.15)
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But as A is strictly monotone, there exists N such that

Γ1 = A(N) .(4.16)

Thus,

A(Nε) −→ A(N) in L2(QT ) and a.e. in QT .(4.17)

Furthermore, as A−1 is well defined and continuous, we apply the dominated convergence theorem to Nε =
A−1(A(Nε)) to obtain,

Nε = A−1(A(Nε)) −→ N in L2(QT ) and a.e. in QT .(4.18)

Lemma 4.2. The sequence (Cε)ε converges strongly to C in L2(0, T ;H1(Ω)) as ε −→ 0.

Proof. Indeed, subtracting the relations satisfied by (Nε, Cε) and (N,C), we have

∂t(Cε − C) +∇ ·M(x)∇(Cε − C) + [uε · ∇(Cε − C) + (uε − u) · ∇C] = (Nε −N)k(C) +Nε(k(Cε)− k(C)) .

Taking ψ = Cε−C as a test function and using (2.7), (3.13), (3.14) (as ∇·(uε−u) = 0) and Young’s inequality,
one can conclude the existence of two positive constants c1 and c2 such that

d

dt

∫
Ω

|Cε − C|2 dx+ cM

∫
Ω

|∇(Cε − C)|2 dx ≤ c1
∫

Ω

|Nε −N |2 dx

+c2

∫
Ω

|Cε − C|2 dx+M

∫
Ω

|uε − u||∇Cε| dx .

Integrating this inequality on [0, T ] and using the inequality of Cauchy-Schwarz, one has

cM

∫∫
QT

|∇(Cε − C)|2 dxdt ≤ c1
∫∫
QT

|Nε −N |2 dxdt+ c2

∫∫
QT

|Cε − C|2 dxdt

+M
( ∫∫

QT

|uε − u|2 dxdt
) 1

2
( ∫∫

QT

|∇Cε|2 dxdt
) 1

2 .

Due to (4.1) and the strong convergence of Nε, Cε and uε respectively to N , C and u in L2(QT ), one deduces
the strong convergence of (∇Cε)ε to ∇C in L2(QT ). �

4.2. Passing to the limit. Let us now tend the regularization parameter ε to 0. Hence,∫ T

0

< ∂t(Nε), ψ1 > dt −→
∫ T

0

< ∂tN,ψ1 > dt using (4.14).∫∫
QT

S(x)∇Aε(Nε) · ∇ψ1 dxdt −→
∫∫
QT

S(x)∇A(N) · ∇ψ1 dxdt ,

one defines ∇ : L2(0, T ;H1(Ω)) −→ L2(QT ) as a linear continuous application and therefore weakly contin-
uous. Consequently, using (4.12) and (4.16), we have: ∇Aε(Nε) ⇀ ∇A(N) in L2(QT ). Again, the weakly
continuous application: v → S(x)v implies that S(x)∇Aε(Nε) ⇀ S(x)∇A(N) in L2(QT ).∫∫

QT

S(x)χ(Nε)∇Cε · ∇ψ dxdt −→
∫∫
QT

S(x)χ(N)∇C · ∇ψ dxdt ,

this previous convergence follows from the L∞-bound of χ(Nε) and Lemma 4.2. Next,∫∫
QT

Nεuε · ∇ψ dxdt −→
∫∫
QT

Nu · ∇ψ dxdt ,

indeed,

I =

∫∫
QT

(Nεuε · ∇ψ −Nu · ∇ψ) dxdt =

∫∫
QT

(Nε −N)uε · ∇ψ dxdt+

∫∫
QT

N(uε − u) · ∇ψ dxdt .

It follows from the dominated convergence theorem of Lebesgue and (4.9) that

I ≤ ||(Nε −N)∇ψ||L2(QT )||uε||L2(QT ) + ||uε − u||L2(QT )||N∇ψ||L2(QT ) −→ 0 .

Finally, the Lipschitz continuity of f and the strong convergence of Nε to N in L2(QT ) yield∫∫
QT

(
f(Nε)− f(N)

)
ψ dxdt ≤ L||Nε −N ||L2(QT )||ψ||L2(QT ) −→ 0 .
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4.3. Conclusion. We have thus identified N , C and u as the components of a weak solution of the degenerate
system (1.1) in the sense of Definition 2.1.

Moreover, one can write (2.13) as

d

dt
< u, ψ >=< g −∆u−B(u), ψ >V ′,V , ∀ψ ∈ V.(4.19)

Since the Laplacien operator −∆ is linear and continuous from V into V ′ and u ∈ L2(0, T ;V ), then the
function −∆u belongs to L2(0, T ;V ′). Next, since the form b(u, u, w) =< (u ·∇)u,w >V ′,V =< B(u), w >V ′,V

is trilinear continuous on V (in space dimension d ≤ 4), so that ||B(u)||V ′ ≤ c||u||2V . Consequently, the
function B(u) belongs to L1(0, T ;V ′). As a conclusion,

du

dt
belongs to L1(0, T ;V ′) .

