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Abstract We define a combined edge FV-FE scheme for a bone healing model.
This choice of discretization allows to take into account anisotropic diffusions and
does not impose any restrictions on the mesh. Moreover, following [3], we propose
a nonlinear correction to obtain a monotone scheme. We present some numerical
experiments which show its good behavior.

1 Introduction

We consider a bone growth model based on [1]. It describes the evolution of the
concentrations of the following quantities: the mesenchymal stem cells s, the os-
teoblasts b, the bone matrix m and the osteogenic growth factor g. Bone healing
begins by the migration of the stem cells to the site of the injury. Then along the
bone, these cells differentiate into osteoblasts which start to synthetize the bone ma-
trix. This cell differentiation is only possible in presence of the growth factor.
The proposed model takes into account several phenomena: the diffusion of the stem
cells and the growth factor, the migration of the stem cells towards the bone matrix,
the proliferation and the differentiation of stem cells. The osteoblasts are considered
without movement since they are fixed at the bone matrix. Moreover, the model in-
cludes the case of heterogeneous domains, with possibly anisotropic diffusions. It is
given by the following nonlinear coupled system: for t > 0 and x ∈ Ω , where Ω is
an open bounded polyhedral subset of Rd , d = 2, 3,
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∂ts−div(S(x)(Λ(m)∇s−V (m)χ(s)∇m)) = K1(m)χ(s)−H(g)s, (1)
∂tb = K2(m)χ(b)+ρH(g)s−δ1b, (2)

∂tm = λ (1−m)b, (3)
∂tg−div(S(x)Λg∇g) = P(g)b−δ2g. (4)

The functions K1(m), K2(m), H(g), P(m) and the positive parameters ρ , δ1, λ and
δ2 are given (see [1]). The diffusion coefficient Λ(m) and the haptotaxis velocity
V (m) are given by

Λ(m) =
χh

ζ 2
h +m2 (m+Λ0)(1−m), V (m) =

χk

(ζk +m)2 ,

with χh, ζh, Λ0, χk, ζk > 0. The diffusion coefficient Λg for the growth factor is a
positive constant. Moreover, the accumulation of stem cells is limited by the factor
χ(s) = s(1−s). The permeability S(x) is a symmetric d×d matrix, with S∈ L∞(Ω),
and we assume that ∃CS > 0 such that ∀x ∈Ω , ∀ξ ∈ Rd , S(x)ξ ·ξ ≥CS|ξ |2.
This nonlinear system (1)–(4) is supplemented with initial conditions s0, b0, m0, g0
and with homogeneous Neumann boundary conditions on s and g:

S(x)(Λ1(m)∇s−V (m)χ(s)∇m) ·n = 0, S(x)Λg∇g ·n = 0, (5)

for t ∈ (0,T ) and x ∈ ∂Ω , where n is the outward unit normal of ∂Ω . Follow-
ing [5], a solution u = (s,b,m,g) is said to be physically admissible if u ∈ A =
[0,1]× [0,b]× [0,1]× [0,g], where b and g depend on the physical parameters.

In this paper, we propose a numerical scheme for this bone growth model. A
finite volume (FV) scheme was proposed in [5] for this model in homogeneous
domains where the diffusion tensor S = Id. The cell-centered FV method with an
upwind discretization of the convective terms provides the stability and is extremely
robust. However in this case, the mesh is assumed to be admissible [7, Definition
9.1]. In particular, this implies that the orthogonality condition has to be satisfied.
As mentioned in [5], a difficulty in the implementation is to construct such admissi-
ble meshes. Structured rectangular meshes are admissible, but they cannot be used
for complex geometries arising in physical contexts. Furthermore, the finite element
(FE) method allows for an easy discretization of diffusive terms with full tensors
without imposing any restrictions on the meshes. However, some numerical insta-
bilities may arise in the convection-dominated case.
The idea is hence to combine a FE discretization of diffusive terms with a FV dis-
cretization of the other terms. Such schemes were proposed and studied in [9] for
fluid mechanics equations in the case of diffusion terms with S = Id and in [4] for
anisotropic Keller-Segel model. This idea was extended in [8] to inhomogeneous
and anisotropic diffusion-dispersion tensors and to very general meshes only sat-
isfying the shape regularity condition (6). However, the maximum principle is no
more guaranteed if there exist negative transmissibilities.
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We first introduce in Section 2 the combined FV-FE scheme for the bone healing
model (1)–(4). Then in Section 3 we apply the method described in [3] to construct
a nonlinear correction providing a discrete maximum principle. Finally in Section 4
we present some numerical experiments showing the efficiency of the scheme.

