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In this article, an algorithm for the numerical approximation of two-phase flow in porous media by adaptive
mesh is presented. A convergent and conservative finite volume scheme for an elliptic equation is proposed,
together with the finite difference schemes, upwind and MUSCL, for a hyperbolic equation on grids with
local refinement. Hence, an IMPES method is applied in an adaptive composite grid to track the front of
a moving solution. An object-oriented programmation technique is used. The computational results for
different examples illustrate the efficiency of the proposed algorithm. c© 1997 John Wiley & Sons, Inc. Numer
Methods Partial Differential Eq 13: 673–697, 1997
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I. INTRODUCTION

Many of the physical phenomena that govern enhanced recovery processes have extremely im-
portant local properties. Thus, the models used in simulators of these problems must be able
to solve these critical local features. Also, in order to be useful in large-scale dynamic simula-
tors, these models must be self-adaptive and extremely efficient. The development of adaptive
grid refinement techniques must take into account the rapid development of advanced computer
architectures and the use of performance language programming.

In this article, the method of secondary recovery (waterflooding) is modelized, it is used in
many enhanced recovery processes: fluids are injected into some wells in a reservoir while the
resident hydrocarbons are produced from other wells, designed production wells. The two-phase
incompressible flow, without considering capillary effects, is governed by a system coupling an
elliptic equation (pressure equation) and an hyperbolic equation (saturation equation).

As one fluid displaces the others, the physical processes that occur along the moving interface
between the fluids govern the effectiveness of the process.

c© 1997 John Wiley & Sons, Inc. CCC 0749-159X/97/060673-25
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In order to model these important extremely localized phenomena, a grid spacing that is more
nearly of the order of the process must be used.

For transport partial differential equations, sharp fronts move along characteristic or near
characteristic directions. Therefore, the computed velocity, obtained by resolution of the pressure
equation, determines the location of the regions where local refinement will be needed at the next
time step.

The interaction between the fluids leads to a sharp front of arbitrary shape, which generally
cannot be predicted in advance. This makes useless the well-known patch refinement techniques
([1, 2]); the concept does not require as complex a data structure but involves ideas of passing
information from one uniform grid to another.

For an evolutive local refinement, we propose an appropriate data structure permitting us to
generate a general composite grid. The choice of this composite grid and the different type of cells
allow the refinement of a small area, which tracks accurately the moving front, since efficiency is
crucial in large-scale reservoir simulation. An object-oriented programming language, C++, is
selected for the implementation [3]. It provides dynamic memory management, and a convenient
data structure for evolutive problems.

In Section II we give a brief presentation of the mathematical model. The numerical schemes
used are presented in Section III. First, a finite volume method to discretize the elliptic equation
on a composite grid (the flux between two neighboring cells is discretized by finite differences)
is proposed. This approximation is stable, conservative, and convergent. It enables us to check
flux continuity at the interface. Next, finite difference schemes are presented to approach the
hyperbolic equation. We show that the upwind scheme on a composite grid ensures the positivity
of the saturation, and we give the algorithm to implement a MUSCL scheme. In Section IV, we
give an algorithm for solving two-phase flow by an adaptive mesh. The data structure is presented
in Section V, and the numerical results are presented in the last section.

II. FORMULATION

Fluid flow in a homogeneous porous medium is governed by a system of nonlinear partial differ-
ential equations. The basic equations used for two-phase flow consist of conservation equations
of oil and water. The phase velocity is given by Darcy's law [4].

Let Ω =]0, L[×]0, l[ denote the domain of the study, with boundary Γ = ∂Ω, which is divided
as follows:

Γ = Γin ∪ Γout ∪ Γimp

and Γa ∩ Γb = ∅ if a /= b.

Γin : water injection boundary,

Γout : fluid production boundary,

Γimp : impervious boundary.

The following notations are used in the sequel:
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w : water phase
o : oil phase
η : η phase, η = w, o
Sη(x, y, t) : saturation of the η phase, (0 ≤ Sη ≤ 1)
φ(x, y) : porosity
K(x, y) : permeability tensor of the porous medium
krη(Sη) : relative permeability of the η phase
P (x, y, t) : pressure in the medium (no capillary pressure)
µη : viscosity of the η phase
Mη(Sη) : mobility of the η phase (Mη = kη/µη ≥ 0)
M(Sη) : total mobility (M = Mw +Mo > 0)
fη(Sη) : fractional flow of the η phase (fη(Sη) = Mη(Sη)/M(Sη), 0 ≤ fη ≤ 1)
Vη(x, y, t) : velocity of the η phase
V(x, y, t) : total velocity (V = Vw + Vo),V = (u, v)T .

For an incompressible flow, where capillary and gravitational effects are negligible, the equa-
tions for two-phase flow are given by:

Mass conservation of oil:

φ(x, y)∂tSo(x, y, t) + div(Vo(x, y, t)) = 0. (1)

Mass conservation of water:

φ(x, y)∂tSw(x, y, t) + div(Vw(x, y, t)) = 0. (2)

By definition of the saturations, one gets

Sw(x, y, t) + So(x, y, t) = 1. (3)

The Darcy velocity is defined as follows:

Vo = −K
kro(So)
µo

∇P,Vw = −K
krw(Sw)
µw

∇P. (4)

The porous media is considered to be homogeneous, then without loss of generality, we take

φ(x, y) = φ, and K(x, y) =
(
kx 0
0 ky

)
,

where φ, kx, and ky are positive.
By these formulations, we can see that the unknown functions are the saturation of one phase

(e.g., water saturation) and pressure. In order to obtain a nondegenerate pressure equation, we
express the total velocity of the flow depending on P ; Eqs. (1) and (2) are added together, and,
following by (3), we have

div(Vo + Vw) = div(V) = div(−KM∇P ) = 0, (5)

which is an elliptic equation.
Using the notation of total velocity, the phase velocity can be expressed as follows:

Vη(x, y, t) = fη(Sη)V(x, y, t), where fη(Sη) =
Mη(Sη)
M(Sη)

. (6)

To simplify our notation, we shall write S for Sw and f(S) for fw(Sw). Then, the problem
(1)–(4) is equivalent to finding (P, S) a solution of the following nonlinear partial differential
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system: 
div(−KM(S)∇P ) = 0
φ∂tS + div(Vf(S)) = 0
V = −KM(S)∇P
0 ≤ S ≤ 1.

