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THE LINE BUNDLES ON THE MODULI OF PARABOLIC
G-BUNDLES OVER CURVES AND THEIR SECTIONS

BY YVES LASZLO AND CHRISTOPH SORGER

RESUME. - Soient X une courbe complexe, lisse, projective et connexe et G un groupe algebrique complexe,
simple et simplement connexe. Nous calculons Ie groupe de Picard du champ des G-fibres quasi-paraboliques sur
X, decrivons explicitement ses generateurs pour G de type classique ou G-z, puis identifions les espaces de sections
globales correspondants avec les espaces de vacua de Tsuchiya, Ueno et Yamada. La methode utilise Ie theoreme
d'unifbrmisation qui decrit ces champs comme doubles quotients de certains groupes algebriques de dimension
infinie. Nous decrivons Ie fibre dualisant du champ des G'-fibres et montrons qu'il admet une unique racine carree,
que nous construisons explicitement. Si G n'est pas simplement connexe, la racine carree depend du choix d'une
theta-caracteristique. Ces resultats sur les champs permettent de retrouver Ie theoreme de Drezet et Narasimhan
(pour 1'espace de modules grossier) et de montrer un enonce analogue dans Ie cas G = Sp^r' Nous montrons aussi
que Ie module grossier des SOr -fibres n'est pas localement factoriel pour r > 7.

ABSTRACT. - Let X be a complex, smooth, complete and connected curve and G be a complex simple and
simply connected algebraic group. We compute the Picard group of the stack of quasi-parabolic G-bundles over
X, describe explicitly its generators for classical G and G-z and then identify the corresponding spaces of global
sections with the vacua spaces of Tsuchiya, Ueno and Yamada. The method uses the uniformization theorem which
describes these stacks as double quotients of certain infinite dimensional algebraic groups. We describe also the
dualizing bundle of the stack of G-bundles and show that it admits a unique square root, which we construct
explicitly. If G is not simply connected, the square root depends on the choice of a theta-characteristic. These
results about stacks allow to recover the Drezet-Narasimhan theorem (for the coarse moduli space) and to show an
analogous statement when G = Sp-zr- We prove also that the coarse moduli spaces of semi-stable SOr -bundles
are not locally factorial for r >_ 7.

1. Introduction

(1.1) Fix a simple and simply connected algebraic group G over C and a Borel subgroup
B C G. Let X be a smooth, complete and connected curve over C and j? i , . . . ,pn be
distinct points of X, labeled by standard (i.e. containing B) parabolic subgroups Pi, . . . , Pn
of G (we allow n = 0). Let M^^P.) be the moduli stack of quasi-parabolic G-bundles
(cf. 8.3) of type P = (Pi, . . . , Pn) at p = (j?i , . . . ,pn) and denote by X(P,) the character
group of Pi.

THEOREM. - There is a line bundle C on M^^p.P.) such that

7 : P'^M^^P)) ——Z£ x nTO)
z=l
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500 Y. LASZLO AND C. SORGER

IfG is of type Ar or Cr (r > 1) then C is the determinant line bundle (cf. 6.5); if G is of
type Br (r > 3), Dr (r ;> 4) or G^ then £ is the pfaffian line bundle (cf. 7.8) associated
to the standard representation of G.

If G is of type EG ,£7 ,Es,F^ we believe that we can choose C such that we
have /^(G) = V^G), where respectively d(G) = 6,12,60,6 and V^G) is the
determinant line bundle (cf. 6.5) associated respectively to the fundamental representation
p(G) = WQ^W-J^W^^W^ (cf. the discussion in 1.4).

(1.2) Suppose that the points p are instead labeled by finite dimensional irreducible
representations A = ( A i , . . . , \n) of G and that an additional integer t, the level, is fixed.
The choice of a representation A of G is equivalent to the choice of a standard parabolic
subgroup P C G and a dominant (with respect to B) character \ e X(P) (cf. 8.1).
Therefore, the labeling of the points p by the representations A defines the type P of a
quasi-parabolic G-bundle, that is the stack Mp^r(p,P^ and, by the above theorem, a line
bundle C(i,^) over M]^r(p,P_). The global sections of C(i,\) give a vector space, the
space of generalised parabolic G-theta-functions of level i, which is canonically associated
to (X,J),A). In mathematical physics, the rational conformal field theory ofTsuchiya, Ueno
and Yamada [31] associates also to (X,J),A,^) a vector space: the space of conformal
blocks Vx(p•,\^(r} (cf. [29] for an overview).

THEOREM. - Suppose that G is classical or G^. There is a canonical isomorphism

(1.2.1) HQ(MP^(^P)^(i^))-^Vx(^\^\

In particular, dlmHO(M^r(p,P.),C(f',•)(_))is given by the Verlinde formula.
For n == 0, this has been proved independently by Beauville and the first author [3]

for G = SLr and by Fallings [10] and Kumar, Narasimhan and Ramanathan [16] for
arbitrary simple and simply connected G. For arbitrary n and G = SLr this has been
proved by Pauly [23] and will be proved in section 8 for arbitrary simple and simply
connected G and arbitrary n, using (1.3) (and therefore [8]) and (5.1) below, following
the lines of [3] and [23].

(1.3) The above results are proved via the uniformiz.ation theorem. Restrict for simplicity
of the introduction to n = 0. Suppose p G X and denote X* = X — p. Define
D = Spec(Op), where Op is the formal completion of the local ring Op at p and
D* = Spec(Kp) where Kp is the quotient field of Op. Let LG (resp. L+G, resp. LxG)
be the group of algebraic morphisms from -D* (resp. D, resp. X*) to G (cf. 3.6 for the
precise definition).

THEOREM. - The algebraic stack M.Q is canonically isomorphic to the double quotient
stack LxG\LG/L^G. Moreover, the projection

QG:=LG/L^G^MG

is locally trivial for the etale topology.
This is proved in [3] for G = SLr. The extension to arbitrary semi-simple G has been

made possible by Drinfeld and Simpson [DS] in response to a question by the first author.
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They prove that if S is a C-scheme and E a G-bundle over X x S then, locally for the
etale topology on S, the restriction of E to X* x S is trivial, which is essential for the
proof. The above theorem is valid more generally for semi-simple, not necessarily simply
connected G over an algebraically closed field fc, after replacing "etale" by "fppf" if the
characteristic of k divides the order of 7Ti(C?(C)).

(1.4) Consider the pullback morphism, deduced from TT of 1.3,

7r*:Pic(A^G)——Pic(QG).

The Picard group of <3c is known ([20], [16]) to be canonically isomorphic to Z, which
reduces proving Theorem 1.1 to proving that TT* is an isomorphism. We will show that
the inject! vity of a will follow from the fact that LxG has no characters which in turn
will follow from the fact that LxG is reduced and connected. Moreover, the surjectivity
of a would follow from the simple connectedness of LxG. Both topological properties,
connectedness and simple connectedness of LxG are affirmed in [16] and we believe them
to be true. Whereas we will prove the connectedness of LxG, following an idea of V.
Drinfeld, we do not see how to prove the simple connectedness of LxG. The injectivity
is enough to prove the first part of Theorem 1.1, but to identify the generator C we
should prove the surjectivity of a. For classical G and G^ we do this by constructing
in (7.8) a line bundle on MG^ called the pfaffian line bundle, which will pull back to
a generator of Pk^Qc)-

(1.5) The construction of the pfaffian line bundle (7.8) may be used to prove the following
Proposition, valid more generally for semi-simple, not necessarily simply connected G over
any algebraically closed field of characteristic / 2.

PROPOSITION. - For every theta-characteristic ^ on X, there is a canonical square-root
V^ of the dualizing sheaf uj^ of M.G-

(1.6) The last section will be devoted to Ramanathans moduli spaces MG of semi-stable
G-bundles. We will show how some of the results for the stack M.G will be true also for
the moduli spaces MG. In particular we will recover (and extend) the Drezet-Narasimhan
theorem.

THEOREM. - There is a canonical isomorphism Pic(MG») ̂  ~S-L. If G is of type A or C
then L is the determinant bundle and moreover MG is locally factorial in this case. If G is
of type Br (r > 3), Dr (r > 4:) or G^ then L or L^2 is the determinant bundle.

This theorem has also been proved, independently and with a different method, by
Kumar and Narasimhan [17].

The Picard groups of MG and MG for semi-simple, not necessarily simply connected
G, and the question for which G exactly, MG is locally factorial are studied in forthcoming
joint work with Beauville. We show there for example that Pic(Mspm^) is generated by
the determinant line bundle and in particular that Mspin^ is not locally factorial for r > 7
by "lifting" to Spin^ the proof we give here (9.5) for the analogous statement for Mso^-

We would like to thank A. Beauville and C. Simpsonfor useful discussions and V. Drinfeld
for his suggestion in (5.1) and for pointing out an inaccuracy in an earlier version of this
paper.
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502 Y. LASZLO AND C. SORGER

2. Some Lie theory

(2.1) Let Q be a simple finite dimensional Lie algebra over C. We fix a Cartan subalgebra
1) C Q and denote by A the associated root system. We have the root decomposition
S = I) 6 (OaeASa) • The Lie subalgebra Q-a C [So, fl-a] 6 So, isomorphic as a Lie algebra
to 5(2, will be denoted by sl^(a). Moreover we choose a basis II == { a i , . . . , Or} of A and
we denote by A+ the set of positive roots (with respect to II). Put b = 1) C (OaeA+Sa).
For each a e A+, we denote by Ha the coroot of a, i.e. the unique element of [flcn 0-a]
such that a(H^) = 2, and we denote by X^ e 0a and X_c, G fl-a the elements such that
[Ha^Xa] = 2Xa and [Ha^X-a] == —2X_a. When a is one of the simple roots o^, we
write Hi,Xi,Yi instead of fl^X^Yo,. Let (wi) be the basis of I)* dual to the basis
(Hi). Let P be the weight lattice and P+ C P be the set of dominant weights. Given a
dominant weight A, denote LA the associated simple g-module with highest weight A and
v\ its highest weight vector. Finally ( , ) will be the Cartan-Killing form normalized such
that for the highest root 0 we have (0,6) = 2.

