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3D simulation of radionuclide transport in porous media
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BP 92101–44321 Nantes Cedex 3, France

SUMMARY

We present an efficient and easily implementable finite volume method simulating radionuclide transport
through highly heterogeneous grounds in three space dimensions. The numerical concentration of the
transported chemicals are proved to remain nonnegative and stable.

Then, we run a realistic test case in which some radioactive iodine I129 particles are released from a
leak in an underground nuclear waste disposal site. The question of whether the radionuclide invades the
underground and reach the ground surface is investigated.

Because of the 3D nature of the problem, a particular emphasis is made on the control of CPU time.
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1. INTRODUCTION

While the interest in atom splitting technology keeps constantly growing, underground nuclear
waste storage has been more and more considered as a threat. The issue people are getting aware
of is that the radionuclides that require to be stored usually have a very long life span and remain
dangerous for millions of years. In the meantime, nuclear waste disposal sites might undergo
geological constraints due to any kind of Earth’s activity, possibly resulting in fractures or leaks
in some of the containers in which radioelements are locked in.

Underground nuclear waste disposal sites might be created shortly in Europe. In France, a
safety study began about 10 years ago to consider implementing a storage site in the North of
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the country. Indeed, as real time/scale experiments would last too long and be harmful to the
environment, the numerical simulation seems to be an appropriate tool to handle a part of that
study. For this purpose, the research group MoMaS (CNRS, France, cf. [1]) has been in charge
to develop numerical methods, simulates various phenomenons that may happen in and around a
site, and test feasibility of radionuclide storage.

In this paper, we assume that a leak occurs in a disposal site, and set up a numerical method simu-
lating the motion of the escaped radionuclides through the underground along time. In particular,
a relevant question is whether the radionuclides can invade an underground region and eventually
reach the ground surface, constituting a danger for populations living thereon. Several works have
been published about this matter (see [2–7], and their references). The main feature of the present
work is that the domain of simulation is 3D, which is a realistic way of modeling a ground.
However, this main feature is also the main difficulty. Indeed, care must be taken on the control of
computation time, which might become extremely long otherwise. Further difficulties include the
presence of multiple transport phenomena in the model, and great heterogeneities of geological
data that realistic grounds usually feature.

The outline of the paper is the following: our mathematical model is presented in Section 2.
This model features an elliptic equation modeling ground water flow and a parabolic equation
modeling the displacemnt of radioactive contaminant through the flow. This system is closed by
assuming that the ground water is incompressible. In the third section, our numerical strategy
is described schematically. The details of the numerical schemes are provided in Section 4. The
method is constructed so as to provide nonnegative contaminant concentrations. Section 5 presents
a realistic numerical simulation, as an application of our numerical method. The computational
effort that was necessary to perform this test is analyzed in Section 6 is an analysis. The end of
the paper is composed of a conclusion and technical appendix.

2. MODEL

Let a space domain �⊂R3 be a saturated porous medium representing a 3D ground. The ground
water flow is characterized by its velocity, V , and hydrodynamic load, H . A radionuclide with
concentration c is transported through this flow. A widely used PDE system modeling these
phenomena (cf. [8, 9] and their references) is:

�(X)�t c(t, X)+div(c(t, X)V (X))−div(D(X,V (X))∇c(t, X))+��(X)c(t, X)= f (t, X) (1)

V (X)=−K (X)∇H(X) (2)

divV (X)=0 (3)

with t ∈R+ and X= (x, y, z)∈� denoting time and space independent variables. This system is
added an initial condition at t=0 and appropriate boundary conditions on �� that will be specified
later.

The unknowns of this system are c∈R, H ∈R and V = (u,v,w)∈R3. Equation (1) models
the radionuclide transport, Equation (2) is Darcy’s law, and Equation (3) is the incompressibility
assumption of the ground water.

In Equation (1), the positive coefficient � is the product of the porosity of the medium, the
solubility of the chemical and retardation factor due to linear adsorption. The positive coefficient �
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is the radioactive decay factor due to atom splitting, and the nonnegative function f is the source
of contaminant coming from the leak in the nuclear waste disposal site. The diffusion–dispersion
tensor in (1) is defined by

D(X,V )=dm(X)I+|V |(�l(X)E(V )+�t (X)(I−E(V )))

where the nonnegative coefficients dm, �l, �t are the effective diffusion, longitudinal mechanical
dispersion and transversal mechanical dispersion coefficients, respectively, I is the three dimen-
sional identity matrix, and

E(V )= 1

|V |2

⎛
⎜⎜⎝

u2 uv uw

uv v2 vw

uw vw w2

⎞
⎟⎟⎠ for all V = (u,v,w)

In Equation (2), K ∈R+ denotes the effective permeability of the ground.
We assume that the boundary conditions are constant in time and the presence of radionuclide

does not impact the flow. This way, H and V are independent of t . In the following, we come up
with numerical methods discretizing (1)–(3) with providing nonnegative and stable concentrations.

3. APPROXIMATION STRATEGY

3.1. Notations and mesh

Throughout the paper, the domain � is the parallelepiped [0, Lx ]×[0, Ly]×[0, Lz ], with Lx , Ly
and Lz being three positive constants. It is discretized with a regular mesh composed of paral-
lelepiped cells. Our interest is to perform far-field simulations over very large space domains. By
contrast, the size of the disposal site is very small, and therefore, the support that the source term
f is acting in is very localized in space, compared with the whole domain. Indeed, the mesh must
be very fine in and around the disposal site so as to capture the source term accurately, whereas
for computation time restriction purposes it shall not be reasonable to use a very fine mesh over
the whole 3D domain. Thus, we decide to use mesh refinements in each direction. More precisely,
we let Nx ∈N be the number of subdivisions of Lx with �xi being the i th step in the x-direction
for i =1, . . .,Nx . In the same way, we define Ny and Nz with �y j and �zk being, respectively,
the j th step in the y-direction and the kth step in the z-direction, for j=1, . . .,Ny , k=1, . . .,Nz .
The interval (0,T ) is partitioned into subintervals (tn, tn+1) and the time steps are defined by
�tn = tn+1− tn . When no confusion arises, �tn will be denoted by �t .

The meshpoints Xi, j,k= (xi , y j , zk) are the centroids of the cells Qi, j,k, with

Qi, j,k = (xi− 1
2
, xi+ 1

2
)×(y j− 1

2
, y j+ 1

2
)×(zk− 1

2
, zk+ 1

2
)

xi− 1
2
=

i−1∑
l=1

�xl, y j− 1
2
=

j−1∑
l=1

�yl , zk− 1
2
=

k−1∑
l=1

�zl

xi = xi− 1
2
+ 1

2
�xi , y j = y j− 1

2
+ 1

2
�y j , zk = zk− 1

2
+ 1

2
�zk
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Figure 1. Mesh notations in the x-direction.