(7)

In petroleum engineering, the function S → f(S) is increasing and satisfies 0 ≤ f(S) ≤ 1 for
every S ∈ [0, 1], and the total mobility M(S) is positive. For example, the Corey model ([4, 5])
with square relative permeabilities (kw = S2, ko = (1− S)2) gives

f(S) =
S2

µw

S2

µw
+ (1−S)2

µo

,M(S) =
S2

µw
+

(1− S)2

µo
.

In order to deal separately with the two different mathematical equations of this system, a
splitting method is used, which leads to solving an elliptic and hyperbolic equations. It is based
on an IMPES method ([4–6]) on a composite grid. This algorithm is described in Section IV.

For more clarity, we are interested in discretizing two prototypical problems:

• Elliptic problem. For M(x, y) a continuous and positive function in Ω finds P , which is
a solution of 

−div(M(x, y)∇P ) = 0 in Ω
∇P · n = 0 on Γimp
P = Pin on Γin
P = Pout on Γout.

(8)

Here n is the outward unit normal vector defined on Γ.
• Hyperpolic problem. For V(x, y) a given vector in Ω that satisfies divV = 0 finds S,

which is a solution of  ∂tS + div(Vf(S)) = 0 in Ω
S(x, y, t) = Sin on Γin
S(x, y, 0) = S0(x, y) on Ω,

(9)

where f has C1[0, 1] regularity and is an increasing function.

III. DISCRETIZATION OF THE PROBLEM

In this section we will discuss a discretization scheme of Eqs. (8) and (9) on a composite mesh.
The construction of a cell-related composite mesh is presented. We apply the finite volume method
to get a convergent and conservative scheme for the elliptic Eq. (8); we also present a monotone
and a consistent finite difference scheme to approach the hyperbolic Eq. (9). Numerical tests are
presented, in Section VI, for simple problems to validate proposed schemes.

A. Composite Mesh

For the adaptive mesh refinement technique, the cells are managed by means of algorithms such as
refinement and clustering. These procedures, which manipulate the mesh on the basis of clearly
defined criteria, directly influence the number of grid blocks and, hence, the neighborhood of
certain cells. It appears clear that if the number of neighbors for a cell is too large, the writing of
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FIG. 1. Regular R, coarse fine CF, fine coarse FC, middle MD, and corner CN.

the scheme will be difficult. A great rate of refinement between two neighbors will deteriorate
discretization precision. To avoid the occurrence of such cases, a certain refinement rule is
established at the end of this subsection.

The cell-related discretization scheme detailed in the next subsection is based on a finite
volume method. Refinement is performed by dividing a grid cell into four cells having the same
volume, in other words, the size of the cell in each direction is divided by two. The geometric
configuration of a cell in the composite mesh can sometimes be very sophisticated. (Figure 2 is
an example of a 3-level composite mesh.)

The level of a cell is the level of refinement to which it belongs; coarse grid cells are allocated
to level 1. A cell is identified by its geometric position (i.e., the coordinate of its barycenter), its
four edges, its size, and its level. It is surrounded by several cells, called neighbors. Precisely,
two cells are said to be neighbors if they have an edge in common. Sometimes, one or two of
these neighbors can reduce to a boundary of the discretization domain.

Let's proceed to a classification for every cell in a composite mesh. Given a cell of level l,
five classes are distinguished as follows:

• Regular (R). The most simple cell. The neighbors in 4 directions (some of these directions
can reduce to a boundary) are in the same level as it.

• Coarse fine (CF). A bigger cell in the interface of two levels, i.e., at least one neighbor is
of level l + 1, the others of level l.

• Fine coarse (FC). A finer cell in the interface of two levels, i.e., at least one neighbor is
of level l − 1, the others of level l.

• Middle (MD). An interface cell among 3 levels: l−1, l, and l+1, i.e., at least one neighbor
is of level l + 1, and one neighbor is of l − 1.

• Corner (CN). Two neighbors are of MD type cells and the other neighbors are of FC.

These classes are shown in Fig. 1.
The cells of classes CF, FC, MD, and CN find themselves only in the interfaces of different
refinement regions. Particularly, MD and CN appear only when the level of composite grids
is superior or equal to 3. For a given composite mesh of level l, the refinement rule for the
construction to a composite mesh of level l + 1 is that only the regular cell of level l can be
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FIG. 2. The roll of MD and CN type cells. The left composite mesh is obtained without these types of
cells, while the right one uses them.

refined. An artificial rule can be imposed, so that the last two types disappear. This will make the
implementation more simple, but will restrict considerably the geometrical capacity to represent
complex refinement regions, especially when the first level is very coarse (see Fig. 2).

B. Discretization of the Elliptic Equation on a Composite Grid

We use a cell-centered grid to discretize the computational domain and a finite volume method
to approach the elliptic problem (8). The reasons for this choice include its ability to be faithful
to the physical situation in general and conservation in particular.

Now, let's recall the approximation of Eq. (8). Suppose that C is a given regular cell called
control volume in Ω with boundary ΓC as showed in Fig. 3. Using the divergence theorem∫

C

div(M∇P )dω =
∫

ΓC
M∇P · ndγ = fl(C) = 0, (10)

FIG. 3. Regular and coarse fine cells.
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where fl(C) is a sum of four flux corresponding to four edges of the cell.
Equation (10) can thus be interpreted as a conservation law for volumeC, which states that the

net flow rate of the fluid across the surface ΓC balances with the net flow rate from the interior
source, which is zero.