(2.2) Let LQ = o 0c C((z)) be the loop algebra of Q. We will also consider its sub-
Lie-algebras £+3 = Q 0c C[[^]], £>°fl = g 0c ^C[[^]], and L<°Q = 0 0c ^C^-1].
There is a natural 2-cocycle

^Q : LQ X LQ——————>C

(X(^f^Y^g)^(X^Y)Res(gdf)

defining a central extension LQ of Q:

(2.2.1) 0——C——LQ——LQ——0.

Let L~^Q be the extension of L^Q obtained by restricting the above extension to L^Q. As
the cocycle is trivial over L^Q this extension splits.

Let I be a positive integer. A representation of LQ is of level i if the center c acts by
multiplication by t. Such a representation is called integrable if X 0 / acts locally nilpotent
for all X 0 / e Qa 0c C((^)). The theory of affine Lie algebras [Kac] affirms that the
irreducible integrable representations of level i of LQ are classified (up to isomorphism)
by the weights P^ = {A G P+/(<9, A) < i}. We denote by HxW the irreducible integrable
representation of level i and highest weight A G P^. In the sequel we will use the following
facts, which follow from the construction of 'H\(i\.

(2.2.2) ^ = PW)]^05 = {v^ nx(£)/L>°Q.v = 0}

(2.2.3) T~i\(f,) is generated by L\ over £^5 with only one relation:

(Xe^z-^^.v^O

If A = 0, the corresponding representation, which we denote simply by 7^), is called
the basic representation of level L

4^^ SfiRIE - TOME 30 - 1997 - N° 4
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(2.3) Let p : fl -» s1(V) be a representation of fl. Then p induces a morphism of Lie
algebras LQ —> Lsl(V) and we can pull back the central extension (2.2.1):

C L9 LQ

C Ls\{V) Lsl(V)

The cocycle of the central extension -Lg is of the type dp^y. Define the Dynkin index of
the representation p of Q by the number dp.

LEMMA 2.4. - Let V = ̂ ^n^ be the formal character ofV. Then we have

dp=^n^\(He)2

A

where 0 is the highest root.

Proof. - By definition of the cocycle, we have dp = Tr{p{Xe)p(X-e))' Decompose
the s^W-module V as CzV^0, where V^ is the standard irreducible ^-module with
highest weight di. We may realize V^ as the vector space of homogeneous polynomials
in 2 variables x and y of degree di. Then Xe acts as x 9 / 9 y , and X-e as y 9 / 9 x . Using
the basis x^^'^l = 0 , . . . ,d , of V{di), we see

dp=^^fc(d,+l-fc).
i fe=0

The formal character of the s (2 (<9) -module V^ is ̂ ^o e^0-^0 where a^ is the positive
root of s\^(6} and pe = ^ae. Therefore we are reduced to prove the equality

^fc(ri+ 1 - k) =^({dpe - kae){He))2 = |^(d- 2fc)2

k=0 k=0fc=0

which is easy. •
REMARK 2.5. - The Dynkin index ([6], Ch.l, §2) of a representation has been introduced

to the theory of G-bundles over a curve by Fallings [10] and Kumar, Narasimhan,
Ramanathan [16].

We are interested here in the Dynkin index of 0, denoted dg, which we define to be the
greatest common divisor of the dp where p runs over all representations p : Q —> sl(V).

PROPOSITION 2.6. - The Dynkin index of Q is as follows
Type of Q

d,

X s.t. dg = dp(A)

Moreover, for an

Ar

1

Wl

iy repn

Br (r ^ 3)

2

w\
esentation p :

Cr

1

ZZ7i

0 -^ ^

Dr (r > 4)

2

wi
^(V), we ha\

Ee
6

WQ

^e dp =

Ej

12

W7

= 0 mo

Es
60

ws
dds.

F4

6

W4

G2

2

wi
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504 Y. LASZLO AND C. SORGER

Proof. - Using the fact that dy^w = rwdy + rydw if V and W are two ^-modules
of rank ry and r^ ([6], Ch.l, §2) proving the proposition reduces to prove it for the
fundamental weights where the Dynkin numbers are known from Dynkin ([6], Table 5).
We reproduce his numbers for the convenience of the reader (and correct some misprints
in his table):

Ar

Br (r ^ 3)

Cr

Dr (r > 4)

^. = ( r
V

/2r - 1 \
^ = 2 for

\z-l )

, ^-2\
^z = . -,\ I - 1 /

/2r - 2 \
d^. = 2 f o r z = 1

\i-l )

~[)forz

i = 1,... ,r

/2r-2
~ U-3

, . . . , r - 2

=1, . . .

— 1 and

) for i =

and d^^

r

d^ = 2(--2)

= l , . . . , r

, = d^ = 2('--3)

For non classical 0, we have

G2

F4

Ee

Ej

Es

d^^

2

18

6

36

1500

C^2

8

882

24

360

85500

"OT3

126

150

4680

5292000

d^

6

1800

297000

8345660400

^5

150

17160

141605100

d^e

6

648

1778400

^

12

14700

^8

60

3. The stack MG

In this section, k will be an algebraically closed field, G a reductive algebraic group
over k and X a smooth, complete and connected curve over k.

(3.1) Let Z be a scheme over fc. Recall that a principal G-bundle over Z (or just
G-bundle for short), is a scheme E —^ Z equipped with a right action of G such that,
locally in the flat topology, E is trivial, i.e. isomorphic to G x Z as a G-homogeneous
space. In particular, E is affine, flat and smooth over Z. Moreover, the above conditions
imply that E is even locally trivial for the etale topology.

If F is a quasi-projective scheme on which G acts on the left and E is a G-bundle,
we can form E(F) = E x° F the associated bundle with fiber F. It is the quotient of
E x F under the action of G defined by ^.(e,/) = ( e . g . g ' 1 / ) . Let p : G —> G' be a
morphism of algebraic groups. Then, as G acts on G' via p, we can form the extension
of the structure group of a G-bundle £, that is the G7-bundle E(G'). Conversely, if
F is a G'-bundle, a reduction of structure group FG is a G-bundle E together with an
isomorphism FG(G') -^ F. If p is faithful, such reductions are in one to one correspondence
with sections of the associated bundle F / G = F(Gf/G).

(3.2) Let us collect some well known generalities on stacks for further reference. Let
Aff/fc be the flat affine site over fc, that is the category of fc-algebras equipped with the
fppf topology. By k-space (resp. k-group) we understand a sheaf of sets (resp. groups)

46 SERIE - TOME 30 - 1997 - N° 4
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over Aff/fc. Any fc-scheme can (and will) be considered as a fc-space. The category of
fc-spaces is closed under direct limits. A fc-space (fc-group) will be called an ind-scheme
(resp. ind-group) if it is direct limit of a directed system of schemes. Remark that an
ind-group is not necessarily an inductive limit of algebraic groups. We will view k-
stacks from the pseudo-functorial point of view, i.e. a fe-stack X will associate to every
fc-algebra R a groupoid X(JZ) and to every morphism of fc-algebras u : R —> R a
functor u* : X^R') —^ X(R) together with isomorphisms of functors {u o v)* ^ v* o n*
satisfying the usual cocycle condition. The required topological properties are that for
every x ^ y G obX(J?) the presheaf lsom(x,y) is a sheaf and that all descent data are
effective ([18], 2.1). Any fc-space may be seen as a fc-stack, by considering a set as a
groupoid (with the identity as the only morphism). Conversely, any fc-stack X such that
X(J?) is a discrete groupoid (ie. has only the identity as automorphisms) for all fc-algebras
R, is a fc-space. A morphism F : X —^ 2) will associate, for every fc-algebra JZ, a functor
X(7?) —^ 2)(J?) satisfying the obvious compatibility conditions. Let S = Spec(JR) and
consider a morphism 77 : S —> 2), that is an object 97 of 2) (S). The fiber Xy, is a stack
over S. The morphism F is representable if X^ is representable as an algebraic space
for all S == Spec(R). A stack X is algebraic if the diagonal morphism X —)- X x X is
representable, separated and quasi-compact and if there is an algebraic space X and a
representable, smooth, surjective morphism of stacks P : X —^ X.

Suppose Z is a fe-space and that the fc-group r acts on Z. Then the quotient stack [ Z / T ]
is defined as follows. Let R be a fc-algebra. The objects of [Z/T}(R) are pairs (E^a)
where E is a r-bundle (the definition in (3.1) makes of course sense for fc-groups) over
Spec(J?) and a : E —^ Z is G-equivariant. The arrows are defined in the obvious way
and so are the functors [Z/r](J?') -^ [Z/r](R).