Hence the end of the proof of Theorem 2.3.

Remark 4.3. Through the same guidelines, one can prove the existence of a weak solution to the system (1.4)
in the sense of Definition 2.2. The unique difference is that coupling with linear Stokes equation (B(u) = 0 in
(4.19)) implies that du

dt
belongs to L2(0, T ;V ′) and consequently u belongs to C(0, T ;H) (see [23]).

Furthermore, according to
[
[14], Theorem 6, page 100

]
, a different Lp-regularity assumed on the initial data

u0 gives better regularity on u i.e. u0 ∈W 2− 2
p
,p

(Ω) and ∇ · u0 = 0 implies that u ∈W 2,1
p (QT ) for 1 < p <∞

and ∫ T

0

(
||u||p

W2,p(Ω)
+ ||∂tu||pL2(Ω)

)
dt ≤ C

(
||u(0)||p

W1,p(Ω)
+

∫ T

0

||N∇φ||pLp(Ω) dt
)
,(4.20)

where C is a positive constant. Consequently, by the Sobolev embedding, there is p ≥ 2 large enough such that
∇u belongs to L2(0, T ;L∞(Ω)).

Remark 4.4. This remark is devoted to the chemical equation of the system (1.4). If C0 ∈ W 2− 2
p
,p

(Ω), the
second member is uniformly bounded in QT and the regularity of u is given in (4.20), then classical parabolic
regularity results

(
see [15], chapter 4

)
imply that C belongs to Lp(0, T ;W 2,p(Ω)) for each 1 < p < ∞ and

consequently there is p ≥ 2 large enough such that ∇C belongs to L2(0, T ;L∞(Ω)).

4.4. The pressure. For the Navier-Stokes equation, we introduce ũ(t)=
∫ t

0
u(s) ds, G(t)=

∫ t
0
g(s) ds and

β(t)=
∫ t

0
(u(s) · ∇)u(s) ds with ũ, G and β ∈ C(0, T ; (H1(Ω))′). Till now, we have found a weak solution u in

the sense of Formulation (3.3)-(3.4) such that (4.19) hold true. It follows from integrating (4.19) over [0, T ]
that < u(t)−u0−∆ũ+β−G, ψ >= 0, ∀ψ ∈ V, ∀t ∈ [0, T ]. Rham Theorem (see [23], chapter 1) implies that
there exists P (t) ∈ L2

0(Ω), ∀t ∈ [0, T ] such that u(t)− u0 −∆ũ+ β +∇P (t) = G(t), where

L2
0(Ω) = {w ∈ L2(Ω),

∫
Ω

w dx = 0} .(4.21)

Therefore ∇P ∈ C(0, T ; (H1(Ω))′) and then P ∈ C(0, T ;L2
0(Ω)). Deriving with respect to t in the sense of

distributions to obtain: ∂tu−∆u+ (u · ∇)u+∇p = g where p = dP
dt
∈ W−1,∞(0, T ;L2

0(Ω)). The same work
is done for Stokes equation in the system (1.4) (it suffices to consider β = 0).

5. Proof of Theorem 2.4

Under additional assumptions (2.10) and (2.14), the proof of the uniqueness statement relies on a duality
technique. One should mention that Remarks 4.3 and 4.4 are verified due to the regularities imposed on
the initial data in (2.10). We consider the subset L2

0(Ω) of L2(Ω) defined in (4.21) and we denote by Nw ∈
H2(Ω) ∩ L2

0(Ω) the unique solution to

(5.1)

{
−∇ ·

(
S(x)∇Nw

)
= w

S(x)∇Nw · η = 0
.

Let (N1, C1, u1) and (N2, C2, u2) be two weak solutions of the system (1.4) in the sense of Definition 2.2.
We fix T > 0 and we consider for (t, x) ∈ [0, T ]× Ω,

N(t, x) = N1(t, x)−N2(t, x), C(t, x) = C1(t, x)− C2(t, x), U(t, x) = u1(t, x)− u2(t, x) .
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We will start by subtracting equations related to the solutions u1 and u2 in the system (1.4) and by choosing
ψ = U as a test function to obtain

< ∂tU,U > +

∫
Ω

∇U2dx = −
∫

Ω

N∇φ · U dx .