Let's denote by capital letters S, W , E, and N (resp. small letters s, w, e, and n) the four
neighbors (resp. the four edges) of the regular cell C. They also designate the center of the cell
(resp. the middle of the edge), e.g., for a given function Φ,

ΦN : Value of Φ at the point N,

Φn : Value of Φ at the middle of the edge n.

The total flux fl(C) is then written:

fl(C) = fle(C) + flw(C) + fln(C) + fls(C), (11)

where fli(C) refers to the flux across the edge i of C (i = s, w, e, n). In other words,

fli(C) =
∫

Γi(C)
M∇P · ndγi.

As above, Mi, i = s, w, e, n represents the value of the mobility at the middle of the common
edge between cell C and its neighbors. These flux can be approached by

fli(C) = Mi

∫
Γi(C)

∇P · ndγi.

The gradient∇P will be discretized by finite difference. Written in stencil form, a regular interior
cell has a 5 point scheme:  −Mn

−Mw −Σ −Me

−Ms

PC = 0. (12)

We denote by Vi = (ui, vi)T for i = s, e, n, w, the average velocity at the common face
between the cell C and its neighbors. The scheme (12) is equivalent to the discretization of
divV = 0 with V = −M∇P , then we have the relation

ue − uw
h

+
vn − vs
h

= 0, (13)

where

ue = −Me
PE − PC

h
, uw = −Mw

PC − PW
h

, vn = −Mn
PN − PC

h
, vs = −Ms

PC − PS
h

.

The discretization for the other types of cell is more laborious. We will describe our scheme,
without loss of generality, for the case of a coarse fine cell depicted in Fig. 3.

In the same way, Mi, i = w, n, sw, se, en, and es denote the value of the mobility at the
interface between the cell C and its neighbors. The cells in the north and west directions being
nonrefined, the expression of flux across the north and west edges is exactly the same as in the
case of regular cells, that is,

fln(C) = Mn(PN − PC) and flw(C) = −Mw(PC − PW ).
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To obtain a convenient expression for the east flux, we assume that the pressure is a linear function
between the cell C and its neighbors. Moreover, to ensure the total flux conservation at the east
face of the cell C, we impose

fle(C) = −flw(EN)− flw(ES),

where, flw(EN) [resp. flw(ES)] designates the flux across the west edge of the cell EN
(resp. ES).

Some slave nodes obtained by linear interpolation are then introduced to compute the last two
flux. Precisely, to calculate the flux flw(EN), a slave node named P� is defined by

P� =
3
4
PC +

1
4
PN

so that

flw(EN) ' −Men
P� − PEN

3h
4

h

2
= −Men

(
1
2
PC +

1
6
PN − 2

3
PEN

)
.

To approach the flux flw(ES), two slave nodes P4 and P◦ are considered:

P4 =
1
2
PSW +

1
2
PSE , and P◦ =

2
3
PC +

1
3
P4 =

2
3
PC +

1
6
PSW +

1
6
PSE ;

therefore,

flw(ES) ' −Mes
P◦ − PES

3h
4

h

2
= −Mes

(
4
9
PC +

1
9
PSW +

1
9
PSE − 2

3
PES

)
.

Similarly, with some other slave nodes, we have

fls(C) = −fln(SW )− fln(SE)

' −Msw

(
1
2
PC +

1
6
PW − 2

3
PSW

)
−Mse

(
4
9
PC +

1
9
PEN +

1
9
PES − 2

3
PSE

)
.

Finally, the stencil for this coarse fine type cell can be written as
−Mn + 1

6Men

− 2
3Men + 1

9Mse

−Mw + 1
6Msw −Σ

−2
3Mes + 1

9Mse
1
9Mes − 2

3Msw
1
9Mes − 2

3Mse

PC = 0. (14)

In same way to obtain (13), we denote by Vi = (ui, vi)T , the average velocity at the common
face between the cell C and its neighbors, for i = n,w, en, es, sw, se. The discretization of
div V = 0 leads to (14), if we set

uen+ues
2 − uw
h

+
vn − vsw+vse

2

h
= 0 (15)

with

uen = −Men

h

(
4
3
PEN − PC − 1

3
PN

)
, ues = −Mes

h

(
4
3
PES − 8

9
PC − 2

9
PSW − 2

9
PSE

)
,
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vsw = −Msw

h

(
PC +

1
3
PW − 4

3
PSW

)
, vse = −Mse

h

(
8
9
PC +

2
9
PEN +

2
9
PES − 4

3
PSE

)
,

uw = −Mw
PC − PW

h
, vn = −Mn

PN − PC
h

.

The surface of the boundary control volumes coincide with the boundary of the computational
domain, so the boundary condition for problem (8) is easily incorporated into their equations, and
conservation for the entire domain is, therefore, assumed. For example, if the west side of the
cell C coincides with the boundary domain, we simply let fw(C) = 0 to impose a homogeneous
Neumann condition or fw(C) = 1

2Mw(PC − Pimposed) to impose a Dirichlet condition.
The proposed scheme is conservative by its construction. Several authors have studied the

properties of finite volume schemes in the case of composite mesh ([1, 7]). It is obvious that the
scheme is not consistent. Nevertheless, one can prove the convergence of this scheme by using
the same method in ([7, 8]). In particular, one gets that the order of convergence is locally 1 (resp.
2) for a interface cell (resp. regular cell).

C. Discretization of the Hyperbolic Equation on a Composite Grid

In this section, finite difference schemes are used to discretize the hyperbolic Eq. (9) on a
composite grid. We suppose that the velocity field is given by the solution of (8). The saturation
of water in an oil reservoir may have jump discontinuities of several orders of magnitude on the
front of contact between these two fluids; this discontinuity is caused by relative permeabilities
and the viscosity rate.