(3.3) We denote by M.G ihe stack of G-bundles over X. It is defined as follows. For
any /c-algebra R denote Xp the scheme X x^ Spec(R). Then objects of A4o{R) are
G-bundles over Xp and morphisms of Mc(R) are isomorphisms of G-bundles.

PROPOSITION 3.4. - The stack M.G is algebraic and smooth. Moreover we have
dimA^G = (9 ~ l)dimG.

The above proposition is well known. That M.G is algebraic for G = GLr is the content
of theorem 4.14.2.1 of [LMB]. For general (reductive) G consider an embedding G C GLr.
Using the fact that if X —^ 2) is a representable morphism of stacks then X is algebraic if
2) is, it is then enough to show that for an embedding p : G <—^ G' the morphism of stacks
M.G —> M.G' given by extension of the structure group is representable. But this follows
from Grothendiecks theory of Hilbert schemes as reductions of the structure group of a
G'-bundle F to G correspond to sections of F / G (cf. 3.1).

(3.5) Choose a closed point p on X and set X* = X — p. Let Op be the completion of the
local ring of X at p, and Kp its field of fractions. Set D = Spec(Op) and D" = Spec(Kp).
We choose a local coordinate z at p and identify Op with k[[z}} and Kp with k((z)). Let R
be a fc-algebra. Define XH = X Xj, Spec(J?), X^ = X* x^ Spec(jR), Dp = Spec(R[[z}})

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



506 Y. LASZLO AND C. SORGER

and Dp^ = Spec(R((z))). Then we have the cartesian diagram

D^ —— Dn

^R ———^ ^R

We denote by A^ the fc-algebra T{X^,Ox-\
(3.6) We denote by LG the loop group of G that is the fc-group defined by

R ̂  G(^R((z))), where R is any fc-algebra. The group of positive loops, that is the
fc-group jR i-> G(.R[[^]]) will be denoted by £+G and the group of negative loops, that is
the fc-group R ̂  G(R[z~1}) will be denoted by L~G. The group of loops coming from
X*, i.e. the fe-group defined by R \-^ G(A^), will be denoted by LxG. Finally, we will
also use the fc-group L<OG defined by R h-> G^"1!?^"1]). The Lie algebra of LG is
LQ, as the kernel of the homomorphism LG(R[e}) —^ LG(R) is LQ(R) = Q (g)c R((z)).
For the same reason we have Lie(£+G) == £+g and Lie(LxG) = £^5. We denote Qo
the quotient fc-space LG/L^G which we discuss in more detail in Section 4.

(3.7) Consider the functor TG which associates to a fc-algebra R the set Tc(^) of
isomorphism classes of triples (J5, p, a) where £' is a G-bundle over XR, p '. G x X^—>
E\x^ a trivialization of E over X^ and a : C? x Dp -^ E\DR a trivialization of E over J9^.

PROPOSITION 3.8. - The k-group LG represents the functor TG.

Proof. - Let ( E , p , a ) be an element of Tc{R). Pulling back the trivializations p and
a- to D^ provides two trivializations p* and a* of the pull back of E over D^: these
trivializations differ by an element 7 == p*~1 o a* of G(^((^))). Conversely, let us start
from an element 7 of G(R({z))). This element defines an isomorphism of the pullbacks
over D^ of the trivial G-bundle over X^ and the trivial G-bundle over Dp. These two
G-bundles glue together to a G-bundle E in a functorial way by [BL2] (in fact [BL2] is
written for SLr but the extension to G is straightforward). These constructions are inverse
to each other by construction. •

(3.9) Consider the functor PG which associates to a fe-algebra R the set Pc(R) of
isomorphism classes of pairs (E, p), where E is a G-bundle over XR and p a trivialization
of E over X^.

PROPOSITION 3.10. - The k-space Qc represents the functor PG.

Proof. - Let R be a fc-algebra and q an element of QcW' By definition there exists a
faithfully flat homomorphism R —^ R' and an element 7 of G^'^z))) such that the image
of q in QG^R') is the class of 7. To 7 corresponds by Proposition 3.8 a triple ( E ' , p ' , a ' )
over Xp.. Let JT = K 0j% J^, and let {E'{, ///), (^ ̂ ) denote the pull-backs of (£', p')
by the two projections of Xpn onto Xp>. Since the two images of 7 in G(J?"((^))) differ
by an element of G^"^]]), these pairs are isomorphic. So the isomorphism p'^p[~1 over
X^,, extends to an isomorphism u : E'{ —> E'^ over X^i, satisfying the usual cocycle
condition (it is enough to check this over X*, where it is obvious). Therefore { E ' . p ' )
descends to a pair {E, p} on Xp as in the statement of the proposition. Conversely, given
a pair {E, p) as above over Xp, we can find a faithfully flat homomorphism R -^ R' and
a trivialization a ' of the pull back of E over DR' (after base change, we may assume

4e SfiRIE - TOME 30 - 1997 - N° 4
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that the central fiber of the restriction of E to Dp has a section then use smoothness to
extend this section to Dp). By Proposition 3.8 we get an element 7' of G(R\{z))) such
that the two images of 7' in G{Rff{{z))) (with R1 = R ^p R') differ by an element
of G^jR"^]]); this gives an element of Qo^K). These constructions are inverse to each
other by construction. •

We will make use of the following theorem of.Drinfeld and Simpson:

THEOREM. - [S]Suppose G is semi-simple. Let R be a k-algebra and E be a G-bundle
over Xp. Then the restriction of E to X^ is trivial, locally for the fppf topology over
Spec(R). If char (k) does not divide the order o/7Ti(G(C)), then this is even true locally
for the etale topology over Spec(R).

3.12. Proof of Theorem 1.3. - The universal G-bundle over X x Qc (Proposition 3.10),
gives rise to a map TT : Qc —^'MG- This map is LjcG-invariant, hence induces a morphism
of stacks TT : LxG\Qo —^ -MG' On the other hand we can define a map M.G —)> LxG\Qc
as follows. Let R be a fc-algebra, E a G-bundle over Xn. For any JZ-algebra K', let T{R}
be the set of trivializations p of ER' over X^,. This defines a .R-space T on which
the group LxG acts. By Theorem 3.11, it is a LjcG-bundle. To any element of T{R')
corresponds a pair (£^/, p), hence by Proposition 3.10 an element of Qo^R')' In this way
we associate functorially to an object E of McW a LjcG-equivariant map a : T —> Qo.
This defines a morphism of stacks M.G —> LxG\Qc which is the inverse of TT. The
second assertion means that for any scheme S over k (resp. over k such that char{k)
does not divide the order of 71-1 (G(C))) and any morphism f : T —^ MG, the pull back
to S of the fibration TT is fppf (resp. etale) locally trivial, i.e. admits local sections (for
the fppf (resp. etale) topology). Now / corresponds to a G-bundle E over X x S. Let
s € S. Again by Theorem 3.11, we can find an fppf (resp. etale) neighborhood U of s
in S and a trivialization p of E ^ x - x u ' The pair {E,p) defines a morphism g : U —^ QG
(Proposition 3.10) such that TT o g = /, that is a section over U of the pull back of the
fibration TT. •

4. The infinite grassmannian QG

Throughout this section we suppose G semi-simple and simply connected over C. We
will gather together some results on QG which we will use later (cf. Fallings [10]).

(4.1) Choose a faithful representation G C SLr. For N > 0, we denote by LG(N){R)
the set of matrices A{z) in G(R{(z))) C SLr{R{(z))) such that for both A{z) and
A{z)~1, the coefficients have a pole of order < N. This defines a subfunctor LG{N)
of LG which is obviously representable by an (infinite dimensional) affine C-scheme. In
particular, the C-group L^G = LG(0) is an affine group scheme. The C-group LG is an
ind-group, direct limit of the sequence of the schemes {LG{N))N>O- This ind-structure
does not depend on the embedding G C SLr. The C-group LxG has the structure of an
ind-group induced by the one of LG.

(4.2) Let T-i be an infinite dimensional vector space over C. We define the C-space
End(7^) by R ̂  End(H 0c K), the C-group GL(7i,) as the group of its units and
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PGL(T-C) by GL(K)/G^. TheJC-group LG acts on LQ by the adjoint action. We define
the adjoint action of LG on LQ as follows:

Ad(7).(a^) = (Ad(7).a^+Res^o(7-1^7^/))

where 7 G LG(R), a = (a^s) e LQ(R) and ( , ) is the R (0)) -bilinear extension
of the Cartan-Killinj^form normalized as in (2.1). Consider an integral highest weight
representation TT : LQ —> End(T^). The basic result we will use in the sequel is the
following:

PROPOSITION 4.3. - (Fallings) Let R be a C-algebra, 7 G LG(R). Locally over Spec(R),
there is an automorphism u of Tin = 1-i 0c ̂  unique up to J?*, ^MC/? ^/za?