2 The combined FV-FE scheme

Fig. 1 Triangles K, L and M ∈T and diamonds D, E ∈D associated with edges σD, σE ∈ E .

A mesh of Ω is a family T of closed simplices K such that Ω = ∪K∈T K. We
denote by E the set of all edges, by E int the set of interior edges, by E ext the set of
boundary edges and by EK the set of all edges of K ∈ T . The size of the mesh is
defined by h := maxdiam(K). We assume that there exists a positive constant kT

such that:

reg(T ) := min
K∈T

|K|
(diam(K))d ≥ kT . (6)

We also use a dual partition D of control volumes D of Ω called diamonds such
that Ω = ∪D∈DD. Each diamond D is associated with one edge σD ∈ E . We con-
struct it by connecting the barycenters of every K ∈ T that contains σD through
the vertices of σD. For σD ∈ E ext , the contour of D is completed by the edge σD
itself. We define D int and Dext the set of all interior and boundary dual volumes
respectively. For K ∈ T , we set DK := {D ∈ D ; σD ∈ EK}. We denote by |D| the
d-dimensional Lebesgue measure of D and |σ | the (d−1)-dimensional measure of
σ . For all D ∈ D , PD is the barycenter of σD and N (D) is the set of neighbours
of D. For all D ∈D and all E ∈N (D), σD,E is the interface between D and E and
nD,E is the unit normal vector to σD,E outward to D.
Next we define the following finite-dimensional space of piecewise linear noncon-
forming FE [6]:
X := {ϕ ∈ L2(Ω); ϕ|K linear ∀K ∈T , ϕ continuous at the points PD, D ∈D int},
equipped with the seminorm ‖u‖2

X := ∑
K∈T

∫
K
|∇u|2dx.

The basis of X is spanned by the shape functions ϕD, D ∈ D , such that ϕD(PE) =
δDE , E ∈D . The approximations in this space are nonconforming since X *H1(Ω).
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Finally, we define the time step ∆ t and the increasing sequence (tn)0≤n≤N+1, where
tn = n∆ t and N is the smallest integer such that (N +1)∆ t ≥ T .
The discrete unknowns are denoted by {wn

D, D ∈D , n ∈ {0 · · ·N +1}}, where the
value wn

D is an approximation of w(PD, tn), w = s, b, m, g.
We now define the semi-implicit in time and combined FV-FE in space discretiza-
tion for (1)–(4). The initial conditions are approximated by (s0

D,b
0
D,m

0
D,g

0
D)D∈D by

taking the mean values of s0, b0, m0 and g0 on each dual cell D. Then the scheme is
given by the following set of equations: for all n ∈ {0, ...,N} and all D ∈D int ,

|D|
(
sn+1

D − sn
D
)
−∆ t ∑

E∈D int

Λ
n
D,Esn+1

E +∆ t ∑
E∈N (D)

G
(
sn+1

D ,sn+1
E ,V n

D,E
(
mn+1

E −mn+1
D
))