The scheme widely used for this kind of hyperbolic equation in petroleum engineering is an
upwind scheme; it is based on decentering of mobility of each phase according to its own velocity
(see Aziz et al. [4], Forsyth [5], Liu et al. [6], Hermitte [2]). This scheme, which is of first order,
presents a principal undesirable behavior: numerical diffusion. This phenomenon increases near
the shock fonts. A possible improvement can be obtained by using a second-order scheme such as
slope-limiter and flux-limiter schemes (Yee [9], Roe's second-order scheme) or an anti-diffusion
scheme (Harten [10]).

It is known, in general, that a higher order scheme becomes first order on a composite mesh.
Hence, we propose an upwind scheme based not on mobility but on fractional flux. It is assumed
that the fluid speed propagation is the total velocity, and this leads to a simple hyperbolic equation.
We will prove that the proposed scheme is stable under an appropriate CFL condition and is of
first order. In order to diminish the numerical diffusion introduced by the upwind schemes, we
propose then a MUSCL method (see Van Leer ([11, 12]), Randall et al. [13]). As we will see
in Sections IV and VI, the front tracking method allows a local refinement near the shocks by a
certain criterion, which reduces considerably the numerical diffusion.

Consider the hyperbolic equation

∂tS + V · ∇f(S) = ∂tS + u∂xf(S) + v∂yf(S) = 0, (16)

where V(x, y) = (u(x, y), v(x, y))T is a given function satisfying

divV = 0,

and f is a monotone increasing function.
Let Ωkh be a composite grid and Skh a saturation vector on this grid. Our goal is to establish

an explicit finite difference scheme to obtain Sk+1
h in the same grid. The construction of the

composite grid Ωkh at the time tk is described in the Section IV. Here, we suppose that Ωkh and
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FIG. 4. General composite grid for two-level refinement. (*) represent the points where piecewise linear
solution do not create a local extremum for the MUSCL scheme.

Skh are given. Denote SkC a component of Skh representing an approximation of the exact solution
associated to the cell C at time tk.

The Euler time scheme implies

Sk+1 − Sk
∆t

+ V · ∇f(Sk) = 0. (17)

In order to present the discretization of Eq. (17), we consider, without loss of generality, a
coarse-fine cell depicted in Fig. 4.

The average of velocity Vi = (ui, vi)T (i = s, w, es, en, n) is calculated in the same way as
in (15).
• Upwind scheme. The approximate solution is considered to be piecewise constant. The

second term of Eq. (17) can be considered as a sum of four quantities corresponding to contribution
of each side. We approach the flux gradient across the south, west, and north edges by the upwind
scheme usually used in the literature ([10, 14, 15]). Hence,

Sk+1
C − SkC

∆t
+ Fs(C) + Fn(C) + Fw(C) + Fe(C)

=
Sk+1
C − SkC

∆t
+ v+

s

fkC − fkS
h

+ v−n
fkN − fkC

h
+ u+

w

fkC − fkW
h

+ Fe(C) = 0, (18)

where

α+ =
α+ |α|

2
, α− =

α− |α|
2

for α ∈ R.

There are two contributions corresponding to the east-north (EN) and the east-south (ES) cells
so that the east flux Fe(C) is expressed as follows:

Fe(C) =
1
2

(
u−en

fkEN − fkC
3
4h

+ u−es
fkES − fkC

3
4h

)
. (19)
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Remark 3.1. In the case of regular cell, the scheme (18)–(19) is reduced to

Sk+1
C − SkC

∆t
+ v+

s

fkC − fkS
h

+ v−n
fkN − fkC

h
+ u+

w

fkC − fkW
h

+ u−e
fkE − fkC

h
= 0.

By definition of v± = v ∓ v∓ and u± = u∓ u∓, the above equation can be rewritten as

Sk+1
C − SkC

∆t
+
v+
n f

k
C + v−n f

k
N − (v+

s f
k
S + v−s f

k
C)

h

+
u+
e f

k
C + u−e f

k
E − (u+

wf
k
W + u−wf

k
C)

h
+ fkC

(
vn − vs
h

+
ue − uw

h

)
= 0. (20)

From (13), the discretization of (div V = 0) on a regular cell implies that the last term in (20) is
zero. So, this scheme is identical to the scheme proposed in [15], which guarantees the con-
servation and consistency. Moreover, when u = v = constant, the scheme coincides with
Murmann–Roe's scheme [14].

Now, we discuss some properties of scheme (18)–(19), corresponding to the general cell C in
Fig. 4.

The corresponding scheme is

Sk+1
C − SkC

∆t
+ v+

s

fkC − fkS
h

+ v−n
fkN − fkC

h
+ u+

w

fkC − fkW
h

+
2
3
u−en

fkEN − fkC
h

+
2
3
u−es

fkES − fkC
h

= 0. (21)

Let's define

αi =
{

1 if i = s, w, n
2
3 if i = es, en

and

D±i =

 ∓αiv±i ∆t
h

fkC−fkI
Sk
C
−Sk

I

if SkC − SkI /= 0

∓αiv±i ∆t
h f
′(SC) otherwise

in this definition, when i = s, w, n, es, en then I = S,W,N,ES,EN .
One observes that D±i is always positive, because the flux f is an increasing function.
With the above notations, the following equation results:

Sk+1
C = SkC −D+

s (SkC − SkS)−D−n (SkC − SkN )−D+
w(SkC − SkW )

− D−en(SkC − SkEN )−D−es(SkC − SkES). (22)

Proposition 3.2. Under the following CFL condition,

D+
s +D−n +D+

w +D−en +D−es ≤ 1, (23)

the scheme (22) is L∞-stable.
Moreover, the scheme is of first order.
Proof. Equation (22) can be written equivalently as

Sk+1
C = (1−D+

s −D−n −D+
w −D−en −D−es)SkC

+ D+
s S

k
S +D−n S

k
N +D+

wS
k
W +D−enS

k
EN +D−esS

k
ES .

