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Abstract We study the convergence of a combined finite volume nonconforming
finite element scheme on general meshes for a partially miscible two-phase flow
model in anisotropic porous media. This model includes capillary effects and ex-
change between the phase. The diffusion term, which can be anisotropic and het-
erogeneous, is discretized by piecewise linear nonconforming triangular finite el-
ements. The other terms are discretized by means of a cell-centered finite volume
scheme on a dual mesh. The relative permeability of each phase is decentred ac-
cording the sign of the velocity at the dual interface. The convergence of the scheme
is proved thanks to an estimate on the two pressures which allows to show estimates
on the discrete time and compactness results in the case of degenerate relative per-
meabilities. A key point in the scheme is to use particular averaging formula for the
dissolution function arising in the diffusion term. We show also a simulation of CO2
injection in a water saturated reservoir and nuclear waste management. Numerical
results are obtained by in-house numerical code.

1 Introduction

In nuclear waste management, an important quantity of hydrogen can be produced
by corrosion of the steel engineered barriers (carbon steel overpack and stainless
steel envelope) of radioactive waste packages. A direct consequence of this pro-
duction is the growth of hydrogen pressure around alveolus which can affect all the
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functions allocated to the canisters, waste forms, backfill, host rock. Host rock safety
function may be threatened by over pressurisation leading to opening fractures of
the domain, inducing groundwater flow and transport of radionuclides.

In this work, we address the construction and convergence analysis of a com-
bined finite volume nonconforming finite element scheme, based on a two pressures
formulation, for two–phase two–component flow in porous media where the disso-
lution of the non-wetting phase can occur in different engineering application (e.g.
nuclear storage and CO2 storage). The convergence analysis is done in the degener-
ate case and for the general model including capillarity and gravity effects.

2 Mathematical formulation of the continuous problem

We consider herein a porous medium saturated with a fluid composed of two phases
(liquid and gas) and a mixture of two components (water and hydrogen). The water
is supposed only present in the liquid phase (no vapor of water due to evaporation).
Let T > 0, let be Ω a bounded open subset of Rd (d ≥ 1) and we set QT = (0,T )×
Ω . We write the mass conservation of each component

Φ∂t (ρ
w
l sl)+div(ρw

l Vl) = fw, (1)

Φ∂t

(
ρ

h
l (pg)sl +ρ

h
g (pg)sg

)
+div

(
ρ

h
l (pg)Vl +ρ

h
g (pg)Vg

)
−div

(
φslρlDh

l ∇Xh
l

)
= fg, (2)

where Φ(x), sα(t,x) (sl + sg = 1), pα(t,x), ρh
l (pg), ρh

g (pg), ρα = ρh
α +ρw

α , Xh
l =

ρh
l /ρl

(
Xh

l +Xw
l = 1

)
and Dh

l represent respectively the (given) porosity of the
medium, the saturation of the α phase (α = l,g), the pressure of the α phase, the
density of dissolved hydrogen, the density of the hydrogen in the gas phase, the
density of the α phase, the mass fraction of the hydrogen in the liquid phase, the
diffusivity coefficient of the dissolved gas phase in the liquid phase. The velocity of
each fluid Vα is given by the Darcy law

Vα =−K
krα

(sα)

µα

(∇pα −ρα(pα)g) ,

where K(x) is the intrinsic (given) permeability tensor of the porous medium, krα

the relative permeability of the α phase, µα the constant α-phase’s viscosity, pα

the α-phase’s pressure and g the gravity. For detailed presentation of the model we
refer to the presentation of the benchmark Couplex-Gaz [4].
To define the hydrogen densities, we use the ideal gas law and the Henry law
ρh

g = Mh

RT pg, ρh
l = MhHh pg, where the quantities Mh, Hh, R and T represent respec-

tively the molar mass of hydrogen, the Henry constant for hydrogen, the universal
constant of perfect gases and T the temperature. To close the system, we introduce
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the capillary pressure law which links the jump of pressure of the two phases to the
saturation

pc(sl) = pg− pl , (3)

the application sl 7→ pc(sl) is decreasing. This model also corresponding to the ap-
plication of CO2 storage when hydrogen is replaced by CO2.