= ∆ t|D|
(
K1(mn

D)s
n+1
D (1− sn

D)−H(gn
D)s

n+1
D
)
, (7)

|D|
(
bn+1

D −bn
D
)
= ∆ t|D|

(
K2(mn

D)χ(b
n+1
D )+H(gn

D)s
n+1
D −δ1bn+1

D
)
, (8)

|D|
(
mn+1

D −mn
D
)
= ∆ t|D|λ (1−mn+1

D )bn+1
D , (9)

|D|
(
gn+1

D −gn
D
)
−∆ t ∑

E∈D int

SD,EΛggn+1
E = ∆ t|D|

(
P(gn

D)b
n
D−δ2gn+1

D
)
, (10)

where for U = Λ ,V ,

UD,E =− ∑
K∈T

UK (S(x)∇ϕE ,∇ϕD)0,K , SD,E =− ∑
K∈T

(S(x)∇ϕE ,∇ϕD)0,K ,

with UK =
∑D∈DK U(mD)

card(EK)
.

The flux function G is supposed to be monotone, consistent, conservative and locally
Lipschitz continuous. For example, we consider in the following

G(a,b,c) = c+
(
χ↑(a)+χ↓(b)

)
− c−

(
χ↑(b)+χ↓(a)

)
,

where c+ = max(c,0), c− = max(−c,0), χ↑ and χ↓ are respectively the nondecreas-
ing and nonincreasing parts of χ .

Definition 1 (Approximate solution). Using the values (uD)D∈D , u= s, b, m, g, we
define a nonconforming FE solution uh as a function piecewise linear and continuous
in the barycenters PD of interior edges such that

uh(x) = ∑
D∈D

uDϕD(x), x ∈Ω .

Properties of the discrete diffusive operators. We define

A D : RCard(D) → RCard(D)

sh = (sD)D∈D 7→ (AD(sh))D∈D
,

L D : RCard(D) → RCard(D)

gh = (gD)D∈D 7→ (LD(gh))D∈D
,

the discrete diffusive operators appearing in (7), (10), with for all D ∈D ,

AD(sh) = ∑
E∈D int

ΛD,EsE , LD(gh) = ∑
E∈D int

ΛgSD,EgE .
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We give in the following proposition some properties of A D which are crucial to
get the convergence of the scheme. The same results hold for L D too.

Proposition 1. The discrete diffusive operator A D is

• conservative: ∀D ∈D , AD(sh) = ∑
E∈N (D)

ΛD,E(sE − sD),

• coercive: ∃CA > 0 such that − ∑
D∈D

AD(sh)sD ≥CA‖sh‖2
X ∀sh ∈ X .

3 Monotone correction

At this stage, the constructed scheme is valid both for full anisotropic diffusion ten-
sors and for general meshes satisfying only assumption (6). However, it possesses
a discrete maximum principle only if all transmissibilities ΛD,E , SD,E are nonneg-
ative, which is not guaranteed in the general case. Following [3], we now define a
nonlinear correction which gives monotone scheme while preserving the properties
described in Proposition 1.
We replace the operator A D in (7) by the corrected operator BD defined by

BD(s) = AD(s)+ ∑
E∈N (D)

β
ε
D,E(s)(sD− sE) ∀D ∈D ,

where βD,E(s) is the regularized correction proposed in [3]:

β
ε
D,E(s) = max

(
|AD(s)|

CardεV (D,s)∗
,
|AE(s)|

CardεV (E,s)∗

)
1

|sD− sE |+ ε
,

with CardεV (D,s)∗ = ∑
E∈N (D)

|sD− sE |
|sD− sE |+ ε

.

This corrected diffusive operator is monotone since βD,E(s)> |AD(s)| for all D∈D ,
all E ∈ N (D). Moreover, the corrected diffusive operator BD still satisfies the
properties described in Proposition 1:

• it is conservative, since βD,E = βE,D for all D ∈D , E ∈N (D),
• it is coercive, since βD,E ≥ 0 for all D ∈D , E ∈N (D).

The diffusive operator L D can also be corrected in the same way.