We also denote the distances between two meshpoints by �xi+ 1
2
= xi+1−xi , �y j+ 1

2
= y j+1−

y j , �zk+ 1
2
= zk+1−zk , see Figure 1. The boundary of Qi, j,k is denoted by: �Qi, j,k=�i+ 1

2 , j,k∪
�i− 1

2 , j,k∪�i, j+ 1
2 ,k∪�i, j− 1

2 ,k∪�i, j,k+ 1
2
∪�i, j,k− 1

2
, where �i+ 1

2 , j,k is the shared face between the

cells Qi, j,k and Qi+1, j,k, �i, j+ 1
2 ,k is the shared face between the cells Qi, j,k and Qi, j+1,k and

�i, j,k+ 1
2
is the shared face between the cells Qi, j,k and Qi, j,k+1.

For every function � defined on R+×�, the notation �n�,�,� stands for the approximation of

�(tn, (x�, y�, z�)), for �= i, i± 1
2 , �= j, j± 1

2 , �=k,k± 1
2 . Moreover, we denote �n as the sequence

{�ni, j,k}i, j,k.

3.2. Algorithm

At the beginning, the constant in time hydrodynamic load H is calculated by combining
Equations (2) and (3) as follows:

div(K (X)∇H(X))=0 (4)

Once H is known, the velocity V is then computed from Equation (2). The details of the
discretization are provided in Section 4.1.

Once V is known, the concentration c is calculated from Equation (1), which contains two
kinds of differential operators: a convection operator and a reaction/diffusion operator. These two
operators are isolated by splitting Equation (1) into

��t c+div(cV )=0 (5)

��t c−div(D(X,V )∇c)+��c= f (6)
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Then, the approximation of cn+1 is obtained from cn by using Strang’s splitting algorithm,
cf. [10]:

cn+1=S1

(
�t

2
,S2

(
�t,S1

(
�t

2
,cn
)))

where S1 and S2 are approximation schemes for (5) and (6), respectively. This technique allows
us to develop specific numerical schemes that are adapted to each operator. The time step �t
is restricted by a CFL condition providing stability of the explicit scheme S1. The scheme S2
is implicit and does not require such a time-step selection. The details of the discretization are
expounded in Sections 4.2 and 4.3.

4. NUMERICAL SCHEMES

4.1. Discretization of Darcy’s equation

The aim of this section is to approximate the filtration velocity V . The first step consists of
calculating the hydrodynamic load H with a finite volume technique. Integrating (4) and using
Stoke’s formula over any cell Qi, j,k yields:∫

�
i+ 1

2 , j,k

K (X)�x H(X)dy dz−
∫

�
i− 1

2 , j

K (X)�x H(X)dy dz

+
∫

�
i, j+ 1

2 ,k

K (X)�yH(X)dx dz−
∫

�
i, j− 1

2 ,k

K (X)�y H(X)dx dz

+
∫

�
i, j,k+ 1

2

K (X)�z H(X)dx dy−
∫

�
i, j,k− 1

2

K (X)�zH(X)dx dy=0

The derivatives in each direction are discretized by a centered finite difference technique, and
H is then approximated at the cell centroids by:

�y j�zk

(
Ki+ 1

2 , j,k

Hi+1, j,k−Hi, j,k

�xi+ 1
2

−Ki− 1
2 , j,k

Hi, j,k−Hi−1, j,k

�xi− 1
2

)

+�xi�zk

(
Ki, j+ 1

2 ,k

Hi+1, j,k−Hi, j,k

�xi+ 1
2

−Ki, j− 1
2 ,k

Hi, j,k−Hi−1, j,k

�xi− 1
2

)

+�xi�y j

(
Ki, j,k+ 1

2

Hi, j,k+1−Hi, j,k

�zk+ 1
2

−Ki, j,k− 1
2

Hi, j,k−Hi, j,k−1

�zk− 1
2

)
=0 (7)

The harmonic mean permeability value is preferred to classical interpolation:

Ki+ 1
2 , j,k= Ki, j,kKi+1, j,k�xi�xi+1

Ki, j,k�xi+1+Ki+1, j,k�xi
(8)

In the same way, we define Ki, j+ 1
2 ,k and Ki, j,k+ 1

2
, respectively, on �i, j+ 1

2 ,k and �i, j,k+ 1
2
.
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The numerical scheme (7) involves solving a linear system in the form AH = L , where L
contains Dirichlet or Neumann boundary conditions, and the matrix A is seven diagonal and
strongly dominant. The resolution of this system is carried out by a standard gradient method.
In practice (see Section 5), it is crucial that it be pre-conditioned in order to face permeability’s
sharp gradients. We use incomplete Cholesky’s factorization on that purpose. Once H is known,
the velocity V = (u,v,w) is finally computed from (2) at the centroids of the interfaces:

ui+ 1
2 , j,k = −Ki+ 1

2 , j,k

Hi+1, j,k−Hi, j,k

�xi+ 1
2

, vi, j+ 1
2 ,k =−Ki, j+ 1

2 ,k

Hi, j+1,k−Hi, j,k

�y j+ 1
2

wi, j,k+ 1
2

= −Ki, j,k+ 1
2

Hi, j,k+1−Hi, j,k

�zk+ 1
2

(9)

Notice that the velocity satisfies the discrete free-divergence property:

ui+ 1
2 , j,k−ui− 1

2 , j,k

�xi
+

vi, j+ 1
2 ,k−vi, j− 1

2 ,k

�y j
+

wi, j,k+ 1
2
−wi, j,k− 1

2

�zk
=0 (10)

4.2. Discretization of the transport equation (5)

The results obtained in this paragraph are justified in Appendix A. First, a first-order accurate
numerical scheme approximating (5) is obtained by solving approximate Riemann problems on
each interface of a cell (see Appendix A):

�i, j,kc
n+1
i, j,k = �i, j,kc

n
i, j,k

− �t

�xi
(u+

i+ 1
2 , j,k

cni, j,k+u−
i+ 1

2 , j,k
cni+1, j,k−u+

i− 1
2 , j,k

cni−1, j,k−u−
i− 1

2 , j,k
cni, j,k)

− �t

�y j
(v+

i, j+ 1
2 ,k

cni, j,k+v−
i, j+ 1

2 ,k
cni, j+1,k−v+

i, j− 1
2 ,k

cni, j−1,k−v−
i, j− 1

2 ,k
cni, j,k)