Let T > 0 be the final time fixed, let be Ω a bounded open subset of Rd (d ≥ 1)
where ∂Ω is C 1. We set ΣT = (0,T )×∂Ω and we note Γl the part of the boundary
of Ω where the liquid saturation is imposed to one and Γn =Γ \Γl . The chosen mixed
boundary conditions on the pressures are{

pg(t,x) = pl(t,x) = 0 on (0,T )×Γl ,

Vl ·n = Vg ·n = φslρlDh
l ∇Xh

l ·n = 0 on (0,T )×Γn,

where n is the outward normal to Γn. The initial conditions are defined on pressures

pα(t = 0) = p0
α in Ω , for α = l,g. (4)

Next we introduce a classically physically relevant assumptions on the coefficients
of the system.

(H1) Degeneracy. The functions Ml =
krl
µl

and Mg =
krg
µg
∈C 0([0,1],R+), Mα(sα =

0) = 0 and there is a positive constant m0 > 0 such that for all sl ∈ [0,1],

Ml(sl)+Mg(sg)≥ m0.

(H2) Density Bounded. The density ρh
l is in C 1(R), increasing and there exists

two positive constants ρm > 0 and ρM > 0 such that 0 < ρm ≤ ρh
l (pg)≤ ρM.

(H3) The capillary pressure fonction pc ∈ C 1([0,1];R+) and there exists pc > 0
such that dpc

dsl
≤−pc < 0.

(H4) The functions fw, fg ∈ L2(QT ) and fw, fg ≥ 0 a.e. for all (t,x) ∈ QT .
(H5) Dh

l is a possibly null positive constant.

This problem renews the mathematical and numerical interest in the equation
describing multiphase multicomponent flows through porous media. Existence of
weak solutions for the two compressible, partially miscible flow in porous media,
under various assumptions on physical data, we refer to [1]. In [2] and [7] the authors
study respectively the convergence of a combined FV–FE scheme of the Keller-
Segel model and of a immiscible compressible two phase flows un porous media.
Study of the convergence of a finite volume scheme for a model of miscible two-
phase flow in porous media under non-degeneracy and regularization of the physical
situation on the relative permeability of each phase which physically vanishes when
its saturation goes to zero, we refer to [3].
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3 Combined finite volume–nonconforming finite element scheme

3.1 Primal and dual meshes

We perform a triangulation Th of the domain Ω such that Ω = ∪K∈ThK. We denote
by Eh the set of all sides, by E int

h the set of all interior sides, by E ext
h the set of

all exterior sides, and by EK the set of all the sides of an element K ∈ Th. We
define h := max{diam(K),K ∈ Th}. We assume the following shape regularity :
there exists a positive constant κT such that

min
K∈Th

|K|
diam(K)d ≥ κT . (5)

We also use a dual partition Dh of Ω such that Ω = ∪D∈DhD. There is one dual

K

Ł

E
D

×QD

σD

×
QE

σE

σD

σK|L

Fig. 1 Triangles K,L ∈Th and dual volumes D,E ∈Dh associated with edges σD,σE ∈ Eh

element D associated with each side σD ∈ Eh. We construct it by connecting the
barycenters of every K ∈Th that contains σD through the vertices of σD. We denote
by QD the barycenter of the side σD. As for the primal mesh, we set Fh, Fint

h , Fext
h and

FD for the dual mesh sides. We denote by D int
h the set of all interior and by Dext

h the
set of all boundary dual volumes. We finally denote by N (D) the set of all adjacent
volumes to the volume D, N (D) := {E ∈ Dh;∃σ ∈ Fint

h such that σ = ∂D∩ ∂E}.
For E ∈N (D), we also set dK|L := |QE −QD|, σK|L := ∂D∩∂E and KD|E the ele-
ment of Th such that σK|L ⊂ KD|E .