The variational problem associated to the dual problem (5.1) and Leibniz formula imply that

d

dt
||U(t)||2L2(Ω) + ||∇U(t)||2L2(Ω) = −

∫
Ω

S(x)∇NN · ∇(∇φ · U) dx

= −
∫

Ω

S(x)∇NN ·
[
(∇φ · ∇)U + (U · ∇)∇φ+∇φ× curl(U) + U × curl(∇φ)

]
dx .

where a× b denotes the vector product of two vectors a and b. Due to the following properties: curl(∇φ) = 0,
||a × b||L2(Ω) ≤ ||a||L2(Ω)||b||L2(Ω), ||curl(U)||L2(Ω) . ||∇U ||L2(Ω) (where a . b means that there exists a

positive constant c′ such that a ≤ c′b), Poincaré and Young’s inequalities, one has

d

dt
||U(t)||2L2(Ω) + ||∇U(t)||2L2(Ω) ≤ ||S(x)||L∞(Ω)

(
(1 + cP + c′)||∇φ||W1,∞(Ω)

)
||∇NN(t)||L2(Ω)||∇U(t)||L2(Ω)(5.2)

≤
(1

δ
c21||S(x)||2L∞(Ω)||∇φ||2W1,∞(Ω)

)
||∇NN(t)||2L2(Ω) + δ||∇U(t)||2L2(Ω) ,

where cP , c′ and c1 are positive constants.

Next, we subtract equations related to the solutions C1 and C2 of the chemo-attractant equation and we
choose ψ2 = C as a test function, then

< ∂tC,C > +

∫
Ω

M(x)∇C2 dx+

∫
Ω

(U · ∇C1)C dx+

∫
Ω

(u2 · ∇C)C dx = −
∫

Ω

(k(C1)− k(C2))N1C dx

−
∫

Ω

k(C2)NC dx = −
∫

Ω

(k(C1)− k(C2))N1C dx−
∫

Ω

S(x)∇NN · ∇(k(C2)C) dx .

It follows from (2.7), (3.14), (2.3) and Young’s inequality that

d

dt
||C(t)||2L2(Ω) + cM ||∇C(t)||2L2(Ω) ≤ ||C1||L∞(Ω)||U(t)||L2(Ω)||∇C(t)||L2(Ω) + ck

(
||C(t)||2L2(Ω)

||S||L∞(Ω)||∇NN(t)||L2(Ω)||∇C(t)||L2(Ω) + ||∇C2||L∞(Ω)||S||L∞(Ω)||∇NN(t)||L2(Ω)||C(t)||L2(Ω)

)
≤M2δ||∇C(t)||2L2(Ω) +

1

δ
||U(t)||2L2(Ω) + ck||C(t)||2L2(Ω) +

1

δ
||S||2L∞(Ω)||∇NN(t)||2L2(Ω)

+δc2k|||∇C(t)||2L2(Ω) + δ||S||2L∞(Ω)c
2
k||∇C2||2L∞(Ω)||∇NN(t)||2L2(Ω) +

1

δ
||C(t)||2L2(Ω) ,(5.3)

where ck is a positive constant.

Since we have −∇ ·
(
S(x)∇∂t(NN)

)
= ∂tN in (H1(Ω))′ and due to the symmetry of S, one can write∫

Ω

S(x)∇NN(t) · ∇NN(t) dx =

∫
Ω

S(x)∇NN(0) · ∇NN(0) dx+ 2

∫ t

0

<
∂N

∂t
, NN > ds.

The subtraction of the two variational equalities related to the weak solutions N1 and N2 in the sense of
Definition 2.2 leads to∫ t

0

<
∂N

∂t
,NN > ds = −

∫ t

0

∫
Ω

S(x)∇(A(N1)−A(N2)) · ∇NN dxds(5.4)

+

∫ t

0

∫
Ω

S(x)
(
χ(N1)− χ(N2)

)
∇C1 · ∇NN dxds+

∫ t

0

∫
Ω

S(x)χ(N2)∇C · ∇NN dxds

+

∫ t

0

∫
Ω

N1U · ∇NN dxds+

∫ t

0

∫
Ω

Nu2 · ∇NN dxds+

∫ t

0

∫
Ω

(
f(N1)− f(N2)

)
NN dxds .