− �t

�zk
(w+

i, j,k+ 1
2
cni, j,k+w−

i, j,k+ 1
2
cni, j,k+1−w+

i, j,k− 1
2
cni, j,k−1−w−

i, j,k− 1
2
cni, j,k)

:=Mi, j,k (11)

This scheme is conservative, first-order accurate, l∞-stable and positivity preserving under the
CFL condition

�t

�i, j,k

⎛
⎝u−

i+ 1
2 , j,k

+u+
i− 1

2 , j,k

�xi
+

v−
i, j+ 1

2 ,k
+v+

i, j− 1
2 ,k

�y j
+

w−
i, j,k+ 1

2
+w+

i, j,k− 1
2

�zk

⎞
⎠�� (12)
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with �=1 for all i, j,k. Then, we reduce the spurious numerical diffusion by adding antidiffusion
terms in each direction. Setting

�ci+ 1
2 , j,k :=ci+ 1

2 , j,k−ci, j,k, �ci, j+ 1
2 ,k :=ci, j+ 1

2 ,k−ci, j,k, �ci, j,k+ 1
2
:=ci, j,k+ 1

2
−ci, j,k

�+
i+ 1

2 , j,k
=u+

i+ 1
2 , j,k

⎛
⎝1−

�tu+
i+ 1

2 , j,k

�i+ 1
2 , j,k�xi

⎞
⎠ , �−

i+ 1
2 , j,k

=u−
i+ 1

2 , j,k

⎛
⎝1−

�tu−
i+ 1

2 , j,k

�i+ 1
2 , j,k�xi+1

⎞
⎠

�+
i, j+ 1

2 ,k
=v+

i, j+ 1
2 ,k

⎛
⎝1−

�tv+
i, j+ 1

2 ,k

�i, j+ 1
2 ,k�y j

⎞
⎠ , �−

i, j+ 1
2 ,k

=v−
i, j+ 1

2 ,k

⎛
⎝1−

�tv−
i, j+ 1

2 ,k

�i, j+ 1
2 ,k�y j+1

⎞
⎠

�+
i, j,k+ 1

2
=w+

i, j,k+ 1
2

⎛
⎝1−

�tw+
i, j,k+ 1

2

�i, j,k+ 1
2
�zk

⎞
⎠ , �−

i, j,k+ 1
2
=w−

i, j,k+ 1
2

⎛
⎝1−

�tw−
i, j,k+ 1

2

�i, j,k+ 1
2
�zk+1

⎞
⎠

r+
i+ 1

2 , j,k
=

u+
i− 1

2 , j,k
�ci− 1

2 , j,k

u+
i+ 1

2 , j,k
�ci+ 1

2 , j,k

, r−
i− 1

2
=

u−
i+ 1

2 , j,k
�ci+ 1

2 , j,k

u−
i− 1

2 , j,k
�ci− 1

2 , j,k

, r+
i, j+ 1

2 ,k
=

v+
i, j− 1

2 ,k
�ci, j− 1

2 ,k

v+
i, j− 1

2 ,k
�ci, j+ 1

2 ,k

r−
i, j− 1

2 ,k
=

v−
i, j+ 1

2 ,k
�ci, j+ 1

2 ,k

v−
i, j− 1

2 ,k
�ci, j− 1

2 ,k

, r+
i, j,k+ 1

2
=

w+
i, j,k− 1

2
�ci, j,k− 1

2

w+
i, j,k+ 1

2
�ci, j,k+ 1

2

, r−
i, j,k− 1

2
=

w−
i, j,k+ 1

2
�ci, j,k+ 1

2

w−
i, j,k− 1

2
�ci, j,k− 1

2

	x+
i+ 1

2 , j,k
=


(
r+
i+ 1

2 , j,k
,
�xi+ 1

2

�xi

)
, 	x−

i+ 1
2 , j,k

=


(
r−
i+ 1

2 , j,k
,
�xi+ 1

2

�xi+1

)

	y+
i, j+ 1

2 ,k
=


(
r+
i, j+ 1

2 ,k
,
�y j+ 1

2

�y j

)

	y−
i, j+ 1

2 ,k
=


(
r−
i, j+ 1

2 ,k
,
�y j+ 1

2

�y j+1

)
, 	z+

i, j,k+ 1
2
=


(
r+
i, j,k+ 1

2
,
�zk+ 1

2

�zk

)

	z−
i, j,k+ 1

2
=


(
r−
i, j,k+ 1

2
,
�zk+ 1

2

�zk+1

)

where 
 is a function satisfying 0�
(a,b)�2bmax(0,min(1,a)) for all (a,b)∈R×R+, our
advection scheme S1 is defined by

�i, j,kc
n+1
i, j,k =Mi, j,k

+1

2

�t

�xi

(
�−
i+ 1

2 , j,k
	x−
i+ 1

2 , j,k
�ci+ 1

2 , j,k

�xi+1

�xi+ 1
2

−�−
i− 1

2 , j,k
	x−
i− 1

2 , j,k
�ci− 1

2 , j,k

�xi
�xi− 1

2
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+�+
i− 1

2 , j,k
	x+
i− 1

2 , j,k
�ci− 1

2 , j,k
�xi−1

�xi− 1
2

−�+
i+ 1

2 , j,k
	x+
i+ 1

2 , j,k
�ci+ 1

2 , j,k
�xi

�xi+ 1
2

)

+1

2

�t

�y j

(
�−
i, j+ 1

2 ,k
	y−
i, j+ 1

2 ,k
�ci, j+ 1

2 ,k

�y j+1

�y j+ 1
2

−�−
i, j− 1

2 ,k
	y−
i, j− 1

2 ,k
�ci, j− 1

2 ,k

�y j
�y j− 1

2

+�+
i, j− 1

2 ,k
	y+
i, j− 1

2 ,k
�ci, j− 1

2 ,k

�y j−1

�y j− 1
2

−�+
i, j+ 1

2 ,k
	y+
i, j+ 1

2 ,k
�ci, j+ 1

2 ,k

�y j
�y j+ 1

2

)

+1

2

�t

�zk

(
�−
i, j,k+ 1

2
	z−
i, j,k+ 1

2
�ci, j,k+ 1

2

�zk+1

�zk+ 1
2

−�−
i, j,k− 1

2
	z−
i, j,k− 1

2
�ci, j,k− 1

2

�zk
�zk− 1

2

+�+
i, j,k− 1

2
	z+
i, j,k− 1

2
�ci, j,k− 1

2

�zk−1

�zk− 1
2

−�+
i, j,k+ 1

2
	z+
i, j,k+ 1

2
�ci, j,k+ 1

2

�zk
�zk+ 1

2

)
(13)