We consider a uniform step time δ t, and define tn = nδ t for n ∈ [0,N]. We define
the following finite-dimensional spaces:

Xh := {ϕh ∈ L2(Ω);ϕh|K is linear ∀K ∈Th,

ϕh is continuous at the points QD,D ∈D int
h },

we equip Xh with the seminorm ‖uh‖2
Xh

:= ∑
K∈Th

∫
K
|∇uh|2 dx.
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3.2 The combined scheme

For clarity and simplicity, we restrict the theoretical demonstration to a horizontal
field, i.e. we neglect the gravity effect. The Henry law combined to the ideal gas law,
to obtain that the density of hydrogen gas is proportional to the density of hydrogen
dissolved ρh

g = C1ρh
l where C1 =

1
HhRT . Remark that the density of water ρw

l in the
liquid phase is constant and from the Henry law, we can write ρl∇Xh

l = Xw
l ∇pg,

where C2 is a constant equal to HhMh.

Definition 1. (Combined scheme) The fully implicit combined finite volume-nonconforming
finite element scheme for the problem (1)–(2) reads: find the values pn

α,D, D ∈ Dh,
n ∈ {1, · · · ,N}, such that

p0
α,D =

1
|D|

∫
D

p0
α(x)dx, s0

α,D =
1
|D|

∫
D

s0
α(x)dx, for all D ∈D int

h , (6)

|D|φD
sn

l,D− sn−1
l,D

δ t
− ∑

E∈N (D)

Ml(sn
l,D|E) ΛD,E δ

n
D|E(pl) =

f n
w,D

ρw
l
, (7)

|D|φD
ρh

l (pn
g,D)m(sn

l,D)−ρh
l (pn−1

g,D )m(sn−1
l,D )

δ t
− ∑

E∈N (D)

(ρh
l )

n
D|E Ml(sn

l,D|E) ΛD,E δ
n
D|E(pl)

−C1 ∑
E∈N (D)

(ρh
l )

n
D|E Mg(sn

l,D|E) ΛD,E δ
n
D|E(pg)

−C2 ∑
E∈N (D)

φDsn
l,D|E(X

w
l )

n
D|E Dh

l δ
n
D|E(pg) = f n

g,D, (8)

pc(sn
l,D) = pn

g,D− pn
l,D. (9)

Where m(sl) = sl +C1sg. We refer to the matrix Λ of elements ΛD,E , D,E ∈ D int
h ,

as the diffusion matrix. The stiffness matrix of the nonconforming finite element
method, is defined as follow

ΛD,E :=− ∑
K∈Th

(Λ(x)∇ϕE ,∇ϕD)0,K D,E ∈Dh. (10)

The mean value of the density of each phase on interfaces is not classical since it
is given as

1
(ρh

l (pg))
n
D|E

=


1

pn
g,E−pn

g,D

∫ pn
g,E

pn
g,D

1
ρh

l (ζ )
dζ if pn

g,D 6= pn
g,E ,

1
ρh

l (pn
g,D)

otherwise,
(11)

this choice is crucial to obtain estimates on discrete pressures.
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This scheme consists in a finite volume method together with a phase-by-phase
upstream scheme. The implicit finite volume scheme satisfies industrial constraints
of robustness and stability. In comparison with incompressible fluid, compressible
fluids requires more powerful techniques. We show that the proposed scheme satisfy,
a discrete energy estimate on the pressures and a function of the saturation that
denote capillary terms, that allow us to derive the convergence of a subsequence to
a weak solution of the continuous equations as the size of the discretization tends to
zero. The treatment of the degeneracy needs the introduction of powerful technics
to link the velocities to the global pressure and the capillary pressure on the discrete
form [6].

3.3 A priori estimates and convergence

We summarize the main estimates :

Proposition 1. 1. (Maximum principle). Let (s0
α,D)D∈T ∈ [0,1]. Then, the satura-

tion (sn
l,D)D∈T ,n∈{0,...,N} is positive.

2. Assume that all transmissibilities are non-negative, i.e. ΛD,E ≥ 0 ∀D∈D int
h ,E ∈

N (D). Then, the solution of the combined scheme satisfies

N

∑
n=1

δ t ∑
D∈Dh

∑
E∈N (D)

ΛD,EMα(sn
α,D|E)|p

n
α,E − pn

α,D|2 ≤C, (12)

3. The discrete global pressure satisfies

N

∑
n=1

δ t ‖ph‖2
Xh
≤C, (13)

where p = pg + p̃(sl), and p̃(sl) =−
∫ sl

0
Ml(z)
M(z) p

′
c(z)dz.

