ON THE MONODROMY OF THE HITCHIN CONNECTION
YVES LASZLO, CHRISTIAN PAULY, AND CHRISTOPH SORGER

ABSTRACT. For any genus g > 2 we give an example of a family of smooth complex projective
curves of genus ¢ such that the image of the monodromy representation of the Hitchin con-
nection on the sheaf of generalized SL(2)-theta functions of level [ # 1,2,4 and 8 contains an
element of infinite order.

1. INTRODUCTION

Let m : C — B be a family of smooth connected complex projective curves of genus g > 2
parameterized by a smooth complex manifold B. For any integers [ > 1, called the level, and
r > 2 we denote Z; the complex vector bundle over B having fibers H°(Mg, (SL(r)), L"), where
Me, (SL(r)) is the moduli space of semistable rank-r vector bundles with trivial determinant
over the curve C, = 7~ 1(b) for b € B and L is the ample generator of its Picard group. Following
Hitchin [H], the bundle Z; is equipped with a projectively flat connection called the Hitchin
connection.

The main result of this paper is the following

Theorem. Assume that the level | # 1,2,4 and 8 and that the rank r = 2. For any genus
g > 2 there exists a family m : C — B of smooth complex connected projective curves of genus
g such that the monodromy representation of the Hitchin connection

JUR 7'['1(8, b) — PGL(Zl’b)

has an element of infinite order in its image.

For any genus g > 2 we give an example of a family 7 : C — B of smooth hyperelliptic curves
of genus g and an explicit element £ € m(B,b) with image of infinite order (see Remark 6.10).

In the context of Witten-Reshetikhin-Turaev Topological Quantum Field Theory as defined
by Blanchet-Habegger-Masbaum-Vogel [BHMV], the analogue of the above theorem is well-
known due to work of Masbaum [Ma], who exhibited an explicit element of the mapping class
group with image of infinite order. Previously, Funar [F] had shown by a different argument
the somewhat weaker result that the image of the mapping class group is an infinite group.

It is enough to show the above theorem in the context of Conformal Field Theory as defined
by Tsuchiya-Ueno-Yamada [TUY]: following a result of the first author [La], the monodromy
representation associated to Hitchin’s connection coincides with the monodromy representation
of the WZW connection. In a series of papers by Andersen and Ueno ([AU1], [AU2|, [AU3]
and [AU4]) it has been shown recently that the above Conformal Field Theory and the above

2000 Mathematics Subject Classification. Primary 14D20, 14H60, 17B67.
Partially supported by ANR grant G-FIB.
1



2 YVES LASZLO, CHRISTIAN PAULY, AND CHRISTOPH SORGER

Topological Quantum Field Theory are equivalent. Therefore the above theorem also follows
from that identification and the work of Funar and Masbaum.

In this short note, we give a direct algebraic proof, avoiding the above identification: we first
recall Masbaum’s initial argument applied to Tsuchiya-Kanie’s description of the monodromy
representation for the WZW connection in the case of the projective line with 4 marked points
(see also [AMU]). Then we observe that the sewing procedure induces a projectively flat map
between sheaves of conformal blocks, enabling us to increase the genus of the curve.

A couple of words about the exceptional levels [ = 1,2,4,8 are in order. For [ = 1
the monodromy representation p; is finite for any g. This follows from the fact that the
Beauville-Narasimhan-Ramanan [BNR] strange duality isomorphism PH(Mg, (SL(2)), £)T =
P HO(Pic?"1(Cy),20) is projectively flat over B for any family 7 : C — B (see e.g. [Bel]) and
that p; thus identifies with the monodromy representation on a space of abelian theta functions,
which is known to have finite image (see e.g. [W]). For | = 2 there is a canonical morphism
H(Mg, (SL(2)), £22)— H°(Pic?(C),40),, which is an isomorphism if and only if C, has no
vanishing theta-null [B]. But this map is not projectively flat having non-constant rank. So
the question about finiteness of ps remains open — see also [Be2]. For [ = 4 there is a canon-
ical isomorphism [OP], [AM] between the dual H°(Mg,(SL(2)), L%*)! and a space of abelian
theta functions of order 3. We expect this isomorphism to be projectively flat. For [ = 8 no
isomorphism with spaces of abelian theta functions seems to be known.