This conservative scheme, (13), is l∞-stable and positivity preserving if

�t

( |ui+ 1
2 , j,k|

�i+ 1
2 , j,kmin(�xi ,�xi+1)

,
|vi, j+ 1

2 ,k|
�i, j+ 1

2 ,kmin(�y j ,�y j+1)
,

|wi, j,k+ 1
2
|

�i, j,k+ 1
2
min(�zk ,�zk+1)

)
�1 (14)

for all i, j,k, and (12) holds with

�=

⎧⎪⎨
⎪⎩

1 if B>A2

A+√
A2−B

B
otherwise

(15)

A simpler (but more restrictive) way of implementing (12) in this case is to select �= 1
2 instead

of (15), see Appendix A.
In the following, the function 
 is derived from the Superbee limiter [11] and writes:


(a,b)=2bmax(0,min(1,2a),min(a,2))

Spiral velocity advection test. Our numerical scheme is tested against an academic problem. We
let � be the unit cube (0,1)×(0,1)×(0,1), meshed with the nonuniform grid in Figure 2. The
initial condition is discontinuous: its value is 1 inside the ball with center (0.3,0.5,0.15) and radius
0.1, and 0 everywhere else. The velocity field is spiral: V (x, y, z)= (−2�(y− 1

2 ),2�(x− 1
2),0.65).

The exact solution of this problem remains constant on the spiral characteristic lines imposed by
the velocity field. Notice that the transported ball passes through the parallelepiped (0.2,0.5)×
(0.2,0.4)×(0.3,0.4) where the mesh is refined. This test is reputedly hard because it propagates
a discontinuous front. To account for the use of numerical anti-diffusion, we compare the exact
solution and the numerical solutions obtained with the first-order Murman scheme (11) and the
limited scheme (13) after one revolution (at t=1). The exact solution is 1 inside the ball

B={(x, y, z), (x−0.3)2+(y−0.5)2+(z−0.8)2�0.12}
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Figure 2. Mesh (65×47×50 elements, left) and initial condition (right) for the
spiral velocity advection test case.

Figure 3. Spiral velocity advection test: Top: from left to right, numerical solution computed with the
limited scheme (13) at times t=0.25, t=0.5 and t=0.75. Bottom: from left to right, numerical solution
computed with the limited scheme (13), Murman scheme (11), and exact solution at time t=1. The

contour values are 0.01, 0.02, 0.05, 0.1, 0.5, 0.7.

and 0 elsewhere. In Figure 3, both numerical schemes offer stable and component-wise nonnegative
concentrations. When using the first-order Murman scheme (11), the numerical diffusion is so
strong that the numerical solution barely approximates the exact solution. However, our limitation
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Table I. L1–error and numerical diffusion obtained from the Murman (11) and Limited (13) schemes.

L1–error: Numerical diffusion:

‖Ch (1, .)−C(1, .)‖L1(�)

∫
�\BCh(1, X)dX

Murman scheme Limited scheme Murman scheme Limited scheme

s=1
8.087×10−3 5.284×10−3 3.944×10−3 2.552×10−3

22 272 cells
s=1/2

7.417×10−3 2.414×10−3 3.731×10−3 1.230×10−3
178 176 cells
s=1/4

6.503×10−3 1.204×10−3 3.247×10−3 5.976×10−4
1 425 408 cells
s=1/8

5.236×10−3 6.752×10−4 2.617×10−3 3.368×10−4
11 403 264 cells

technique drastically cuts down the numerical diffusion, though no anti-diffusion is used in the
cross directions. As an outcome, the maximum value 1 of the numerical solution obtained from (13)
after one turn (at t=1) is almost exactly preserved.

Let us denote Ch as the piecewise constant function whose value is Cn
i on each cell Qi

and time interval [tn, tn+1[. In Table I, we report the L1–error at t=1, ‖Ch(1, .)−C(1, .)‖L1(�)

and the numerical diffusion, that we define by the mass outside of the theoretical support,
B,

∫
�\BCh(1, X)dX . Four different meshes are used: the coarsest grid has 22 272 mesh elements

and nonconstant mesh-sizes (�xi ,�y j ,�zk)i, j,k. We refine this coarse mesh recursively by using
a constant ratio, s, to obtain the three other grids with mesh-sizes (s�xi ,s�y j ,s�zk)i, j,k, for
s= 1

2 ,
1
4 ,

1
8 . The mesh in Figure 2 corresponds with s= 1

2 .
These results quantitatively exhibit that our limitation procedure reduces the numerical diffusion

and L1–error. Figure 4 shows a 0.2th order L1–convergence for the Murman scheme (11) and a
0.99th order L1–convergence for the Limited scheme (13), hence illustrating the better accuracy
of the latter. Note that since the exact solution is discontinuous, the order of convergence cannot
be greater than 1 with any numerical scheme.

4.3. Discretization of the reaction-diffusion equation (6)

In this section, we develop a finite volume numerical scheme approximating (6). Equation (6) is
semi-discretized in time by using implicit Euler’s scheme:

�(X)
c(tn+1, X)−c(tn, X)

�t
−div(D(X,V (X))∇c(tn+1, X))

+��(X)c(tn+1, X)= f (tn+1, X)+O(�t)

Integrating this equation over any cell Qi, j,k along with using Stokes’ formula, we obtain the
numerical scheme

�i, j,k(1+��t)cn+1
i, j,k−

�t

�xi�y j�zk
Li, j,kc

n+1=�i, j,kc
n
i, j,k+�t f n+1

i, j,k (16)
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5.5
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6.5
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7.5

slope=0.2059

Murman scheme

slope=0.9908

Limited scheme

–0.5

Figure 4. The order of L1-convergence for the Murman (11) and limited scheme (13) is the slope of the
line plotting −Ln(‖Ch (1, .)−C(1, .)‖L1(�)) versus −Ln(s).

where the discrete divergence operator

Li, j,kc
n+1 := Fi+ 1

2 , j,k−Fi− 1
2 , j,k+Fi, j+ 1

2 ,k−Fi, j− 1
2 ,k+Fi, j,k+ 1

2
−Fi, j,k− 1

2

is the sum of the numerical diffusive fluxes across the interfaces:

F�,�,� ≈

∫
��,�,�

D(X,V (X))∇c(tn+1, X)·m�,�,� d�

for �= i, i± 1
2 , �= j, j± 1

2 , �=k,k± 1
2 . Notice that the tensor D is symmetric but not

diagonal. We decide to evaluate the diagonal terms D1,1, D2,2 and D3,3 at the centroids
(xi± 1