As we have |N1| < 1, then ∫
Ω

N1U · ∇NN dx ≤ ||∇NN(t)||L2(Ω)||U(t)||L2(Ω) .(5.5)
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It next follows from the dual problem (5.1) and again from Leibniz formula that∫
Ω

N(u2 · ∇NN) dx =

∫
Ω

S(x)∇NN · ∇(u2 · ∇NN) dx

=

∫
Ω

S(x)∇NN ·
[
(u2 · ∇)∇NN + (∇NN · ∇)u2 +∇NN × curl(u2) + u2 × curl(∇NN)

]
dx .(5.6)

The property curl(∇NN) = 0 allows us to omit the last integral. Then, we write the first integral as∫
Ω

S(x)∇NN · (u2 · ∇)∇NN dx =
∑
i

∑
j,k

∫
Ω

uiSj,k
∂

∂xk
(NN) · ∂

∂xi

( ∂

∂xj
(NN)

)
dx ,

where ui ∈ L∞(Ω) and the coefficients Sj,k are assumed to be of class C1 in (2.10). Due to the Green formula,
∇ · u2 = 0 and the symmetry of the tensor S, one obtains

2

∫
Ω

S(x)∇NN · (u2 · ∇)∇NN dx = −
∫

Ω

(∇ · u2)S(x)∇NN · ∇NN dx−
∫

Ω

(
u2 · ∇(S(x))

)
∇NN · ∇NN dx(5.7)

≤ ||u2||L∞(Ω)||∇S||L∞(Ω)||∇NN(t)||2L2(Ω) .

Next, one deduces from the affine function f and the dual problem (5.1) that∫
Ω

(
f(N1)− f(N2)

)
NN dx ≤ α||S||L∞(Ω)||∇NN(t)||2L2(Ω) .(5.8)

Recalling (5.5), (5.6), (5.7) and (5.8), we deduce from the equation (5.4), Cauchy Schwarz and Young’s
inequality that∫

Ω

S(x)∇NN(t) · ∇NN(t) dx ≤ −2

∫ t

0

∫
Ω

(N1 −N2)
(
A(N1)−A(N2)

)
dxds+ 2δ

∫ t

0

∫
Ω

(χ(N1)− χ(N2))2 dxds(5.9)

+
2

δ

∫ t

0

||S||2L∞(Ω)||∇C1||2L∞(Ω)||∇NN(t)||2L2(Ω)ds+ 2δc2χ

∫ t

0

||∇C(t)||2L2(Ω) ds+
2

δ

∫ t

0

||S||2L∞(Ω)||∇NN(t)||2L2(Ω) ds

+2δ

∫ t

0

||U(t)||2L2(Ω) +
2

δ

∫ t

0

||∇NN(t)||2L2(Ω)ds+

∫ t

0

||u2||L∞(Ω)||∇S||L∞(Ω)||∇NN(t)||2L2(Ω) ds

+2

∫ t

0

||S||2L∞(Ω)

(
||∇u2(t)||2L∞(Ω) + ||∇u2(t)||2L2(Ω)

)
||∇NN(t)||2L2(Ω) ds+ 2α

∫ t

0

||S||L∞(Ω)||∇NN(t)||2L2(Ω) ds .

Now, we integrate the previous inequalities (5.2) and (5.3) with respect to time and we sum the integrated
inequalities with (5.9). Then, we consider 0 < δ < min( 1

C0
, cM

2c2χ+c2
k

+M2 , 1) and we use (2.14) to deduce that

cS ||∇NN(t)||2L2(Ω) + ||C(t)||2L2(Ω) + ||U(t)||2L2(Ω) ≤
∫ t

0

(1

δ
+ ck

)
||C(t)||2L2(Ω) ds

+

∫ t

0

(1

δ
+ 2
)
||U(t)||2L2(Ω) ds+

∫ t

0

1

δ

[
2 + 2α||S||L∞(Ω) + ||u2(t)||L∞(Ω)||∇S||L∞(Ω)

+||S||2L∞(Ω)

(
3 + 2||∇C1(t)||2L∞(Ω) + 2

(
||∇u2(t)||2L∞(Ω) + ||∇u2(t)||2L2(Ω)

)
+ c2k||∇C2(t)||2L∞(Ω)

+c21||∇φ||2W1,∞(Ω)

)]
||∇NN(t)||2L2(Ω) ds .

According to remarks 4.3 and 4.4, one deduces that

||∇NN(t)||2L2(Ω) + ||C(t)||2L2(Ω) + ||U(t)||2L2(Ω) ≤
∫ t

0

µ(s)
[
||∇NN ||2L2(Ω) + ||C||2L2(Ω) + ||U ||2L2(Ω)

]
ds ,

where µ(s) is a positive integrable function. The Gronwall Lemma (see [20]) then entails that U(t) = C(t) =
∇NN(t) = 0 for every t ∈ [0, T ] and therefore the proof of Theorem 2.4 is achieved.

Acknowledgement: The authors would like to thank the National Council for Scientific Research (Lebanon),
Ecole Centrale de Nantes, Lebanese University and Geanpyl (Université de Nantes) for their support for this
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