Since D±i ≥ 0, and, by taking into account the CFL condition (23), we have
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|Sk+1
C | ≤ (1−D+

s −D−n −D+
w −D−en −D−es)|SkC |

+ D+
s |SkS |+D−n |SkN |+D+

w |SkW |+D−en|SkEN |+D−es|SkES |
≤ (1−D+

s −D−n −D+
w −D−en −D−es) max

j∈J
|SkJ |

+ (D+
s +D−n +D+

w +D−en +D−es) max
i∈J
|Skj |,

where J represents the set of cells in the composite grid.
The property of the L∞ stability is a consequence of

|Sk+1
C | ≤ max

j∈J
|Skj |,∀C ∈ J.

To prove the consistency of the scheme, takeV = (−1, 1) to simplify and denote byS(x, y, t) =
S the exact solution at cell C. Then, the finite difference operator associated to the scheme (21)
is defined by

Lh,∆tS(x, y, t) =
S(x, y, t+ ∆t)− S(x, y, t)

∆t
+
f(S(x, y, t))− f(S(x, y − h, t))

h

−1
2
f(S(x+ 3

4h, y + 1
4h, t))− f(S(x, y, t))
3
4h

−1
2
f(S(x+ 3

4h, y − 1
4h, t))− f(S(x, y, t))
3
4h

.

By a simple Taylor expansion, we have

S(x, y, t+ ∆t)− S(x, y, t)
∆t

= ∂tS +O(∆t)

f(S(x, y, t))− f(S(x, y − h, t))
h

= ∂yf(S) +O(h)

and

f(S(x+ 3
4h, y + 1

4h, t))− f(S(x, y, t))
3
4h

= ∂xf(S) +
1
3
∂yf(S) +O(h),

f(S(x+ 3
4h, y − 1

4h, t))− f(S(x, y, t))
3
4h

= ∂xf(S)− 1
3
∂yf(S) +O(h).

Replacing these expressions by their values in Lh,∆t, one gets

Lh,∆tS(x, y, t) = ∂tS − ∂xf(S) + ∂yf(S) +O(∆t) +O(h),

which shows the consistency of scheme (21).
• MUSCL scheme. The basic idea is to replace piecewise constant representation of the

solution by some accurate representation, say piecewise linear.
Methods of this type were first introduced by Van Leer in a series of articles ([12, 11], . . .),

where he develops the MUSCL scheme (standing for Monotonic Upstream-centered Scheme for
Conservations Laws). The slope-limiter method is well known for a nonlinear scalar equations in
one-dimensional space, which leads to TVD (Total Variation Diminishing) and stable schemes.
These methods are generalized to nonlinear hyperbolic systems ([11, 13]).
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In two-dimensional space and on an irregular grid, the MUSCL methods are more difficult
to put in place. We now give an algorithm of the MUSCL schemes employed on our composite
grid. The proposed scheme is based on a gradient-limiter method.

Give data {SkC}C a vector on the composite grid Ωkh. We replace the piecewise constant
solution by a more accurate reconstruction, taking the piecewise linear function

S̃kX = SkC +QkC ·
→
CX,

where QkC is an approximation of the gradient on the cell C, which is based on the data {SkC}C .
The most interesting question is, how do we choose the gradients? A classical way is to limit

the gradients QkC by a coefficient γkC with 0 ≤ γkC ≤ 1. This coefficient is chosen such that
the saturations on the interfaces, precisely where the flux will be evaluated, do not create a local
extremum with respect to the saturations of neighbor cells.

Denote by Smax (resp. Smin) the highest (resp. lowest) admissible value of the saturation on

the interface, and by S̃kX the saturation of X on an interface of cell C: S̃kX = SkC + γkCQ
k
C ·

→
CX .

The algorithm to compute γkC is as follows: Choose γkC = 1. In the case where S̃kX > Smax, the

gradient of the cellC is then limited by γkC = Smax−SC
S̃k
X
−SC

, and if S̃kX < Smin then γkC = Smin−SC
S̃k
X
−SC

.

We now give the MUSCL scheme for the situation in Fig. 4. A natural approximation of
gradient of cell C is QkC = (AkC , B

k
C) with

AkC =
SkEN+SkES

2 − SkW
7
4h

,BkC =
SkN − SkS

2h
.

Smax and Smin are considered to be

Smax = max
I
SkI , Smin = min

I
SkI , I = {CN,W,S,EN,ES}.

The coefficient γkC is limited such that the saturations on the middle of the common faces between
the cell C and its neighbors, denoted by * in Fig. 4, remain in the interval [Smin, Smax].

Finally, to compute the cell averages Sk+1
C , the scheme (21) is replaced by

Sk+1
C − SkC

∆t
+ v+

s

f
(
SkC + h

2γ
k
CB

k
C

)− f (SkS + h
2γ

k
SB

k
S

)
h

+ v−n
f
(
SkN − h

2γ
k
NB

k
N

)− f (SkC − h
2γ

k
CB

k
C

)
h

+ u+
w

f
(
SkC + h

2γ
k
CA

k
C

)− f (SkW + h
2γ

k
WA

k
W

)
h

+
1
2
u−en

f
(
SkEN − h

4γ
k
ENA

k
EN

)− f (SkC − h
4γ

k
CA

k
C + h

4γ
k
CB

k
C

)
3
4h

+
1
2
u−es

f
(
SkES − h

4γ
k
ESA

k
ES

)− f (SkC − h
4γ

k
CA

k
C − h

4γ
k
CB

k
C

)
3
4h

= 0. (24)

Note that taking QkC = 0 for every cell C, the MUSCL scheme reduces to the upwind scheme
(21). Even if the scheme (24) remains of first order on the composite grid, the numerical results
presented in Section VI show that the MUSCL scheme considerably diminishes the numerical
diffusion introduced by the upwind schemes.
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IV. ALGORITHM FOR SOLVING TWO-PHASE FLOW BY ADAPTIVE MESH

The whole idea of the adaptive method is to produce a stable, physically reasonable solution
while saving computational work. The flexibility to dynamically change the number of grid
points and, thus, the number of unknowns can create difficulties in the linearization and linear
solution algorithms. These algorithms are extremely difficult to vectorize effectively. Also, the
adaptivity of the local refinement methods must be driven both by rapid changes in solution
properties and by a simple and inexpensive method of mesh construction techniques.