2
, y j , zk), (xi , y j± 1

2
, zk), (xi , y j , zk± 1

2
) of the interfaces. The nondiagonal terms D1,2, D1,3

and D2,3 are evaluated on the edges of the interfaces, a 3D counterpart of Reference [3]. The
derivatives of c(tn+1, X) are approximated by centered finite difference formulas. Our numerical
fluxes in the x-direction are then defined by:

Fi+ 1
2 , j,k = �y j�zk

⎛
⎝D1,1

i+ 1
2 , j,k

cn+1
i+1, j,k−cn+1

i, j,k

�xi+ 1
2

+1

2

⎛
⎝D1,2

i+ 1
2 , j+ 1

2 ,k

cn+1
i+ 1

2 , j+ 1
2 ,k

−cn+1
i+ 1

2 , j,k

�y j+ 1
2

+D1,2
i+ 1

2 , j− 1
2 ,k

cn+1
i+ 1

2 , j,k
−cn+1

i+ 1
2 , j− 1

2 ,k

�y j− 1
2

⎞
⎠

+1

2

⎛
⎝D1,3

i+ 1
2 , j,k+ 1

2

cn+1
i+ 1

2 , j,k+ 1
2
−cn+1

i+ 1
2 , j,k

�zk+ 1
2

+D1,2
i+ 1

2 , j,k− 1
2

cn+1
i+ 1

2 , j,k
−cn+1

i+ 1
2 , j,k− 1

2

�zk− 1
2

⎞
⎠
⎞
⎠
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The fluxes in the other directions, Fi, j+ 1
2 ,k and Fi, j,k+ 1

2
, are defined in the same fashion. Inside

the domain, the concentrations at the interfaces are linearly interpolated from their values at the
meshpoints, for instance,

cn+1
i+ 1

2 , j,k
= cn+1

i, j,k+
1

2

�xi
�xi+ 1

2

(cn+1
i+1, j,k−cn+1

i, j,k)

cn+1
i+ 1

2 , j+ 1
2 ,k

= cn+1
i+ 1

2 , j,k
+ 1

2

�y j
�y j+ 1

2

(cn+1
i+ 1

2 , j+1,k
−cn+1

i+ 1
2 , j,k

)

(17)

Then, to calculate the terms D1,2
i± 1

2 , j± 1
2 ,k

, D1,3
i± 1

2 , j,k± 1
2
and D2,3

i, j± 1
2 ,k± 1

2
, the values of the geolog-

ical coefficients �l, �t and dm are evaluated at the interfaces with the same interpolation procedure
as the concentrations in (17) from their values at the meshpoints. The velocities at the edges of the
interfaces are interpolated from their values obtained by the numerical scheme (9). For example,
the velocity in the x-direction is interpolated as

ui+ 1
2 , j+ 1

2 ,k =ui+ 1
2 , j,k+

1

2

�y j
�y j+ 1

2

(ui+ 1
2 , j+1,k−ui+ 1

2 , j,k)

ui+ 1
2 , j,k+ 1

2
=ui+ 1

2 , j,k+
1

2

�y j
�y j+ 1

2

(ui+ 1
2 , j,k+1−wi+ 1

2 , j,k)

ui,, j+ 1
2 ,k = 1

2 (ui+ 1
2 , j+ 1

2 ,k+ui− 1
2 , j+ 1

2 ,k), ui,, j,k+ 1
2
= 1

2(ui+ 1
2 , j,k+ 1

2
+ui− 1

2 , j,k− 1
2
)

After multiplying the implicit scheme (16) by �xi�y j�zk , a linear system is to be solved, the
matrix of which is symmetric 19-diagonal. With realistic data, the term �/�t often dominates
the cross terms containing D1,2, D1,3, D2,3 when using the CFL condition (12), (14); this makes
the matrix strongly diagonal dominant and the present scheme nonnegativity preserving (see for
example [12] and its references) in the applications.

The gradient method is used to inverse this system that is improved by incomplete Choleski
pre-conditioning procedure.

5. APPLICATION: THE 3D COUPLEX TEST-CASE

In this section we perform a 3D extension of the well-known 2D Couplex 1 benchmark, cf.
[2, 13–18]. The goal of this test is to simulate the underground displacement of radioactive Iodine
129I coming from a leak in a nuclear waste repository that lies in a clay layer. This clay layer
is surrounded by two limestone layers (from Oxfordian and Dogger era), while a Marl layer
represents the near ground on the top of the domain, see Figure 5.

The domain of simulation is the parallelepiped �= (0,25000m)×(0,25000m)×(0,695m),
which is split into four subdomains:

• The Dogger subdomain is the set {(x, y, z)∈�,0�z�200}.
• The clay subdomain is {(x, y, z)∈�,200�z� 55

25000 (x+ y)+295}.
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z

595 m

295 m

200 m

0 m

300 m

25000 m

695 m

Clay

Storage site (height=6m)

Limestone

Marl

x

Figure 5. Domain for the 3D couplex test (right) and front face of the domain (left).

Figure 6. Mesh for the 3D Couplex benchmark: 236 250 elements. Whole domain (left), zoom of the
top-right-front region (right).

• The limestone subdomain is {(x, y, z)∈�, 55
25000 (x+ y)+295�z�595}.

• The marl subdomain is the set {(x, y, z)∈�,595�z�695}.
The repository R is modeled by the parallelepiped

R={(x, y, z)∈[18440,21680]×[3320,4320]×[244,250]}
Notice that the depth of the domain is quite small compared with its length and width. The

dimensions of the repository are also very small compared with the whole domain. Consequently,
the mesh is refined around the repository to capture the source of contaminant accurately. In
our code, the mesh is handled manually: the user has the option to split the length, width and
height of the domain into distinct sub-intervals and select how many cells each sub-interval will
be partitioned into. This way, we use a very fine mesh on the intervals {x ∈ (18440,21680)},
{y∈(3320,4320)} and {z∈ (244,250)} so that the repository is captured by several mesh elements.
In the rest of the domain we let the mesh coarser in order for the computation time to be fast, see
Figure 6.

The data set is entirely provided by the benchmark and is realistic, implying that the geological
coefficients �, k, �l , �k and dm are sharply discontinuous (see Table II). The pollution is simulated
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Table II. Geological coefficients.