Our motivation to study the monodromy representation of the Hitchin connection comes from
the Grothendieck-Katz conjectures on the p-curvatures of a local system [K]. In a forthcoming
paper we will discuss the consequences of the above theorem in this set-up.

Acknowledgements: We would like to thank Jean-Benoit Bost, Louis Funar and Gregor
Masbaum for helpful conversations and an anonymous referee for useful remarks on a first
version of this paper.

2. REVIEW OF MAPPING CLASS GROUPS, MODULI SPACES OF POINTED CURVES AND BRAID
GROUPS

2.1. Mapping class groups. In this section we recall the basic definitions and properties of
the mapping class groups. We refer the reader e.g. to [I] or [HL].

2.1.1. Definitions. Let S be a compact oriented surface of genus g without boundary and with
n marked points xq,...,x, € S. Associated to the n-pointed surface S are the mapping
class groups I'y and I'y,, defined as the groups of isotopy classes of orientation-preserving
diffeomorphisms ¢ : S — S such that ¢(z;) = x; for each i, respectively such that ¢(z;) = z;
and the differential do,, : T,,S — T,,S at the point x; is the identity map for each i.

An alternative definition of the mapping class groups I'y and I'y,, can be given in terms of
surfaces with boundary. We consider the surface R obtained from S by removing a small disc
around each marked point x;. The boundary R consists of n circles. Equivalently, the groups
I'; and Iy, coincide with the groups of isotopy classes of orientation-preserving diffeomorphisms
¢ : R — R such that ¢ preserves each boundary component of R, respectively such that ¢ is
the identity on OR.



The mapping class group I'y is defined to be FS =Ty

2.1.2. Dehn twists. Given an (unparametrized) oriented, embedded circle v in R C S we can
associate to it a diffeomorphism T, up to isotopy, i.e., an element 7, in the mapping class groups
I'; and Iy, the so-called Dehn twist along the curve 7. It is known that the mapping class
groups 'y and Iy, are generated by a finite number of Dehn twists. We recall the following
exact sequence

l1—2Z"—T,,— T, —1

The n generators of the abelian kernel Z" are given by the Dehn twists T7,,, where 7; is a loop
going around the boundary circle associated to z; for each 1.

2.1.3. The mapping class groups Ty and T 4. Because of their importance in this paper we recall
the presentation of the mapping class groups I'j and T4 by generators and relations. Keeping
the notation of the previous section, we denote by R the 4-holed sphere and by 71, ¥2, V3, 74 the
circles in R around the four boundary circles. We denote by ~;; the circle dividing R into two
parts containing two holes each and such that the two circles 7; and «; are in the same part.
It is known (see e.g. [I] section 4) that I'g4 is generated by the Dehn twists 7}, for 1 <i <4
and T, for 1 <4,j < 3 and that, given a suitable orientation of the circles v; and +;;, there is
a relation (the lantern relation)

T”n T“/z Tvs T’Y4 = T“/12 T713 T

723

Note that the images of the Dehn twists 77, under the natural homomorphism
Loy —Tg, T, T,,

are trivial. Thus the group T'§ is generated by the three Dehn twists Tij for 1 <i,5 <3 with

the relation T.,,,T,,T,, = 1.

For each 4-holed sphere being contained in a closed genus g surface without boundary one
can consider the Dehn twists T;; as elements in the mapping class group I'.