(4.3.1) ^(a)n-1 = 7r^(Ad(7).a)

/or anv a e LQ{R).
(4.4) An immediate corollary of the above proposition is that the representation TT may

be "integrated" to a (unique) algebraic projective representation of LG, i.e. that there is
a morphism of C-groups TT : LG -^ PGL(H) whose derivate coincides with TT up to
homothety. Indeed, thanks to the unicity property the automorphisms u associated locally
to 7 glue together to define an element 7r(7) € PGL(T-L){R) and still because of the
unicity property, TT defines a morphism of C-groups. The assertion on the derivative is
consequence of (4.3.1). The above proposition (and its corollary) are proved in ([3], App.
A) in the case SLr\ its generalization to G is straightforward.

(4.5) The quotient C-space Qo '.= LG/L^G is an ind-scheme, direct limit of a sequence
of projective varieties Qc{N). This is shown for G = SLr in [3] Corollary 2.4 (take
QsLr(^) = L S L r ( N ) / L ~ ^ S L r ) and in the general case there is an analogue lattice
description. Recall that an ind-scheme is called reduced (resp. irreducible, integral) if it
is a direct limit of an increasing sequence of reduced (resp. irreducible, integral) schemes.
By Lemma 6.3 of [3] an ind-scheme is integral if and only if it is irreducible and reduced.

PROPOSITION 4.6. - The ind-scheme QG is integral.

Proof. - First of all, remark that the multiplication map fi : L^G x L^G —> LG is
an open immersion (argue as in [BL1] Proposition 1.11 and use that if Y -^ S is proper
with a section a and G C SLr is reductive, then any G-bundle E trivial along a and such
that E(SLr) is trivial is itself trivial). Then, according to Fairings (see [BL1] for the case
SLr), the ind-group L~G is integral. This may be seen by looking at (L~G)red and using
Shavarevich's theorem that a closed immersion of irreducible ind-affine groups which is an
isomorphism on Lie algebras, is an isomorphism [Sh]. Note that irreducibility is due to the
fact that any element can be deformed to a constant in G; that Lie(Z/~G?) —> Lie(L~G)red
is an isomorphism can be seen by using the fact that Lie(G) is generated by nilpotent
elements. It follows that L^G, which is a semidirect product of G and L~G, is integral.
Finally as G is simply connected, we see that the ind-scheme Qc is integral: as by the
above L^G -» Qc is an open immersion, it is enough to show that Qc is irreducible.
Using that connected ind-groups are irreducible ([Sh], Proposition 3) and the quotient
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morphism LG —^ QG we reduce to prove the connectedness of LG which follows from
the simple connectedness of G. •

The quotient LG/L-^G has also been constructed by Kumar [15] and Mathieu [20] as
inductive limit of reduced projective Schubert varieties.

PROPOSITION 4.7. - The ind-structure on QG coincides with the one of Kumar and Mathieu.

Proof. - Both Kumar and Mathieu define the structure of ind-variety on LG/L^G using
representation theory of Kac-Moody algebras; for instance Kumar, following Slodowy [Sl],
considers the basic representation U(^} for a fixed I, and a highest weight vector ^. The
subgroup L^G is the stabilizer of the line kv^ in P(H{C)), so the map g i-> gvi induces an
injection ^ : LG/L^G^P^H^)). Let U be the subgroup of L+G consisting of elements
A(z) such that A(0) is in the unipotent part of a fixed Borel subgroup B C G\ to each
element w of the Weyl group is associated a "Schubert variety" X^ which is a finite
union of orbits of U. It turns out that the image under in of Xw is actually contained in
some finite-dimensional projective subspace P^ of P(7<(f)), and is Zariski closed in P^.
This defines on X^ a structure of reduced projective variety, and a structure of ind-variety
on LG/L^G = limX^.

By (4.4), the irreducible integrable representation 1-i{f) of LQ can be integrated to a
projective representation of LG. It follows that the above map ^ is a morphism of ind-
schemes of QG into P('H(f)) (which is the direct limit of its finite-dimensional subspaces).
But ii is even an embedding. It is injective by what we said above; let us check that it
induces an injective map on the tangent spaces. Since it is equivariant under the action of
LG it is enough to prove this at the origin ^ of QG. Then it follows from the fact that the
annihilator of ^ in the Lie algebra LQ is L-^Q (2.2.2). Therefore the restriction of ^ to
each of the subvarieties Qc(N) is proper, injective, and injective on the tangent spaces,
hence is an embedding (in some finite-dimensional projective subspace of P(7-^(f))). Each
X^ is contained in some Qo(N), and therefore is a closed subvariety of QoW^d. Each
orbit of U is contained in some X^ since the X^'s define an ind-structure, each Qc(N)
is contained in some X^, so that Qc(N)^d is a subvariety of X^. Since QG is the direct
limit of the QG(N)^, the two ind-structures coincide. •

(4.8) Consider the basic representation 7^(1) of ffl and the central extension

(4.8.1) i_^^-^C?L(^(l))-^P<?£(^(l))—.l,

As T-t(l) may be integrated to a projective representation of LG by (4.4), pulling back
(4.8.1) to LG, defines a central extension to which we refer as the canonical central
extension of LG:

(4.8.2) 1—Gm—£G—LG—1

An easy calculation shows Lie(LG) = Ly, in particular LG is non trivial.

LEMMA 4.9. - The extension (4.8.2) splits canonically over L^G.
It suffices to show that the representation TT : L^~Q -^ End(H) integrates to an algebraic

representation TT : £+5 —> GL(H(1)), which follows from the fact that in the case
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7 ^ L^G(R) we can normalize the automorphism n of Proposition 4.3. Indeed, as
LQ = [^(l)]^ by (2.2.2), it follows from (4.3.1) that u maps (Lo)n to (Z/o)^. Now
(Lo)R is a free J?-module of rank one, hence we may choose u (in a unique way) such
that it induces the identity on (£o)j?. •

Let Gm x L^G —^ Gm be the character defined by the first projection. We define C^
as the line bundle on the homogeneous space Qo = LG/L^G associated to \ == ̂ 1.

(4.10) The Picard group of QG is known to be infinite cyclic ([16], [20]) and may
be described as follows. Consider the morphism of C-groups (p : SL^ —> LSL^ defined
by (for R a C-algebra)

SL^R)-^SLM{z)))

( a b \ ^ ( d ^-1^
\c dj \bz a )

and moreover the morphism of C-groups ^ : LSL^ —> LG deduced from the map
SL^ —> G associated to the highest root 6. Let (p = ̂ ocf): SL^ —^ LG. The Borel subgroup
i?2 C SL^ of upper triangular matrices maps to L^G by construction, hence we get a
morphism ^ : P^ —> Qa. An easy calculation shows that the derivative Lie(^) maps the
standard s^-triplet {e, /, h} = [Xe,X_e, He} to the s^-triplet {X,e^z, Xe<S)z-\ -He}
of LS. It follows from the description of Pic(Qc) of [16], that the pullback defines an
isomorphism:

^*:Pic(<3G)——Pic(P^)

LEMMA 4.11. - We have ^*(/^) = Opi(l), i.e. Pic(QG) = Z^.
The restriction of (4.8.2) to SL^ splits, hence (p lifts to a morphism (p : SL^ -^ £G

and all we have to do is to calculate the character of -82 —> L^G -x-^ Gm' In order to do
this it is enough to calculate the character of B^ on the SL^ -module generated by VQ. By
(2.2.3) this is the standard representation, so we are done. •

In the following we denote, in view of the above, C^ by 0<^(1).

5. The ind-group LxG

Throughout this section, G is semi-simple and simply connected over C and X is a
smooth, complete and connected curve over C.

PROPOSITION 5.1. - The ind-group LxG is integral.

COROLLARY 5.2. - Every character \ : LxG -> Gm is trivial.

Proof. - The differential of ^, considered as a function on LxG, is everywhere vanishing.
Indeed, since \ is a group morphism, this means that the deduced Lie algebra morphism
Q^Ax -^ k is zero (recall Ax = F(X*, Ox*). But as the derived algebra [g®Ax, Q^Ax}
is [s, fl] 0 Ax and therefore equal to Q 0 Ax (as Q is simple), any Lie algebra morphism
Q <S)Ax —^ k is trivial. As LxG is integral we can write LxG as the direct limit of integral
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varieties Vn. The restriction of ^ to Vn has again zero derivative and is therefore constant.
For large n, the varieties Vn contain 1. This implies x\Vn = 1 an(! we are done. •

Proof of the proposition. - To see that the ind-group LxG is reduced, consider the etale
trivial morphism TT : Q —^ M.G' Locally for the etale topology, TT is a product 0 x LxG
(where 0 is an etale neighborhood of M.G\ Then use that Q is reduced (Section 4). To
prove irreducibility, as connected ind-groups are irreducible by Proposition 3 of [Sh], it
is enough to show that LxG is connected.

The idea how to prove that LxG is connected is due to V. Drinfeld: consider distinct
points p i , . . . ^ p i ofX which are all distinct from p. Define X^ = X — {p,j?i, • . . ipi}
and, for every C-algebra R, define X^ == X^ Xk Spec(R). Denote by Ax, n the C-
algebra r(X^, Ox* ) and by L\G the C-group R ̂  G(Ajc^). As LxG, the C-group
L\G is an ind-group. The natural inclusion Ax, ̂  C Ax,^^ defines a closed immersion
J '' Lx —^ x

LEMMA 5.3. - The closed immersion L\G —> L^^'1G defines a bijection

Tro^G^Tro^G).