� K (m/year) dm (m2/year) �l (m) �t (m)

Dogger 0.1 25.2288 5×10−4 50 1
Clay 0.001 3.1536×10−6 9.48×10−7 0 0
Limestone 0.1 6.3072 5×10−4 50 1
Marl 0.1 3.1536×10−5 5×10−4 0 0

Figure 7. Source term f̄ (mol ·m−3) versus time (years).

over one million years, while the leak lasts for about a hundred thousand years. The source term f ,
modeling the leak, vanishes outside the repository and is assumed to be constant in space inside.
More precisely, we set

f (t, X)= f̄ (t)

|R| �R(X)

where �R stands for the characteristic function of the repository R, |R| is the volume of R, and
f̄ is a piecewise linear function whose graph is plotted in Figure 7 and values are imposed by
the benchmark. The period of the element 129I is T =1.57×107 years, and the radioactive decay
factor is given by �=Ln2/T .

We assume that there is no contamination at time t=0: our initial condition is c(0, .)≡0 over
the whole domain. The boundary conditions are summarized on Table III.

Our numerical result for the hydrodynamic load (expressed in m) and velocity (expressed in
m/year) are displayed in Figures 8 and 9. The hydrodynamic load accounts for the pressure on
the fluid. Hence, the flow will be directed from the higher loads to the lower loads. The speed
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Table III. Boundary conditions (the symbol ‘n.a.’ means ‘not applicable’).

Dogger Clay Limestone Marl

Bottom boundary D∇c ·m−cV ·m=0
n.a. n.a. n.a.

(z=0) V ·m=0
Top boundary

n.a. n.a. n.a.
c=0

(z=695) H =250
+ 90

25000 x− 70
25000 y

Left boundary ∇c ·m=0 ∇c ·m=0 ∇c ·m=0 ∇c ·m=0
(x=0) H =287− y

25000 V ·m=0 H =250− 50
25000 y V ·m=0

Right boundary ∇c ·m=0 ∇c ·m=0 ∇c ·m=0 ∇c ·m=0
(x=25000) H =289− 2

25000 y V ·m=0 H =310− 60
25000 y V ·m=0

Front boundary ∇c ·m=0 ∇c ·m=0 ∇c ·m=0 ∇c ·m=0
(y=0) H =287+ 2

25000 x V ·m=0 H =250+ 50
25000 x V ·m=0

Back boundary ∇c ·m=0 ∇c ·m=0 transparent in c ∇c ·m=0
(y=25000) H =286+ x

25000 V ·m=0 H =200+ 50
25000 x V ·m=0

Figure 8. Hydrodynamic load contours for the 3D COUPLEX test case with 10 isovalues
between 180m (light) and 340m (dark).

Figure 9. Velocity (m/year) for the 3D COUPLEX test case (8.11×10−10�|V |�0.022).

ranges from 8.11×10−10m/year to 0.022m/year. It is the fastest in the limestone layer, while it is
negligible in both clay and Marl layer, as an outcome of very small permeabilities. Our computed
concentrations are displayed in Figures 10–14. The convection phenomenon can be observed in
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Figure 10. Numerical concentrations of 129I from top to bottom at times t=0, t=10110, t=70000
years. The left column in an oblique view of the domain and the right column is a view of the domain

from the top. The contour values are 10−12 (light), 10−10 (medium), 10−8 (dark) mol/m3.

the Dogger and limestonelayers, while diffusion is dominant in the clay and Marl layers due to a
very small velocity.

First, the pollutant progressively invades the clay layer, in which the permeability and velocity
are very weak and avoid advection/dispersion phenomena. After about 10110 years, the pollutant
diffuses out of its storage clay layer to the Dogger layer, see Figure 10. After about 70000 years,
some radio-elements also reach the limestone layer. In Figures 11 and 12, the radioelements
progressively invade the underground.

In the limestone and Dogger layers, the molecular diffusion still plays a role. However, the
velocity in these layers is significant and most of the motion is then due to advection and mechanical
dispersion. Indeed, the invasion progresses the fastest in the limestone layer, where the speed is
the highest.
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Figure 11. Numerical concentrations of 129I from top to bottom at times t=100000, t=200000 and
t=300000. The left column in an oblique view of the domain and the right column is a view of the

domain from the top. The contour values are 10−12 (light), 10−10 (medium), 10−8 (dark) mol/m3.

We can observe that some radionuclides hit the Marl layer after about 500 000 years and
eventually reach the surface of the ground. When the source of contaminant is no longer active,
the pollution progressively dissapears as the concentrations become too weak to counter the effect
of the radioactive decay phenomenon, see Figures 13 and 14. The particles are then destroyed
along time as a result of radioactive decay.

The behavior of our 3D numerical solutions matches former 2D results [2, 3] and confirms our
expectations: some radionuclides reach the ground surface before being destroyed.

However, our results should be considered more realistic than 2D results, as real grounds
are 3D. Indeed, since the top of the clay layer is an inclined plane whose slopes are different
in the x-and y-directions, the geometry of the present test case cannot be described by a 2D
domain.
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Figure 12. Numerical concentrations of 129I from top to bottom at times t=500000, t=106 and t=2×106

years. The left column in an oblique view of the domain and the right column is a view of the domain
from the top. The contour values are 10−12 (light), 10−10 (medium), 10−8 (dark) mol/m3.

6. COMPUTATIONAL RESOURCES

All the simulations presented in this paper were performed on a MacBookPro machine, featuring
a 2.33GHz intel Core 2 Duo processor with a clock rate of 667MHz and a total memory of
2000MBytes.

Indeed, a main concern with 3D simulations is whether the numerical solutions are computed
fast enough.

In order to test the performance of our method, we compare the runtimes for the 3D COUPLEX

test case over 100 000 years on three different independent grids: grid 1:159,936 (68×49×48)
mesh elements, grid 2: 236,250 (75×70×45)mesh elements and grid 3: 1 347,597 (131×127×81)
mesh elements.
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Figure 13. Numerical concentrations of 129I from top to bottom at times t=4×106, t=7×106 and
7.5× t=106 years. The left column in an oblique view of the domain and the right column is a view of
the domain from the top. The contour values are 10−12 (light), 10−10 (medium), 10−8 (dark) mol/m3.

Table IV shows that our numerical solutions are calculated in a reasonable time. The CPU
time per iteration per grid point is almost constant, hence showing that the rate of convergence is
independent of time and mesh. Note that the three grids are not related to each other, and grid 2
offers the smallest CFL ratio in the left-hand side of (12). Therefore, it requires the most iterations.