2.2. Moduli spaces of curves. Let 9, denote the moduli space parameterizing n-pointed
smooth projective curves of genus g. The moduli space M, ,, is a (possibly singular) algebraic
variety. It can also be thought of as an orbifold (or Deligne-Mumford stack) and one has an
isomorphism

(1) Jim(Myp, ) — T,

where 71 (90, ,, ) stands for the orbifold fundamental group of 9, ,,. In case the space M, ,, is a
smooth algebraic variety, the orbifold fundamental group coincides with the usual fundamental

group.
2.3. The isomorphism between (M4, ) and I'j. The moduli space My, parameter-
izes ordered sets of 4 points on the complex projective line P& up to the diagonal action of
PGL(2,C). The cross-ratio induces an isomorphism with the projective line Pg with 3 punc-
tures at 0,1 and oo

931074 L) PE \ {0, 1, OO}
We deduce that the fundamental group of 9 4 is the group with three generators

T (Mo, x) = (01, 09,03 | 030201 = 1),
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where 01,0, and o3 are the loops starting at z € P§ \ {0,1,00} and going once around the
points 0, 1 and oo with the same orientation. We choose the orientation such that the generators
o; satisfy the relation o30901 = 1. Clearly m (94, x) coincides with the fundamental group
m(Q, x) of the 3-holed sphere Q.

In this particular case the isomorphism j : w1 (94, 2) — Ty can be explicitly described as
follows (see e.g. [I] Theorem 2.8.C): we may view the 3-holed sphere @) as the union of the
4-holed sphere R with a disc D glued on the boundary corresponding to the point x,. Given
a loop o € m(Q,z) we may find an isotopy {f; : @ — Q}o<t<1 such that the map ¢t — fi(z)
coincides with the loop o, fy =idg and f1(D) = D. Then the isotopy class of f; resticted to
R C Q determines an element j(o) = [f1] € ['§. Moreover, with the previous notation, we have
the equalities (see e.g. [I] Lemma 4.1.1)

j(al) - T'Y%’ j<02) = Tvlav j(03) = T’Ym'

Remark 2.1. At this stage we observe that under the isomorphism j the two elements o} oy €
1 (Mo,4, ) and T_ITVB € I'y coincide. It was shown by G. Masbaum in [Ma] that the latter

23
element has infinite order in the TQFT-representation of the mapping class group I'y — note
that 71! WE;T’YB also makes sense in I';. We will show in Proposition 5.1 that the loop o 109 has

infinite order in the monodromy representation of the WZW connection.

2.4. Braid groups and configuration spaces. We recall some basic results about braid
groups and configuration spaces. We refer the reader e.g. to [KT] Chapter 1.

2.4.1. Definitions. The braid group B, is the group generated by n — 1 generators g1, ..., g,_1
and the relations

Gi9i419i = 9i+1GiGi+1, 1 <i<n —2, and  gig; = g;gi, i —j| > 2.

The pure braid group is the kernel P, = ker(B, — X,) of the group homomorphism which
associates to the generator g; the transposition (7,7 4+ 1) in the symmetric group ¥,. The braid
groups B, and P, can be identified with the fundamental groups

Pn:7T1(XmP>7 Bn:ﬂ'l(Xnaﬁ):

where X,, and X,, are the complex manifolds parameterizing ordered respectively unordered
n-tuples of distinct points in the complex plane

X, =A{(z1,22,...,2,) € C" | 2; # 25} and X, =X,/%,.

The points p = (z1, ..., 2z,) and p = p mod ¥,, are base points in X,, and X,,. There are natural
inclusions B,, < B,,11, which induce inclusions on the pure braid groups ¢ : P, < P, 1.
Over the variety X,, there is an universal family

(2) ]:n+1:(7r:C:Xn><P1—>Xn;sl,...,sn,soo),

parameterizing n + 1 distinct points on the projective line P'. The section s; is given by the
natural projection X,, — C on the i-th component followed by the inclusion C C P = CU{c0}
and s is the constant section corresponding to oo € Pg.
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2.4.2. Relation between the pure braid group Ps and the fundamental group m (9Mg4,2). The
natural map

Mos =P\ {0,1,00} — X3, 2+ (0,1,2)
induces a group homomorphism at the level of fundamental groups

U m (Mo, z) = (01,02) — Ps = m1(X3,p3),

with p3 = (0,1,2). Then ¥ is a monomorphism by [KT| Theorem 1.16. Moreover, the image
of ¥ coincides with the kernel of the natural group homomorphism

im ¥ = ker (P = m1(X3,p3) — Py = m(X2,p2))
induced by the projection onto the first two factors X3 — Xs, (21,29,23) — (21,22) and
p2 = (0,1). One computes explicitly (see [KT] section 1.4.2) that
U(01) = 929795 and  U(0y) = gj.
For later use we introduce the element

(3) o =0y 0y €m (Mo, 7).