Proof. - Consider the morphism L^G —^ LG defined by the developpement in
Laurent series at pz^-i. We get a morphism <^+i : L^G —> Q^1, where we denote
Q^+1 = LG/L^G. (of course Qc = Q^1 but we emphasize here that we will consider
the point p^+i and not p.)

CLAIM. - The morphism <^+i : L^G —> Q^1 induces an isomorphism on the level of
stacks ^+1 : L^G/L^G c^ Q^1 and is locally trivial for the etale topology.

The lemma reduces to the claim. Indeed, as G is semi-simple and simply connected,
we have ^([S^1]"71) = 1 for i = 0,1 (by Section 4 and Kumar and Mathieu)
and the exact homotopy sequence associated of the (Serre)-fibration <^i shows that
7^o([L^G}an):^7^o([LyG}an) ([p means we consider the usual topology). From the
bijection 7To(L^G(N)) ̂ TroQL^G^)]071) and Proposition 2 of [Sh] it follows then that
Tro(L^G) -^ Ti-o ([PyGp) is bijective.

Proof of the claim. - Clearly <^+i : L^G —» Q^1 is L^G invariant, hence defines a
map ^+1 : L^G/L^G -^ Q^. Define a morphism Q^ -> L^G/L^G as follows.
Let J? be a C-algebra. By Proposition 3.10 to an element of Q^^R) corresponds a
G-bundle E —> Xp together with a trivialization Tp^ : G x X^ ^ ^ —^ E\x* . Here
by X^^ we denote {X - te+i}) Xj, Spec(jR). For any jR-algebra R\ denote T(J?')
the set of trivializations ri of ER> over X^. This defines a J?-space T on which L\G
acts. By Theorem 3.11 it is a L^G-bundle. For any TI G T{R') the composite r^1 o Tp^^
defines a morphism X^ R —^ G hence an element of L^G^). In this way we associate
functorially to an object (E,Tp^) of Q^^R) a I^G-invariant map a : T -^ L^G,
which defines the inverse of (j). The assertion concerning the local triviality is proved as
in Theorem 1.3. •

Let us show that every element g € LxG(C) is in the connected component of the unit
of LxG(C). Let K be the field of rational functions on X. Using the fact (cf. [30]) that
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G(K) is generated by the standard unipotent subgroups Ua(K), a G A, we may suppose
that g is of the form FIjeJ ̂ P^^j) ^ere the nj are nilpotent elements of Q and fj G K.
Let { p i , . . . ,pi} be the poles of the functions fjj e J . The morphism

A1—>LxG

t^ JJexp(V^)
j'eJ

is a path from ^ to 1 in £^G. By Lemma 5.3, the morphism TTo(LxG) -^ Tro(L^G)
is bijective which proves that g and 1 are indeed in the same connected component
of LxG. •

6. The Picard group of MG

Throughout this seption, G is simple and simply connected over C and X is a smooth,
complete and connected curve over C.

Let PicL^G^Qc) be the group of LjcG-linearized line bundles on QG. Recall that a
jLjcG-linearization of the line bundle C on Qo is an isomorphism m^C^pr^C, where
m : LxG x QG -^ QG is the action of LxG on QG, satisfying the usual cocycle condition.

Consider the projection TT : QG -> MG of Theorem 1.3. Let C be a line bundle on MG.
As TT* induces an isomorphism between the sections of C and L^G-invariant sections of
TT*£ ([3], Lemma 7.2), we have

PROPOSITION 6.1. - The projection TT : QG —^ MG induces an injection

7T* : Pic(.M^Pic^(<2^).

PROPOSITION 6.2. - The forgetful morphism Pic^c^c) -^ Pic(QG) is injective.
Proof. - The kernel of this morphism consists of the LjcG-linearizations of the trivial

bundle. Any to such trivializations differ by an automorphisms of pr^O^ that is by an
invertible function on LxG x Qc. Since QG is integral (Prop. 4.6), it is the direct limit
of the integral projective varieties QG = limQG^AOred and this function is the pull back
of an invertible function / on LxG. The cocycle conditions on the linearizations imply
that / is a character, hence / == 1 by Lemma 5.2. •

(6.3) By (6.1) and (6.2), the composition Pic(A^G') -^ Pic(QG') is injective. To prove
surjectivity we should prove that the generator 0<^(1) of PIC(QG) admits a LxG-
linearization. In order to do this we will construct in the following sections a line bundle
C on MG that pulls back to 0<^(1). Remark however the following:

LEMMA 6.4. - The line bundle OQ^{I) admits a LxG-linearization if and only if the
restriction of the central extension (4.8.2) to LxG splits.

Proof. - Let Mum^c^O^1)) te the Mumford group of 0^(1) with respect to
LxG. This is the group of pairs {f,g) with g E LxG and / : ff*0<^(l) ̂  0^(1). As
QG is direct limit of integral projective schemes, we get a central extension

(6.4.1) 1——Gm——Mum^(CWl))——LxG——1
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In this setup, a Z/jcG-linearization of OQ^(I) corresponds to a splitting of (6.4.1). By
functoriality of the Mumford group and the observation that LG is MUXIILG^QG^))' i1
follows that the extension (6.4.1) is the pullback to LxG of (4.8.2), which proves the
lemma. •

Remark that, if exists, the splitting must be unique. Indeed, two splittings differ by a
character of LxG and there is only the trivial character (Corollary 5.2).

(6.5) Let F be a family of vector bundles of rank r with trivial determinant, parameterized
by the locally noetherian C-scheme 5. Recall that the complex Rpr^^) may be
represented by a perfect complex of length one K* and define Vy to be det(K*)~1

[14]. This does not, up to canonical isomorphism, depend on the choice of K * . As the
formation of the determinant commutes with base change, the fiber of Pjr over the point
s G S is A^H^X^^Y ^A^H^X.^s)). The line bundle ̂  is called the
determinant of cohomology line bundle associated to the family T'.

Let U be the universal vector bundle on M-sLr. x X and define the determinant line
bundle P = det(Rpr^U)~1. It has the following universal property: for every family T of
vector bundles parameterized by the locally noetherian C-scheme S, we have f^p(V) = T)y
in Pic(5'), where jy : S -^ M.SL^ is the deduced modular morphism.

LEMMA 6.6. - Under TT : QsLr- ~^ -^SL^, the line bundle T> pulls back to OQ^^^ (1)

Proof. - We consider the morphism Tp of (4.11):

Pl ^ QSL.

.\ 1.
•sl/

MSL^
We get a family £ of SLr -bundles parameterized by P^ and, by the above, we have to show
that the determinant of this family is Opi (1). By definition of (^ one sees that it is enough
to treat the rank 2 case, in which this family is easily identified: if we think of QSL^ as

parameterizing special lattices (see section 2 of [3]) then £[a:c\ is defined by the inclusion

fd cz-^
w=[ .(C[M] e W})^c({z)) e c((^)).

\bz a )

hence may be seen, as the lattice

v = z-^M e c[[z]]^c((z)) o c((z))

defines the rank 2-bundle F = Ox(p) (D Ox, via the inclusion W C V as the kernel of
the morphism F —> Cp which maps the local sections (^-1/,^) to af(p) — cg{p). Using
this description of the family <f, we see, as in ([2], 3.4) that T)^ = Opi(l). •

In particular, it follows from (6.1), (6.2) and (4.11) that PIC(MSL^) = ~^D.
(6.7) Consider a representation p : G —^ SLr and the morphism obtained by extension

of structure group fp : M.G —^ -MSL^- Define the determinant of cohomology associated
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to p by Vp = f*CD). We have a commutative diagram

QG — QSL^

[ ^ 14/ ^

A^c —^ A^L,,
LEMMA 6.8. - (Kumar-Narasimhan-Ramanathan) Let dp be the Dynkin index of p. Then

the pullback of the determinant bundle under (j)p is OQc(dp)

Proof. - Consider the pullback diagram of (4.8.2) for LSLr:
1 —— Gm —— £G —— Lg —— 1

i i1'4. -̂ -

1 ————. Gm ————> LSLr ————> LSLr ————> 1

As LSLr is MumLsL^^QsL (1)) (c/' 6.4), by functoriality of the Mumford group,
we have LG = MumLc^^o^^l)). Looking at the differentials, on the level of Lie
algebras, we restrict the universal central extension of Lsir to LQ hence LQ is the extension
of (2.3), so (^O^(l) has to be O^dp). •

COROLLARY 6.9. - As a pullback, the line bundle OQ^(dp) is LxG-linearized.
(6.10) By the above, for series A and C, as the Dynkin index of the standard

representation is 1, all line bundles on Qo are L^G-linearized. For series B and D
(and also for G^) the Dynkin index of the standard representation, which factors through
SOr (resp. ^Oy), is 2. We will construct in Section 7 a canonical (once a theta-characteristic
K on X is fixed) square root V^ of P^i o11 M-sOr' The pullback of Pk to A^G, which does
not depend on the choice of ^ by (6.1) and (6.2), will pull back to 0^(1). Therefore,
for classical G and G^, all line bundles on QG are Lx (^-linearized and Theorem 1.1 (for
n = 0) follows from (6.1), (6.2) and (4.11).