Theorem 1. If (s0
D,b

0
D,m

0
D,g

0
D) ∈ A for all D ∈ D , then the discrete problem (7)–

(10) with monotone correction has a physically admissible solution (sn
D,b

n
D,m

n
D,g

n
D)

∈A , for all n≥ 0 and all D ∈D .

The proof of this result can be done by introducing a truncated version of the scheme
(see [5, Theorem 5]), and using the properties of the corrected diffusive operators
(monotony, conservativity, continuity). Following the same lines as [5, Theorem 7],
we can also prove some energy estimates:
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Theorem 2. Let (sn
D,b

n
D,m

n
D,g

n
D)D∈D ,n≥0 be a solution of the corrected scheme.

Then ∃C > 0 not depending on the discretization parameters such that

N−1

∑
n=0

∆ t
(
‖sh‖2

X +‖bh‖2
X +‖mh‖2

X +‖gh‖2
X
)
≤C.

Starting from this result, one can obtain some compactness estimates on discrete so-
lutions. The complete study of convergence of the corrected scheme, which requires
some additional numerical assumptions [3], is done in [2].

4 Numerical experiments

We simulate the healing of a long bone fracture in rats [10]. The simulation cor-
responds to a 0.07 cm fracture. To implement the semi-implicit scheme (7)–(10),
we use the Newton’s method coupled with a biconjugate gradient method to solve
the nonlinear system. While the discrete maximum principle is not satisfied, the
monotone correction is computed using the iterative algorithm described in [3]. The
geometry of the fracture and the initial condition are described on Fig. 2.

Fig. 2 Geometry and initial condition: the black area corresponds to the bone matrix (m0 = 1) and
the grey area to the cellular cluster (s0 = 1, g0 = 20). Elsewhere there is nothing initially.

We assume that S(x) = I2. We first consider an admissible mesh made of 14336
triangles and 21632 edges. Especially, all the angles are acute, which ensures in this
case that the combined FV-FE scheme without correction satisfies the maximum
principle. In particular, we observe that the discrete unknowns remain nonnegative
(Tab. 1).

Min. Val. s Max. Val. s Min. Val. g Max. Val. g
Iter. 1 9.47×10−21 0.999 9.9×10−21 19.8
Iter. 10 5.83×10−21 0.991 9.05×10−21 17.99

Table 1 Results obtained with the non corrected scheme on an admissible mesh.
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Then we consider three general unstructured meshes that contain obtuse angles.
Mesh 1 is made of 1539 triangles and 2346 edges, mesh 2 is made of 3132 triangles
and 4756 edges, and mesh 3 is made of 15568 triangles and 23479 edges. In Tab.
2, we present the minimum and maximum values obtained with the scheme before
and after correction, after 1 and 10 iterations. We clearly observe that the discrete
maximum principle is well respected after correction, with disappearance of the
undershoots.

Mesh 1 Mesh 2 Mesh 3
Undershoots s 16 16 92
Min. Val. s −2.67×10−4 −8.95×10−7 −3.01×10−4

Without Max. Val. s 0.990 0.991 0.992
correction Undershoots g 70 71 144
after 10 it. Min. Val. g −0.27 −1.01×10−2 −8.56×10−3

Max. Val. g 17.96 18.41 20.27
With Min. Val. s 9.58×10−6 1.18×10−6 3.93×10−6

correction Max. Val. s 0.989 0.990 0.99
after 10 it. Min. Val. g 1.51×10−4 8.02×10−5 7.68×10−5

Max. Val. g 17.81 18.33 19.37

Table 2 Numerical results with the original and the corrected schemes after 10 iterations.

We now consider the corrected scheme on the finest mesh 3. After 2 days, we
observe the formation of osteoblasts where the stem cells were initially concentrated
(see Fig. 3). These osteoblasts synthetized the new bone matrix, which evolution is
shown on Fig. 4. The stem cells moved towards the center of the fracture. These
results are in agreement with previous results [5, 10].

Acknowledgements: M. B.-C. is supported by the ANR project GEONUM
(ANR-12-IS01-0004-01).
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