Now, we are going to describe the algorithm for the resolution of system (7) by adaptive
techniques. An IMPES method (implicit in pressure, explicit in saturation) is used ([4–6]).

Denote by ΩH a fixed coarse grid, Ωkhl a composite grid at time tk where (hl = H/2l−1) is
the space step of discretization of top level l, and (P khl , S

k
hl

) is a given grid vector in this compo-
site grid.

The goal of the algorithm is to construct a new composite grid Ωk+1
hl

at time tk+1 and the

associated solution (P k+1
hl

, Sk+1
hl

). The triplet (Ωk+1
hl

, P k+1
hl

) is to be carried by l step.
The difficulty in the case of self-adaptive methods is to pass information from one composite

grid to another. For this, an interpolation operator I
Ω′
h′

Ωh is introduced. This operator designates
prolongation or restriction of a grid vector from Ωh to Ω′h′ .

In the first step, we start by a regular coarse grid Ωk+1
h1

= ΩH , independent of Ωkhl . Then, the
IMPES scheme is applied to the coarse grid; precisely, with the help of the interpolation operator

I
Ωk+1
h1

Ωk
hl

, we have 

Ŝkh1
= I

Ωk+1
h1

Ωk
hl

Skhl

−div(M(Ŝkh1
)∇P k+1

h1
) = 0

Vk+1
h1

= −M(Ŝkh1
)∇P k+1

h1

Sk+1
h1
−Ŝkh1

∆t + Vk+1
h1
· ∇f(Ŝkh1

) = 0.

(25)

The resolutions of the pressure and saturation equations have been described, respectively, in
Sections III.B and III.C.

In the second step, a criterion based on truncation error permits us to find refinement regions;
therefore, a composite grid Ωk+1

h2
is constructed. In the same way, the IMPES scheme is used

on the new composite grid [see system (26)]. Hence, composite grids Ωk+1
hj

for k = 3, . . . , l
are successively constructed. We note that Ωk+1

hj
is constructed by refining only the regular type

cells, which find themselves in the interior of refined regions of Ωk+1
hj−1

. So, for an arbitrary Ωk+1
hj

,
the IMPES scheme consists of the following algorithm:

Ŝkhj = I
Ωk+1
hj

Ωk
hl

Skhl

−div(M(Ŝkhj )∇P k+1
hj

) = 0

Vk+1
hj

= −M(Ŝkhj )∇P k+1
hj

Sk+1
hj
−Ŝkhj

∆t + Vk+1
hj
· ∇f(Ŝkhj ) = 0.

(26)

In much literature [2, 16] one can find refinements and constructions of composite grids just
after the first step. In other words, the truncation error reaches a threshold so that the level of
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refinement is determined according to the magnitude of error tolerated. Other methods are based
on refinement and derefinement regions [16]. The advantage of our proposed algorithm is to
enable us to treat a complex problem, for example, where the solution changes radically from
step to step (appearance picks, turbulence, . . .). The successive mesh construction induces a more
accurate localization of the regions where refinement will be needed; therefore, a better profile
of the front can be captured.

The solution of the pressure equation, which represents the most time-consuming part of the
algorithm, is efficiently and accurately obtained by a bi-gradient like method. The choice of the
initial solution for this iteration process is crucial to accelerate the convergence speed. A natural
way is to take the interpolation of P k+1

hj−1
(defined on Ωk+1

hj−1
) to Ωk+1

hj
.

Recently, locally computed a posteriori error estimators have been developed by Babuska
and Rheinbolds [17], Bieterman [18, 5] and Bank [19]. These a posteriori error estimators are
extremely important for problems involving elliptic partial differential equations discretized by
the finite element method. Here, we propose a widely used heuristic a posteriori criterion based
on the magnitude of the discretization truncation error. It is a local computation, which takes
little time. Using a simple threshold decision rule, we decide whether this point is going to be
refined or not. Notice that the nested iteration of our algorithm offers a numerically cheap way
to estimate the local truncation error. In practice this simple criterion appears to be quite efficient
and reliable. The following method is used to switch cells:

max
I
|Sk+1
C − Sk+1

I | < tol, for I ∈ neighbors C.

V. DATA STRUCTURE

The adaptive solution of partial differential equation by mesh refinement is well known to be
difficult. The data structure plays an important role in simulation [1]. Modification of the
mesh by creating and deleting some grid blocks over time requires that the data structure used
be dynamic. Present static data structure, in which the mesh is fixed permanently when the
simulation is initialized, lends poorly to such a technique. Since the purpose of adaptive mesh
refinement is to solve evolution problems more accurately, but at reasonable cost, a data structure
must be worked out that is appropriate to the problem posed.

The programming languages FORTRAN 90, Ada, and C are becoming widely used in scien-
tific computation. They provide so-call Abstract Data Types (ADT). Particularly, by means of
struct, pointer, and list, one can construct some specific ADT data structure, adapted to
the discretization. Furthermore, the allocation of memory in these languages can be dynamic,
i.e., variables of any type can be allocated during execution, when the need arises, under the
control of the program, by means of special instructions. See, for example, Cai, Le Gland, and
Zhang [20] for an example of a finite difference scheme. The language C++ invented at Bell
labs by B. Stroustrup [3] is an extension of the C programming language that provides an efficient
implementation of object-oriented programming techniques. What is truly novel about C++ is
its aggregate ADT type class. A class is an extension of the idea of struct in traditional C.
It provides the means for implementing a user-defined data type and associated functions and
operators. An interesting discussion about application of this language in multigrid method can
be found in Rüede [21].