7. Pfaffians

Let k be an algebraically closed field of characteristic ^ 2 and S a fc-scheme.

(7.1) The Picard categories

Let A be Z or Z/2Z. Denote by &A the groupoid of A-graded invertible O^-modules.
The objects of &A are pairs [L] = (£, a) of invertible O^-modules L and locally constant
functions a : S —^ A, morphisms [/] : [L] —> [M\ are defined if a = b and are isomorphisms
/ : L —> M of 05-modules. Denote DA the object (05,0). The category &A has tensor
products, defined by [L] 0 [M] = (£ (g) M, a + 6). Given [£] and [M] we have KoszuFs
symmetry isomorphism a^. .^ : [L] 0 [M] —^ [M] 0 [L] defined on local sections i and
m by a^^d 0 m) = (-l^m 0 ^.

Denote detA the functor from the category of coherent locally free 0^-modules with
isomorphisms defined by detA = (A^rang^)) and detA(/) = A^^/).

In the following we drop the subscript A for A = Z and replace it by 2 for A = Z/2Z.
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(7.2) Pfaffians

Let V be a coherent locally free Os-module of rank 2n. Let pf : A2^* -^ A^V*
be defined by uj ^—> a/1. Suppose a : V —> V* is skewsymmetric. View a as a section
of A2^* and define the pfaffian of a as pf(a) : Os -^ A^V*. Denote by det(a) the
map A^V -^ A^V* so det(a) may be seen as a section Os -^ A^V* 00^ A^V*.
Then we have

(7.2.1) det(a) = pf(a)2

and moreover, if u is an endomorphism of V*,

(7.2.2) pf{uau*) = det(n)pf(a)

(7.3) The pfaffian functor

We consider the following category A = A^^S): objects are complexes of locally free
coherent Os -modules concentrated in degrees 0 and 1 of the form

0—>E-°-^E"—>Q

with a skewsymmetric. Morphisms between two such complexes E* and F* are morphisms
of complexes /• : E9—>F9 such that /•*[-!] is a homotopy inverse of /•, i.e. f^[-l]of9

and /• o /•*[-!] are homotopic to the identity. Let TT : £ —^ £2 be the projection functor,
A : £3 -^ £3 be the functor defined by [L] »-> [£] 0 [£] and [/] ^ [/] (g) [/] and
Det : A —> £ be the determinant functor [14].

PROPOSITION 7.4. - There is a natural functor, Pf : A9 —^ ^2. commuting with base
changes, and a natural isomorphism of functors:

TT o Det -^ A o Pf.

Moreover, if f9 : E9—>E9 is homotopic to the identity then Pt{f9) = id.

Proof. - Define Pf on the level of objects by ?£(£•) = det^E) (cf. 7.1). On the level
£•

of morphisms we do the following. Let {fo, /i) : E* —> F* be a morphism of A9:

E ^ E-

^°1 [fl•^ (XF ^
F ——> F*

and consider the complex C^ (which is up to sign the cone of /•)

M
C*f=0—>£V-•/£'*®F (/1^ F*—>0
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As /• is a quasi-isomorphism, (7J is acyclic. By the usual additivity property of
determinants, we get a canonical isomorphism

d(f) : A^E 0 A^F* -, A^J^* 0 A^F.

Recall that this isomorphism is denned by taking a section | ) of (/i ap) and calculating
the determinant, which is independent of this choice, of the morphism

M(/) = (_°, ^ G Kom(E C F* ,£* C F)

/ f* \LEMMA 7.5. - There is a skew-symmetric morphism 7^- G Hom(F*, F) such that ( ° )
\7 /

^ a section of (/i a^).

Prw/. - As / o /*[-!] is homotopic to the identity there is a morphism /i such that
/o/i* - 1 = hop and /i/o* - 1 = aph. Now define 7^- = b^h. •

The pfaffian of the skew-symmetric morphism

( f* \
M(f^f)= a J o ) GHom(£;eF*,^*eF)

defines a section pf(M(/,7^)) : Os -^ ^^E* 0 A^^T.

LEMMA 7.6. - 77?(? section pf(M(/,7^)) ^ independent of the choice of^f.

Proof. - Suppose 7 .̂ is another morphism as in (7.5). Then there is g G Hom(F*,£)
such that a Eg = 0 and fog = -^*/o* [use that 7^ and 7 .̂ are skew]. These relations give

M(^7,)=0* ;)̂ 7,)(; J)

which in turn implies the required equality by (7.2.2). •
As rank(£) = rank(F) mod 2, we get the isomorphism in &^:

pf(M(/)) : fl2 -^ det^Ey 0 det2(F).

Define the pfaffian of /* by
10pf(M(/,7/-)) ev^

Pf(r) : det^E) ——————— det2(^)0det2(^)*0det2(F) ——-4 det2(F)

LEMMA 7.7. - Pf : A -^ £2 defines a functor.

Proof. - As pf(M(Id,0)) = 1, we have Pf(Id) = Id. Let f : E9 ^ F9 and
g : F9 -> G* be two morphisms of A. Then the following diagram is commutative

pf(M(^7/))^pf(M(5,7,))

82 ————————————> det^EY 0 det2(F) 0 det2(F)* 0 det2(GQ

pf(M(^o/,7^o^-)) ^ l(^evdet2(^)(S)l

det2(^)*0det2(G)
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Indeed, remark that 7^ = go^/g^ 4- 7<? satisfies (7.5) for g o f and make use of (7.2.2)
first with

/ O^E f5 0 fSg^ 1 0 0 0\
0 1 0 0

-A -c^ 1 0
0 go 0 I/

/ »E fS o o \
-/o 7 / 0 0

o o ap ^
\ 0 0 -5o W

/i o -A* o \
0 1 op ffS
0 0 1 0

\o o o i /
-Jo 7 / 1 7/^o

0 - 1 0 0
\-gofo go^f o 7<?/

and then with

/ 0 ;̂ 0 0 /^0*\

0 7 / 1 0
0 - 1 0 0

\-gofo o o 7^ /

^1 0 /o* 0\
0 1 0 0
0 0 1 0

^0 0 ^o7/ I/

^ Jo* 0 /o*^o*'
-/o 7 / 1 7/^o

0 - 1 0 0
<-Wo g^f o 7^

/ I 0 0 0 ^
0 1 0 0
/o 0 1 -7/̂ o*

\o o o i /
The commutativity of the above diagram shows Pf(g o /) = Pf(g) o Pf(f). •

The statement on the natural transformation follows from the definitions and (7.2.1). It
remains to prove that if f* : E* —^ E* is homotopic to the identity, then Pf(/) = Id.
Indeed, let h : E" -^ E be such that fo - haa = 1 and /i - ah = 1. Then 7^- := -h+foh*
satisfies (7.5) and the statement follows from (7.2.2) and

This completes the proof of Proposition 7.4. •

(7.8) The Pfaffian bundle

Consider G = Spin^, with r > 3 (resp. G = G'z). Then the standard representation
wi factors through SOr (resp. SO^). The stack Mso^ has two components: M%o^ and
M-^o ' They are distinguished by the second Stiefel-Whitney class

W2 : H^{X, SO^ -^ H|,(Z, 1/21) = 1/21.

Let K, be a theta-characteristic on X. Twisting by /^, we may and will see a SOr -bundle
as a vector bundle F with trivial determinant together with a symmetric isomorphism
a : F —> F^, where F^ = Hom^ (F^ uo^). The following Proposition shows the existence,
for every /^, of a canonical square root V^ of the determinant bundle P^ over Mso^-

PROPOSITION 7.9. - Let ( J ^ ^ c r ) be a family of vector bundles T equipped with
a quadratic form a with values in uj^ parameterized by the locally noetherian k-
scheme S. Then the determinant of cohomology TDy admits a canonical square root P^cr).
Moreover, if f '. S ' —> S is a morphism of locally noetherian k-schemes then we have
^(/^J^) = /*^,<7).

Proof. - We will define P{^,a) first locally and then construct patching data. By ([28],
prop. 2.1 and proof of Corollary 2.2, cf. also [13]), Zariski locally on S, there are length
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1 complexes M9 of finite free O^-modules and quasi-isomorphisms / : M* —^ Rpr^(^F)
such that the composition in the derived category D(S) (use a and Grothendieck duality)

M^^Rpr^^^RRom^Rpr^^.Os^-l] f-[z^ M^[-l}

lifts to a symmetric isomorphism of complexes (p : M9 —^ M^[-l]:

0 —— M° ^ M1 —— 0
y?o ^ \^ ^ ^S

0 ——. M1* —^ M°* ——. 0

Define M9 by 0 —^ M° —-^ M°* —^ 0. Then a is skew and we have a natural isomorphism
of complexes ^ : M* -^ M* such that ^*[-1]^ == /*[-l]r/ in D6^).