To prove the estimate (12), we multiply (7) by C1 pn
l,D− pn

g,D and (8) by the nonlinear
function gg(pn

g,D) =
∫ pg

0
1

ρh
l (z)

dz, then summing the resulting equation over D ∈ Dh

and n ∈ {1, · · · ,N} to deduce the estimates on velocities. The estimates (13) is a
consequence of the proof done in [6], the authors prove this property on primal mesh
satisfying the orthogonal condition. This proof use only two neighbors elements
and it is based only on the definition of the global pressure. Thus, the estimate (13)
remains valid on the dual mesh, that allow us, based on the use of the Kolmogorov
relative compactness theorem, to derive the convergence of these approximation to
a weak solution of the continuous problem in this paper provided the mesh size and
the time step tend to zero.

The main result of this paper is the following theorem.

Theorem 1. There exists an approximate solutions (pn
α,D)n,D corresponding to the

system (7)-(8), which converges in L2(QT )(up to a subsequence) to a weak solution
pα of the system (1)–(2).
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4 Numerical results: Gas phase (dis)appearance (quasi-1D)

In this section, we evaluate numerically the finite volume-nonconforming finite el-
ement method derived in the above section on a test case dedicated to gas-phase
(dis)appearance( see the Couplex-Gas benchmark [4] for more details). The method
has been implemented into in-house Fortran code.

The porous medium and fluid characteristics are presented in [4] and summarized
in 1.

Porous medium Fluid characteristics
Parameter Value Parameter Value
Φ [-] 0.15 Dh

l [m2 · s−1] 3×10−9

K [m2] 5.10−20 µl [Pa · s] 1×10−3

pr [Pa] 2×106 µg [Pa · s] 9×10−6

n [-] 1.54 Hh [mol.Pa−1.m−3] 7.65×10−6

slr [-] 0.4 Mh [Kg ·mol−1] 2×10−3

sgr [-] 0 ρw
l [Kg ·mol−3] 103

Table 1 Parameter values for the porous medium and fluid characteristics used in test case 1

Initial conditions are pl(t = 0) = 106 Pa and pg(t = 0) = 0 Pa. For boundary con-
ditions on the left, the hydrogen flow rate is given qh = 5.57×10−6χ[0,Tinj](t) kg/m2/year,
where χ[0,Tinj] denote the characteristic function of the set [0,Tinj] and we impose
a zero water flow rate qw = 0. The Dirichlet boundary conditions for the outflow
boundary are the same as the initial conditions.

A structured grid with 200×20 cells was used for the computations and we used
a constant time step of 10 years. Figure 2 show the phase pressures, with respect to
time (years) during and after injection. For 0< t < 14×103 years, the gas saturation
is zero and the liquid pressure stay constant; the whole domain is saturated with wa-
ter. For 14×103 ≤ t ≤ 1.6×105 years, the gas phase appears. For t > 5×105 years,
the gas saturation decreases and after a while, the gas phase disappears. At the end of
the simulation the system reaches a stationary state and the liquid pressure gradient
goes to zero.

5 CO2 injection in a fully water saturated domaine

The figure 3 shows the CO2 phase saturation at different time. CO2 is injected
into the lower left part of a rectangular geometry (200× 50 m) with a flux of
4.10−2kg.m−2.s−1. Densities, viscosities and all other parameters are chosen as sug-
gested in [5]. In this example, we used the Brooks-Corey model for the soil water
characteristic and relative permeabilities. The CO2 migrates upwards until it reaches
the top of the domain with the nonflux conditions and is then driven to the right by
advective forces.
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Fig. 2 Liquid and gas pressures pl (left) and pg (right) at the (0,10) with respect to time (years).

Fig. 3 CO2 phase saturation, color scale ranges from s` = 0 (blue) to s` = max(s`) (red)
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