7. CONCLUSION

3D numerical simulations involving heterogeneous data have always been an interesting mathe-
matical and engineering challenge.
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Figure 14. Numerical concentrations of 129I from top to bottom at times t=8×106, t=9×106 and
t=107 years. The left column in an oblique view of the domain and the right column is a view of the

domain from the top. The contour values are 10−12 (light), 10−10 (medium), 10−8 (dark) mol/m3.

We have developed an effective method to simulate the radionuclide transport through highly
heterogeneous 3D grounds. Indeed, our method makes it possible to handle realistic data, as shown
in Section 5.

The use of mesh refinements in each direction enables us to discretize the source term without
much impacting the computation time.

Our anti-diffusive technique reduces the spurious numerical diffusion, so the advection operator
is discretized accurately. Advection and reaction/diffusion schemes are then plugged into an
operator splitting procedure gathering all the phenomena in the model.

For sustainable development concerns, we observed that geological coefficients and pressure
conditions can be such that escaped radionuclides reach the ground surface. Therefore, underground
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Table IV. Comparison of CPU time on three grids for a simulation time of 100 000 years.

Grid 1 Grid 2 Grid 3

Meshes 159 936 259 008 1 347 597
Memory used (MBytes) 74 120 612
Number of iterations 719 1065 797
CPU (s) 1038 2570 10 440
CPU/iteration/grid point 9.02×10−6 9.31×10−6 9.72−6

disposal sites might be unsafe for populations and yield a disaster if not carefully implemented.
For this reason, we feel that this paper might be used as an illustration within a politico-social
context.

An interesting possible extension to this work is to study whether a change in the data can
reduce the threat. Indeed, other pressure conditions would influence the flow through pervious
rocks, hence modifying the particle transport pattern. However, the molecular diffusion effect only
depends on the nature of the rocks and would remain unchanged. So, we feel that even a suitable
flow would not be enough to prevent the radionuclide from reaching the surface. Other alternatives
include changing the storage environment and investigating what permeability, storage depth and
rocks surrounding the disposal site might yield a safer outcome.

APPENDIX A: CONSTRUCTION OF THE SCHEME (13)

To place matters in perspective, consider Equation (5) in one space dimension, denote x as the
independent space variable in a space domain (0, Lx), that is an interval. The meshpoints are
denoted by xi , as defined as in Section 3.1, with steps �xi and �xi± 1

2
. We construct a numerical

scheme from the widely used transport-projection technique (see [3, 19]).
Denoting cni as an approximation of 1

�xi

∫ x
i+ 1

2
x
i− 1

2
c(tn, x)dx , we integrate Equation (5) over one

cell (xi− 1
2
, xi+ 1

2
):

�xi�i c
n+1
i =�xi�i c

n
i −

∫ tn+1

tn
ui+ 1

2
c(t, xi+ 1

2
)−ui− 1

2
c(t, xi− 1

2
)dt (A1)

Then, the concentration c(t, xi+ 1
2
) at the interface xi+ 1

2
is approximated by c̃(t,0), where c̃ is

the solution to the following exact Riemann problem with constant velocity field:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�t c̃+
ui+ 1

2

�i+ 1
2

�x c̃=0, (t, x)∈R+×R

c̃(0, x)=cni , x ∈ (−∞,0)

c̃(0, x)=cni+1, x ∈ (0,+∞)

so c(t, xi+ 1
2
)=

⎧⎨
⎩
cni if ui+ 1

2
>0

cni+1 if ui+ 1
2
<0
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Repeating this process on the interface xi− 1
2
and plugging the results into (A1) yield the Murman

scheme with nonconstant velocity:

�i c
n+1
i =�i c

n
i − �t

�xi
(u+

i+ 1
2
cni +u−

i+ 1
2
cni+1−u+

i− 1
2
cni−1−u−

i− 1
2
cni ) (A2)

To increase the accuracy, we notice that �t c=−(1/�)�x(uc) and if c is regular enough,

�2t c=
1

�
�x
( u
�

�x(uc)
)

Therefore, integrating the second degree Taylor polynomial for c with respect to t over one cell
leads to:

∫ x
i+ 1

2

x
i− 1

2

�(x)c(tn+1, x)dx =
∫ x

i+ 1
2

x
i− 1

2

�(x)c(tn, x)dx

−�t (ui+ 1
2
c(tn, xi+ 1

2
)−ui− 1

2
c(tn, xi− 1

2
))

+�t2

2

⎛
⎝ u2

i+ 1
2

�i+ 1
2

�x c(tn, xi+ 1
2
)−

u2
i− 1

2

�i− 1
2

�x c(tn, xi− 1
2
)

⎞
⎠

+�t2

2

(
c(tn, xi+ 1

2
)
ui+ 1

2

�i+ 1
2

�xu(xi+ 1
2
)−c(tn, xi− 1

2
)
ui− 1

2

�i− 1
2

�xu(xi− 1
2
)

)

+O(�t3) (A3)

Then, c(tn, xi+ 1
2
) is approximated by interpolating cn linearly on the interface xi+ 1

2
and the

derivative of c is discretized centrally:

cn
i+ 1

2
= 1

2

(
�xi+1

�xi+ 1
2

cni + �xi
�xi+ 1

2

cni+1

)
, �xc(tn, xi+ 1

2
)≈

cni+1−cni
�xi+ 1

2

Negliging �xu in (A3) (since in three space dimensions our velocity is divergence free), we obtain
the Lax-Wendroff-like numerical scheme:

�i c
n+1
i = �i c

n
i − �t

2�xi

(
ui+ 1

2

(
�xi+1

�xi+ 1
2

cni + �xi
�xi+ 1

2

cni+1

)
−ui− 1

2

(
�xi−1

�xi− 1
2

cni + �xi
�xi− 1

2

cni−1

))

+ �t2

2�xi

⎛
⎝ u2

i+ 1
2

�i+ 1
2

ci+1−ci
�xi+ 1

2

−
u2
i− 1

2

�i− 1
2

ci −ci−1

�xi− 1
2

⎞
⎠ (A4)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2009)
DOI: 10.1002/fld



3D RADIONUCLIDE TRANSPORT IN POROUS MEDIA

In three space dimensions, the scheme (11) is obtained in the same fashion as (A2), by
integrating (5) over one cell and solving Riemann problems in each direction x , y, z. That scheme
can be rewritten as

�i, j,kc
n+1
i, j,k = �i, j,kc

n
i, j,k−Ai, j,k− �t

�xi

(
u−
i+ 1

2 , j,k
�cn

i+ 1
2 , j,k

+u+
i− 1

2 , j,k
�cn

i− 1
2 , j,k

)

− �t

�y j

(
v−
i, j+ 1

2 ,k
�cn

i, j+ 1
2 ,k

+v+
i, j− 1

2 ,k
�cn

i, j− 1
2 ,k

)

− �t

�zk

(
w−
i, j,k+ 1

2
�cn

i, j,k+ 1
2
−w+

i, j,k− 1
2
�cn

i, j,k− 1
2

)
(A5)

where �cn
i+ 1

2 , j,k
, �cn

i, j+ 1
2 ,k

, �cn
i, j,k+ 1

2
are defined in Subsection 4.2 and

Ai, j,k :=
ui+ 1

2 , j,k−ui− 1
2 , j,k

�xi
+

vi, j+ 1
2 ,k−vi, j− 1

2 ,k

�y j
+

wi, j,k+ 1
2
−wi, j,k− 1

2

�zk
=0

from (10). The right-hand side of (A5) is then a convex combination of the discrete concentrations
at time tn as long as condition (12) holds, implying nonnegativity preservation and stability of the
scheme (11).