Now cover S by open subsets Ui together with complexes (M^d^) and quasi-
isomorphisms J^ \ M9 —> Rpr^{y)\u, as above. We define P^,a) over Ui by
^,(^,a) = Pf(^) and construct patching data pij : Pi^^a) -^ ^,(^,<r) over [/̂  = (7,n^
in the following way. Define first the morphism of complexes E^ : Mi -» Mj as a lifting
of the isomorphism in Db(U^j}

^"'[-l]/;!-!]^^-1,

then pz^oy Pf(S^) (note that it follows from the symmetry of a and that the components
of the Mi are free that E^ is a morphism of A(Uij)). By (7.4), p^ does not depend on the
particular chosen lifting and the functoriality of Pf translates into pa = Id, pij = pzkpkj
and also pij = /^1, hence the ^,(^,cr) glue together to our requested line bundle P^^y
The construction is functorial, so it remains to check that we have constructed a square
root of the determinant bundle: but this follows again from Proposition 7.4, as over Ui
we have Pi^^ 0 Pi^,a) = det(A^) and as, by [14], the dei(M9) path together (via
fi^\ to 2^. •

Considering the universal family over MsOr. x X, we get, by the above, for every
theta-characteristic ^ a line bundle P^ over M-sOr-

(7.10) The pfaffian divisor

Let r >_ 3 and (£,q) be the universal quadratic bundle over M^o x X. For ^ a
theta-characteristic, let us denote by ©^ the substack defined by

Q^ =dw{Rpr^{£(S)pr^)).

CLAIM. - This substack is a divisor if and only if r or ^ are even.

Proof. - Let P = (E, q) be a SOr -bundle, r > 3 and ^ be a theta-characteristic. Then

(7.10.1) W2(P) = h°(E 0 K) + rh°(^)mod 2.

Indeed, by Riemann's invariance mod 2 theorem, the right hand side of (7.10.1), denoted
w^(P) in the following, is constant over the 2 connected components of MsOr.' Because
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(7.10.1) is true at the trivial SOr -bundle T, it is enough to prove that w^ is not constant.
Let £, M G J2 (where J-2 = points of order 2 of the jacobian) such that for the Well
pairing we have < L, M >= 1. The choice of a trivialization of their squares defines a non
degenerated quadratic form on E = (L^M)^LeM^{r-3)Ox hence a SOr -bundle P.
By [Mu], we know that we have w^{P) ==-< L,M >^Q= w^T), which proves (7.10.1).

Now choose an ineffective theta-characteristic ^o ^d set L = KQ 0 ̂ -1. If r is even,
there exists a SOr -bundle P = (E, q) such that H°(E (g) ^) == 0 and W2(P) = 0 (choose
E = rL with the obvious quadratic form and use (7.10.1)). If r is odd and K is even,
there exists a SOr -bundle P = (E,q) such that ^°(E 0 /^) = 0 and W2(P) = 0 (by
Lemma 1.5 of [2], there is a S^-bundle F on X such that ff°(X, ad(F) (g) ^) = 0, then
choose £' = ad(F) Q (r - 3)£ with the obvious quadratic form.) If r and /^ are odd, then
H°(E 0 f^) is odd for all P G A^. •

As the perfect complex Rpr^(S^)pr^) can be locally represented by a skew-symmetric
perfect complex of length one L —^ £* (cf. Proof o^7.9), the pfaffian of a defines (if r
or K is even) a local equation of an effective divisor 9^ such that 20^ = Q^. This gives
an easier way to define, by smoothness of MG, the pfaffian line bundle. The reason which
motivated our construction above was to define this square root for arbitrary quadratic
bundles (not only the even ones) and to make a construction for all theta-characteristics
and not only the even ones (when r is odd).

(7.11) Proof of (1.5). - The dualizing line bundle o;̂  on MG is by definition the
determinant line bundle of the cotangent complex of M.G' Let Ad : G —> GL(fl) be the
adjoint representation. Then cc;̂  = P^. Suppose that G is semi-simple. Then the adjoint
representation factors through the special orthogonal group because of the existence of
the Cartan-Killing form. Choose a theta-characteristic K, on X. Then, as in (7.8), we can
define a square root a;^(/^) of ^j^^'

8. Proof of theorems 1.1 and 1.2

Throughout this section G is simple, simply connected over C. We will now prove
theorems 1.1 and 1.2. We will start by defining the stack of quasi-parabolic G-bundles.

(8.1) We use the notations of Section 2. We will recall some standard facts for Lie
groups, which we will use later. Let G be the simple and simply connected algebraic group
associated to Q. Denote by T C G the Cartan subgroup associated to f) C Q and by B C G
the Borel subgroup associated to b C 0. Given a subset S of the set of simple roots II
(nodes of the Dynkin diagram), we can define a subalgebra ps = b 9 (9aes;0-a) C 0,
hence a subgroup Ps C G. Remark that P@ = B, Pn = G and that all PE contain B.
The subgroup Ps is parabolic and conversely any standard (i.e. containing B) parabolic
subgroup arises in this way. Fix S C II and let F = II - S. Denote by X(P^) the
character group of Ps. Any weight A such that A(ffa) = 0 for all a E S defines,
via the exponential map, a character of PE and all characters arise in this way, i.e.
X(P^) = {A € P/\{Ha) = 0 for all a G E}. In particular, the choice of a dominant
weight A defines a standard parabolic subgroup (i.e. P^ with E = {a/\(Ha) = 0) and a
dominant character (with respect to B) of P and vice versa.
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Given ^ G X(P^) we can define the line bundle L^ = G x^ C^ on the homogeneous
space G/PE. In general, there is an exact sequence ([II], prop. 3.1)

1——X(G)——X(P^)——Pic(G/Ps)——Pic(G)——Pic(P)——0.

As G is simple, we have X(G) = 0 and as G is simply connected, we have Pic(G) = 0
([II], Cor. 4.5). We get the isomorphism X(P^) ̂ Pic(G/Ps). In particular, the Picard
group of G/PS is isomorphic to the free abelian group generated over P.

(8.2) Consider closed points j? i , . . . ,pn of X, labeled with standard parabolic subgroup
PI, . . . , Pn. Let E i , . . . , Sy, be the associated subsets of simple roots and P^ = II — S^
for i G { 1 , . . . ,n}. In the following, underlining a character will mean that we consider
the associated sequence, e.g. P will denote the sequence (Pi,... ,Pn), etc. Let E be a
G-bundle. As G acts on G/Pi we can define the associated G/P^-bundle E(G/Pi).

DEFINITION 8.3. - (cf. [21]) A quasi-parabolic G-bundle of type P_ is a G-bundle E on X
together with, for all i G { 1 , . . . , n}, an element Fi G E(G/Pi)(pi). A parabolic G-bundle
°f tyPe {P-^'H1) ls a quasi-parabolic G-bundle of type P together with, for i G {1 , . . . , n} ,
parabolic weights (m^)^r, where the mij are strictly positive integers.

(8.4) Let R be a C-algebra, 5" = Spec(P). A family of quasi-parabolic G-bundles
of type P parameterized by 5' is a G-bundle E over S x X together with n sections
Oi : S —» E{G/Pi)\sx{p,}- A morphism from {E^o_) to (E^o^) is a morphism / : E -^ E '
of G-bundles such that for all i e { 1 , . . . , n} we have a[ = f\s\{pi}°^i' We get a pseudo-
functor from the category of C-algebras to the category of groupoids by associating to the
C-algebra R the groupoid having as objects families of quasi-parabolic G-bundles of type
P parameterized by S = Spec(R) and as arrows isomorphisms between such families.
Moreover for any morphism R —^ R' we have a natural functor between the associated
groupoids. This defines the C-stack of quasi-parabolic G-bundles of type P which we
will denote by .M^^P). The stack .A/t^^P) has, as MG^ a natural interpretation
as a double quotient stack. Define

n

Qrh^-Q^n0/^-

The ind-group LxG acts on QG and, by evaluation ev{pi) : LxG —> G at pi, also on each
factor G/Pi. We get a natural action of LxG on Q^^p^ P). The analogue of Theorem 1.3
for quasi-parabolic G-bundles is

THEOREM 8.5. - (Uniformization) There is a canonical isomorphism of stacks

TT : LxG^^P} -^M^^P).

Moreover the projection map is locally trivial for the etale topology.

Proof. - Let R be a C-algebra, S = Spec(R). To an element (E, p , f) of Q^^p, P)(P)
(with fi G Mor(5', G/Pi)), we can associate a family of quasi-parabolic G-bundles of type
P parameterized by S in the following way. We only have to define the sections:

(idjz) Pz{G/P^
^ : s —— S x G/P, ——— £;(G/P,),5x{M.
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We get a LjcG-equivariant map TT : Q^^p.P,) -^ -M^^P,) which induces the map
on the level of stacks TT : LxG^^^P)^ A^^P)" Conversely, let ( E , a ) be a
family of quasi-parabolic G-bundles of type P parameterized by 5' = Spec(P). For any
P-algebra R\ let T{R'} be the set of trivializations p of Epi over XR'. This defines a
P-space T which by Theorem 3.11 is a I/^G-bundle. To any element in T{R'}, we can
associate the family / by

f z : S ^ E{G/P^s^} ^G/pl} 1 S x G / P , ̂  G/P,

In this way we associate functorially to the objects ( E ^ a ) of Ad^^P^^K) LxG-
equivariant maps a : T -^ Q^Q^P). This defines a morphism of stacks

M^^P^LxG^^P)

which is the inverse of TT. The second statement is clear from the proof of Theorem 1.3. •
(8.6) We study first line bundles over Q^^p, P). Using (4.11), (8.1) and H\G/P,, 0) =

0, we obtain the following proposition, proving, as LxG has no characters (Corollary 5.2),
Theorem 1.1.