A closer analysis of the classification of composite mesh cells explained in Section III.A shows
that different cells perform different tasks. A regular cell is the most simple case to treat. But in
one or several directions, a complex cell can have the same geometric configuration as a regular
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FIG. 5. Hierarchy.

cell. For instance, in Fig. 3, a CF cell can be considered as a regular cell when we regard the
north or west direction. It is tedious to produce the same code for each ADT type. Based on this
observation, we construct a hierarchy ADT classes of cell by using derive class. The derive
class mechanism is call inheritance and is an important tool for object-oriented modularization
and program development.

As showed in Fig. 5, a regular cell is defined as a base class. It can then be altered by adding
members, overloading an existing member function, to create the other type of derived class cell.
The advantage of this mechanism is that the derived class cell can share the information and code
of its parent and ancestor classes. Code fragments for the definitions of the regular cell and coarse
fine cell are shown in Tables I and II, respectively.

TABLE I. Data structure of a regular cell.

class R {
public:
int x, y; /* coordinate of barycenter */
int size; /* cell size */
double pressure, saturation; /* physique valeur */
R *N, /* pointers of 4 neighbors */
*W, *E,

*S;
double n, /* matrix coefficients */

w, c, e,
s;

R *next;
R();
void ErrorCriteria();
void Refinement();
· · ·
virtual void Matrix()
virtual void Saturation();
· · ·
};
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TABLE II. Data structure of a coarse fine cell.

class CF : public R {
public:

R *NW, *NE, /* pointers of its neighbors */
*WN, *EN,
*WS, *ES,

*SW, *SE;
double nw, ne, /* matrix coefficients */

wn, en,
ws, es,

sw, se;
CF();
void Matrix();
void Saturation();
· · ·

};

For any regular cell x = (x, y), in the constructed composite grid, the pointers S, W, E, and
N contain the addresses of their neighbors, each of which is represented itself by same type
of structure. If one or several of these neighbors do not exist (e.g., at the boundary), then the
corresponding pointers will be allocated to NULL. The pointer next is reserved to the con-
struction of chained lists. This is used mainly as a counter for iteration. The definition of coarse
fine cell shows that a CF cell is a derive class of R cell, the eight pointers SW, SE, WS, WN, ES,
EN, NW, and NE stock the addresses of their neighbors whose levels are inferior.

As an extension of the idea of struct in C, a class can have members that are functions. They
allow the ADT to have particular functions that act on its private representation. Furthermore, it
supports virtual member functions, which are functions declared in the base class and overloaded
in a derived class. By accessing a virtual function through pointers, C++ selects the appropriate
overloaded function at run-time. For instance, to calculate the matrix coefficients, the functions
(both named Matrix() in the two structures) have different codes in R and CF, respectively, and
the second one can partially share the codes of the first. The distinction is made dynamically; each
class knows which one will be loaded. The function declarations R() and CF() are constructor,
essentially containing the dynamic storage allocation of a single cell. The ADTs for the other
types of cells are omitted. Note that it is convenient to declare the MD cell as a derived class
of FC. We conclude this section by pointing out that the C++ language can be used to develop
an efficient and modular implementation of the ADT for scientific computation, in particular
for the adaptive mesh problem. Maximal flexibility and extensibility can be achieved. A good
construction of the ADT hierarchy plays an important role in getting an efficient implementation.

VI. COMPUTATIONAL RESULTS

Several examples are presented. The first example validates the scheme described in Section III.B.
In the second test, a comparison is given between the upwind scheme and the MUSCL scheme pre-
sented in Section III.C. The other examples treat models of waterflooding in
porous media.
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FIG. 6. Poisson equation, composite mesh of 5 levels and solution (number of cells = 1264).

A. Poisson Equation

The first example demonstrates the efficiency of the finite volume scheme on a composite grid.
To test this scheme we numerically solve a classical equation of Poisson on a composite mesh:{ −∆u = 0 sur Ω = (0, 1)× (0, 1)

uΓ = g(x, y) sur Γ = ∂Ω,

where

g(x, y) = cos(4π(x− y))
sinh(4π(x+ y + 2))

sinh(16π)
.

The analytic solution is u(x, y) = g(x, y) in Ω. The solution is localized around the point
(1, 1). The switching refinement criterion and the algorithm to obtain the composite grid are
described in Section IV.

Figure 6 depicts the composite mesh of 5 levels, the coarse grid is 10 × 10 grids. A linear
interpolation is used to draw the composite solution on a 160 × 160 mesh. Note that the refined
composite grid localizes and closes to the solution.

Table III gives the run statistics to compare the adaptive method on composite grids and the
classic method on regular finer grids. The maximum error between the composite (resp. the
finer) and the analytic solutions are also tabulated. It is clear that the gain in CPU time is more
and more important when the levels of refinement increase, moreover the quality of obtained
composite solution favors the adaptive method.

TABLE III. Run statistics for Poisson equation.

Number of cells CPU time Max-error
Levels

L Composite Finer Composite Finer Composite Finer

3 253 40 × 40 0.33 2.11 5.25 × 10−3 5.24 × 10−3

4 544 80 × 80 0.96 40.64 1.64 × 10−3 1.64 × 10−3

5 1264 160 × 160 4.09 400.18 0.45 × 10−3 0.45 × 10−3
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FIG. 7. Water saturation contours obtained by the MUSCL scheme and composite grid for the circular
example, time = 1.0 day, number of cells = 754.

B. Circular Example

To validate the finite differences scheme presented in Section III.C, we are interested in a typical
problem where the effects of convection are the strongest. The test consists of simulating transport
of a saturation field around the center of a domain Ω = (0, 1)× (0, 1) by a circular velocity field
V = (u, v)T , defined as follows:

u = −π
2

(
y − 1

2

)
; v =

π

2

(
x− 1

2

)
.

Then, the hyperbolic equation

∂tS + V · ∇S = 0 in Ω

is solved.