Then, using the notations

cn
i+ 1

2 , j,k
= 1

2

(
�xi+1

�xi+ 1
2

cni, j,k+
�xi

�xi+ 1
2

cni+1, j,k

)
, cn

i, j+ 1
2 ,k

= 1

2

(
�y j+1

�y j+ 1
2

cni, j,k+
�y j

�y j+ 1
2

cni, j+1,k

)

cn
i, j,k+ 1

2
= 1

2

(
�zk+1

�zk+ 1
2

cni, j,k+
�zk

�zk+ 1
2

cni, j,k+1

)

our 3D antidiffusive scheme is defined by writing the numerical fluxes of (A4) in each direction:

�i, j,kc
n+1
i, j,k = �i, j,kc

n
i, j,k−

�t

�xi

⎛
⎝ui+ 1

2 , j,kc
n
i+ 1

2 , j,k
−ui− 1

2 , j,kc
n
i− 1

2 , j,k

−�t

2

⎛
⎝ u2

i+ 1
2 , j,k

�i+ 1
2 , j,k

�cn
i+ 1

2 , j,k

�xi+ 1
2

−
u2
i− 1

2 , j,k

�i− 1
2 , j,k

�cn
i− 1

2 , j,k

�xi− 1
2

⎞
⎠
⎞
⎠

− �t

�y j

⎛
⎝vi, j+ 1

2 ,kc
n
i, j+ 1

2 ,k
−vi, j− 1

2 ,kc
n
i, j− 1

2 ,k

−�t

2

⎛
⎝ v2

i, j+ 1
2 ,k

�i, j+ 1
2 ,k

�cn
i, j+ 1

2 ,k

�y j+ 1
2

−
v2
i, j− 1

2 ,k

�i, j− 1
2 ,k

�cn
i, j− 1

2 ,k

�y j− 1
2

⎞
⎠
⎞
⎠
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− �t

�zk

⎛
⎝wi, j,k+ 1

2
cn
i, j,k+ 1

2
−wi, j,k− 1

2
cn
i, j,k− 1

2

−�t

2

⎛
⎝w2

i, j,k+ 1
2

�i, j,k+ 1
2

�cn
i, j,k+ 1

2

�zk+ 1
2

−
w2
i, j,k− 1

2

�i, j,k− 1
2

�cn
i, j,k− 1

2

�zk− 1
2

⎞
⎠
⎞
⎠ (A6)

Notice that scheme (13) can be obtained from the second degree Taylor polynomial for c as
in (A3), using divV =0 and negliging all the terms in the form �t2�2abc with notations a= x, y, z,
b= x, y, z and a �=b. Hence, this scheme is still first-order accurate. However, it is more accurate
than (11). Indeed, our antidiffusion technique cuts down the numerical diffusion considerably, as
observed in the spiral velocity test case (Section 4.2).

Finally, we stabilize the numerical scheme (A6) by limiting the antidiffusion terms (we refer,
for example, to [3, 19–21] and their references). Scheme (A6) is written as a perturbation of
Murman-3D scheme (11):

�i, j,kc
n+1
i, j,k =Mi, j,k+ 1

2

�t

�xi

(
�−
i+ 1

2 , j,k
�ci+ 1

2 , j,k
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2
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�ci− 1
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�xi− 1

2

+�+
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�ci− 1

2 , j,k
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�xi− 1
2

−�+
i+ 1

2 , j,k
�ci+ 1

2 , j,k

�xi
�xi+ 1

2

)

+1

2

�t

�y j

(
�−
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�y j+ 1
2
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2 ,k
�ci, j− 1

2 ,k

�y j
�y j− 1

2

+�+
i, j− 1

2 ,k
�ci, j− 1
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�y j−1

�y j− 1
2

−�+
i, j+ 1

2 ,k
�ci, j+ 1

2 ,k

�y j
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2

)

+1

2

�t
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(
�−
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2
�ci, j,k+ 1

2

�zk+1

�zk+ 1
2

−�−
i, j,k− 1

2
�ci, j,k− 1

2
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2
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2
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2
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2

−�+
i, j,k+ 1

2
�ci, j,k+ 1

2

�zk
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2

)

Multiplying each anti-diffusion term by an appropriate limiter, we obtain the numerical
scheme (13), for which

cn+1
i, j,k = cni, j,k+Ai+ 1

2 , j,k�c
n
i+ 1

2 , j,k
−Bi− 1

2 , j,k�c
n
i− 1

2 , j,k
+Ai, j+ 1

2 ,k�c
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i, j+ 1

2 ,k
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n
i, j− 1

2 ,k
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2
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2
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2
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2
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with

Ai+ 1
2 , j,k = −
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and
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Since 1
b
(a,b)�−2 and

1

b


(a,b)

a
�2

for all a,b, the coefficients Ai+ 1
2 , j,k, Bi− 1

2 , j,k, Ai, j+ 1
2 ,k , Bi, j− 1

2 ,k , Ai, j,k+ 1
2
, Bi, j,k− 1

2
are all

nonnegative under (14), and

Ai+ 1
2 , j,k+Bi− 1

2 , j,k+Ai, j+ 1
2 ,k+Bi, j− 1

2 ,k+Ai, j,k+ 1
2
+Bi, j,k− 1

2
�2Ri, j,k�t−�t2Si, j,k

Therefore, cn+1
i,k,k is a convex combination of cni, j,k, c

n
i−1, j,k, c

n
i+1, j,k, c

n
i, j−1,k , c

n
i, j+1,k , c

n
i, j,k−1,

cni, j,k+1 as long as (12) holds with � defined in (15) or alternatively, �= 1
2 ; the numerical scheme (13)

is l∞-stable and positivity preserving.
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