PROPOSITION 8.7. - We have
n npic(^"-(p,p)) = zcwi) x n^^/^) = ̂ Qow x n^)-

i=l 1=1

(8.8) Let (E,o_) be a family of quasi-parabolic G-bundles of type P_ parameterized by
the C-scheme S = Spec(R). Fix i G { 1 , . . . , n} and j G I\. We may view E -^ E(G/P,)
as a P^-bundle. Therefore the character of Pi defined by -wj defines a line bundle on
E(G/Pi), hence by pullback, using the section ai : S -^ E(G/Pz)\sx{p,}. a line bundle
Cij over 5'. This works for any 5' and we get a line bundle over the stack M^^p.P,)
which we denote again by Cij.

(8.9) Conformal blocks and generalized theta functions

We now prove Theorem 1.2. We use the notations of section 2 and start by defining the
space of conformal blocks. Fix an integer i ̂  0 (the level) and let p i , . . . ,pn be distinct
closed points of X (we allow n = 0 i.e. no points), each of it labeled with a dominant
weight \i lying in the fundamental alcove P^. Choose also another point p € X, distinct
from the points j ? i , . . . ^ p n - Define

74=7^)^(0^L;J.

We can map L^Q via the Laurent developpement at the point p to LQ. The restriction
to L^ Q of the universal central extension LQ of LQ splits by the residue theorem, hence
L^Q may be considered as a sub Lie-algebra of LQ. In particular, 1-i(£) is a L^-module.
Evaluating X^f C L^Q at the point j^, we may consider L\, as a J^g-module. Therefore
H\_ is a (left) L^ g-module. Define the space of conformal blocks (or vacua) by

Vx{p.\) = [H^^ := {^ e ̂  / W 0 /) = o vx 0 / e L,s}.
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This definition is Beauville's description [1] (see also [29]) of the space of conformal
blocks of Tsuchiya, Ueno and Yamada [31]. The labeling of the points pi induces
S, == {a G n/A,(ffJ = 0}, r, = n - S, and mij = \i(H^) for j e F,, that is
the type of a parabolic G-bundle. In particular, we get a natural line bundle on the moduli
stack M^^p.P) defined by

C^m) = ̂ (^(S^^3)).

By construction, for the pull back of £(^,m) to Q^^p^P.) we have

^C^m)=O^W{^£.^)

where C-\^ is the line bundle on the homogeneous space G/Pi defined by the character
corresponding to the weight — A ^ .

(8.10) Proof of (1.2). - We proceed in four steps.

Step 1. - As a pullback, 7r*£(^m) is canonically LjcG-linearized, that is equipped
with tp : m*(7r*/:(^m))^p^(7r*£(^m)). Denote by [HO(Qp^r(p,P),^C(^m))]LXG

the space of £jcC?-invariant sections, that is the sections s such that (p(m"s) = pr^s. By
Lemma 7.2 of [3] we have the canonical isomorphism

^(^r^^)^^^))^^^^^^^)^*^^)^^
Denote by [^(Q^^P^Tr^^m))]^ the sections annihilated by Lie(LxG) = L^Q.
By Proposition 7.4 of [3], using that LxG and Ql^l'r(p^P.) are integral (5.1) and Section 4),
we have the canonical isomorphism

[H^Q^^Q^-jC^m))}^0 —— [H^Q^^Q^C^m))}1-^

Step 2. - By definition of LG, the space H°{Q^(p, P), TT* C(i, m)) is naturally a
LG-module. Moreover we know that LG splits over LxG (at least for classical G and
C?2) and that this splitting is unique. The action of L^Q C LQ deduced from this inclusion
on ^(Q^GP,?),^*/^,?^)) is therefore the same as the preceding one.

Step 3. - We have the canonical isomorphism of L^-modules

^(Qr^^)^*^^^)))^^^^.^.^))^^^0^/^^
To see this apply the Kunneth formula to the restriction of C{i,m) to the projective
varieties Q^Q^P)^ = QoW x Tl^G/Pi, then use that inverse limits commute
with tensor products by finite dimensional vector spaces.
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Step 4. - We have the canonical isomorphism of £G?-modules

H°(QG^OQW) 0 (0^ff°(G/P,,/:-Aj) ̂ W 0 K=1^J

This is Borel-Bott-Weil theory, in the version of Kumar-Mathieu ([Ku], [Ma]) for the first
factor, and the standard version (1) for the others.

The theorem follows from steps 1 to 4. As we know the dimensions (at least for classical
G and G^) for the conformal blocks ([F],[B], or [So3] for an overview) we get the Verlinde
dimension formula for the spaces of generalized parabolic theta-functions.

9. Coarse Moduli spaces

Throughout this section G will be a semi-simple algebraic group over C and X a smooth,
complete and connected curve over C of genus > 2. We will show how the previous results
apply to the coarse moduli spaces of principal G-bundles.

(9.1) Recall that a G-bundle E over X is semi-stable (resp. stable) if for every
parabolic subgroup P and for every reduction Ep of E to P, we have for every
dominant character (with respect to some Borel B C P) x of P the following inequality
deg(£'p(^)) <, 0 (resp. <). A stable G-bundle E is called regularly stable, if moreover
Aui(E)/Z{G) = {1}. By Ramanathan's [24] theorem, there are coarse moduli spaces MG
of semi-stable principal G-bundles of dimension (g-1) dim G with irreducible components,
denoted MQ in the following, parameterized by T € ^(G). Moreover MG is normal and
the open subset M^9 C MG corresponding to regularly stable G?-bundles is smooth.

(9.2) Denote Cl the group of Well divisor classes. Fix r G 7Ti(G). We have a commutative
diagram, with 7*1 and 7-2 the restrictions and c and c^9 the canonical morphisms:

Pic(M^) ——. CI(MS)"i , i-
Pic(M^) ^ Cl(M^)

By normality of MG, the restriction ri is injective, by smoothness of M^9', the canonical
morphism Creg is an isomorphism. The complement M^9 in MQ is of codimension
> 2, except when X is of genus 2 and G maps onto PGL^\ this is seen exactly as the
analogous statement for Higgs bundles, which is proved in [9], Thm. 11.6. In what follows
we will assume that we are not in this exceptional case. In particular the restriction 7*2 is
an isomorphism. It follows that M^ is locally factorial if and only if n is surjective.

(9.3) Proof of 1.6. - Suppose G simply connected. The codimension of the closed
substack MG - -M^ in -^G is at least 2. To see this use the Harder-Narasimhan filtration
in the case of G-bundles and calculate the codimension of the strata ([19], Section 3).

(1) In [Bott] only the case G/B (i.e. S = 0) is considered but the generalization to arbitrary G/PS is immediate
(and well known).
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This implies Pic(A^c) ̂  Pic(.M^). It follows from Theorem 1.1 that Pic(Mc) is infinite
cyclic (note that the canonical morphism M^ —> MG induces an injection on the level
of Picard groups). The smoothness of M.8^ implies that the restriction defines a surjection
Pic(A^) -^Pic(.M^). As Pic(A^^) contains Pic(M^) (which contains Pic(A^)
by 9.2), the surjection / has to be an isomorphism. As the determinant line bundle exists
on MsLr. by Kempt s lemma [7], it follows that the generator is the determinant of
cohomology for G of type A and C by (2.3). Moreover, MG is locally factorial by (9.2)
in this case. •

(9.1) Consider G = SOr with its standard (orthogonal) representation and suppose that
r > 7. The moduli space Pic{Mso^) is the good quotient of a parameter scheme 7i
by GL(H) with H = CrN (cf. [27]). The scheme Ti parameterizes equivalent (with the
obvious equivalence relation) triples ([F,a,a]), where {F^a) is a semi-stable 50^-bundle
and a : H°(X,F{N)) ̂  H. Choose a theta-characteristic K on X. Then on U there is
the GL(H)-\ineQ.Yized pfaffian of cohomology line bundle P^ deduced from the universal
family over % x X.

PROPOSITION 9.5. - Suppose r > 7. The line bundle P^ descends to Mg^ (0) but not to
M^Q . In particular, M^o is not locally factorial.

Proof. - We use Kempt s lemma. If r is even, the stabilizer at a point q = [F, a, a] € 'Tire9

is ±1; if r is odd, the stabilizer is reduced to 1. In the former case, by definition of the
pfaffian of cohomology, using that its formation commutes with base change, the action
of dbl at PK^Q) is given by g \—> gh (^^ so the action is trivial, as ^(F 0 ^) is
even by (7.10.1). We see that P^ descends to Mg^ (0) in both cases. Let (^1,01) be a
regularly stable odd SO 4 -bundle, and (^2,^2) be a regularly stable odd S'0y._4-bundle. If
r = 8, suppose that (^1,0-1) and (^2^2) are not isomorphic. Then the orthogonal sum
(1^ T-) = (F-L 0 F^^ (j\ 0 02) is even. Let [F^ T, a] G 75. be a point corresponding to (J^, r).
Again, by definition of the pfaffian of cohomology, using that its formation commutes with
base change, we see that the action of the stabilizer {±1} x {=bl} is

/ \ /^(Fi^) /i^^^/t)
{91,92} ̂  9i 92 •

But the element (—1,1) acts nontrivially, so P^ does not descend to Mg6^ (0). •
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