FIG. 8. Water saturation contours obtained by the MUSCL scheme and composite grid for the circular
example, time = 4.0 day, number of cells = 793.
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FIG. 9. Comparison between upwind (left) and MUSCL (right) schemes on composite grid for the circular
example, time = 3.0 days. The maximums of saturation are 0.2 and 0.87, respectively.

The initial condition is taken as

S(x, y) =
{

1, 0.4 ≤ x ≤ 0.5; 0.2 ≤ y ≤ 0.3
0, otherwise,

and all boundaries have no flow.
Figures 7 and 8 show the saturation contours obtained by the MUSCL scheme and the composite

grids at various times. The coarse grid is a 20 × 20 mesh, and 3 levels are required.
The reduction in CPU time of the adaptive method with respect to that of the regular finest 80

× 80 grids is not significant. This is due to the fact that the used scheme is explicit. Note that the
location of the refined area tracks the shock front quite closely during the time. One can remark
also that the number of cells in the composite grids is far less then the number of cells in the finest
grid. These numbers seem to be sufficient to obtain a good approximation for the solution.

Figure 9 shows a comparison between the solutions obtained by the upwind scheme and the
MUSCL scheme on a composite grid. Note that the numerical diffusion introduced by the upwind
scheme is considerably reduced.

C. Waterflood Examples

Two examples, treating models of waterflooding simulation, are considered for a two-phase flow
in porous media. They differ by their geometry and boundary conditions. Both of them are
computed by the MUSCL scheme. In the second test a comparison of upwind and MUSCL
scheme is carried out.
• Corner example. A one-quarter five-spot [4], two-phase, incompressible water-injection

problem is shown in Fig. 10. The data is summarized in Table IV. Water is injected at a constant
pressure in the top northwest corner, and a constant pressure is specified in the lower southeast
corner. All other boundaries have no-flow. The initial water saturation is the critical saturation
(i.e., it is considered to be zero).

The coarse mesh is 10 × 10 grids, and four levels of refinement are used. Figures 11 and 12
show the water saturation contours and the composite grid at time 34 and 93 days. The number
of cells on composite grids are compared to 80 × 80 cells. Note that the location of the refined
area tracks the shock front quite closely during the time. One can remark also that the number of
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FIG. 10. Boundary conditions for the corner example.

TABLE IV. Data of corner example.

Absolute permeability kx = 10−13m2, ky = 10−13m2

Porosity φ = 0.206
Viscosities µw = 1.0 × 10−3pa · s; µo = 4.0 × 10−3pa · s
Relative permeability kw = S2, ko = (1 −S)2;
Pressure of water injection 1500 kpa
Pressure of production 1000 kpa

cells in the composite grids is far less then the number of cells in the finest grid. These numbers
seem to be sufficient to obtain a good approximation for the solution.

The run statistics illustrated in Table V reveal the gain of adaptive method in computer memory
and in CPU time.

FIG. 11. Water saturation contours and composite grid for the corner example, time = 34.0 days, number
of cells = 1051.
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FIG. 12. Water saturation contours and composite grid for the corner example, time = 93.0 days, number
of cells = 1735.

TABLE V. Run statistics for corner example.

Number of cells Normalized CPU time
Times

(t) Composite Finer Composite Finer

10.0 586 80 × 80 1.58 88.60
34.0 1038 80 × 80 5.24 98.65
43.0 1051 80 × 80 6.60 99.26
71.0 1243 80 × 80 9.70 100.28
93.0 1735 80 × 80 15.5 100.48

• Rectangular example. Figure 13 shows a two-dimensional rectangular reservoir. The
formulation of the problem has the same form as the corner example, except that the area of the
study domain is Ω = (0, 10) × (0, 5), and water is injected in the top of the west side and a
constant pressure is imposed on the bottom of the east side.

The coarse mesh is 10 × 5 grids and the level of refinement is four. Figures 14–16 depict the
water saturation contours and the composite grids at times 30, 50, and 100 days. As in the corner
example, the composite grids track the moving front.

FIG. 13. Boundary conditions for rectangular example.
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FIG. 14. Water saturation contours and composite grid for the rectangular example, time = 30.0 days,
number of cells = 434.

FIG. 15. Water saturation contours and composite grid for the rectangular example, time = 50.0 days,
number of cells = 545.

FIG. 16. Water saturation contours and composite grid for the rectangular example, time = 100.0 days,
number of cells = 674.

FIG. 17. Comparison between upwind (left) and MUSCL (right) schemes on the composite grid at time =
80.0 days.
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TABLE VI. Run statistics of the rectangular example.

Number of cells Normalized CPU time
Times

(t) Composite Finer Composite Finer

20.0 359 80 × 40 0.93 28.00
30.0 434 80 × 40 1.74 29.12
50.0 545 80 × 40 2.46 30.55
70.0 584 80 × 40 2.52 31.43

100.0 674 80 × 40 4.21 31.77

Figure 17 shows a comparison of the saturations, at time 80 days, computed by the upwind
and MUSCL schemes. Note that the interface water–oil (shock) is better localized by the second
scheme.

Table VI shows the performance of the adaptive method. Note that the gain in CPU time
is relatively more important than that of the corner example, because the shock front is more
detached.

VII. CONCLUSION

In this article, numerical approximation of two-phase incompressible problems is studied. The
aim is to develop an algorithm to obtain composite grid and associate solutions with the smallest
computational cost. However, the flexibility of the proposed adaptive method, which allows
switching the cells of different types, increases the possibility of getting a refinement only near
sharp fronts and of limiting the refinement area.

An IMPES method is applied. The basic method used in the spatial discretization involves a
convergent finite volume scheme to approach the pressure equation and monotone finite difference
schemes to discretize the saturation equation. In each step time, the construction of the composite
grid was obtained in several steps. This permits us to reduce the number of cells at successive
levels and to improve localization of sharp fronts.

The results seem to confirm that, with the criteria developed here, the adaptive method is
extremely attractive for two-phase flow problems.
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