3. CONFORMAL BLOCKS AND THE PROJECTIVE WZW CONNECTION

3.1. General set-up. We consider the simple Lie algebra sl(2). The set of irreducible sl(2)-
modules, i.e. the set of dominant weights of sl(2) equals
P, ={\A=mw | m € N},

where w is the fundamental weight of s[(2), which corresponds to the standard 2-dimensional
representation of s[(2). We fix an integer [ > 1, called the level, and introduce the finite set
P ={\e€ P, | m<I}. Given any A\ € P, we denote by AT € P, the dominant weight of the
dual V/\T of the sl(2)-module V) with dominant weight \. Note that AT = \. Given an integer

n>1, a collection X = (A1,..., \n) € (P)" of dominants weights of s[(2) and a family
F=(m:C—B;s1,...,50;&1,...,&n)

of n-pointed stable curves of arithmetic genus g parameterized by a base variety B with sections
s; : B — C and formal coordinates &; at the divisor s;(B) C C, one constructs (see [TUY] section
4.1) a locally free sheaf

T
VZ,X(]: )

over the base variety B, called the sheaf of conformal blocks or the sheaf of vacua. We recall
that V;X(]—") is a subsheaf of Op ® ”H}, where ’H; denotes the dual of the tensor product
Hy = H Az Q- - ®@Hy, of the integrable highest weight representations H,, of level [ and weight
A; of the affine Lie algebra s[(2). The formation of the sheaf of conformal blocks commutes
with base change. In particular, we have for any point b € B

VI(F) ®05 Oy =V (F),

where F;, denotes the data (Cp, = 7 (b); 51(b), ..., $n(b);&1icys - - - Enje,) consisting of a stable
curve C, with n marked points s1(b), ..., s,(b) and formal coordinates &;¢, at the points s;(b).
We recall that the sheaf of conformal blocks VlT 5(F) does not depend (up to a canonical

isomorphism) on the formal coordinates &; (see e.g. [U] Theorem 4.1.7). We therefore omit the
formal coordinates in the notation.
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3.2. The projective WZW connection. We now outline the definition of the projective
WZW connection on the sheaf VZTX(]: ) over the smooth locus B® C B parameterizing smooth
curves and refer to [TUY] or [U] for a detailed account. Let D C B be the discriminant locus
and let S = []I_, s;(B) be the union of the images of the n sections. We recall the exact
sequence

(4) 0 — mOc/5(*S) — OL(xS); — Op(—log D) —» 0,

where O¢/3(*S) denotes the sheaf of vertical rational vector fields on C with poles only along
the divisor S, and ©p(*S), the sheaf of rational vector fields on C with poles only along the
divisor § and with constant horizontal components along the fibers of 7. There is an Og-linear
map

d

p:mO(xS). — P OB((gi))d_gv
i=1 !

which associates to a vector field ¢ in O, (*S), the n Laurent expansions £;-2

i around the divisor

si(B). Abusing notation we also write { for its image under p

q d d i d
t= (Eld_fl’ e ’End_én) S gBIOB((@))d_&‘

—

We then define for any vector field £ in ©/(+S), the endomorphism D(f) of O ® ’H;» by

DIO)(f @u)=0(0).f @u+ Y f&(T[t]u)

i=1
for f a local section of Op and u € H; Here T'[¢;] denotes the action of the energy-momentum

tensor on the i-th component 7—[; It is shown in [TUY] that D(Z) preserves V;X(}" ) and that

D(Z) only depends on the image #(¢) up to homothety. One therefore obtains a projective
connection V on the sheaf VlT X(]: ) over B® given by

—

VG(Z) =0(0)+T[.
Since this connection is projectively flat, it induces a monodromy representation
ps: m(B°,b) — PGL(V!L(F)s)
for some base point b € B*.

Remark 3.1. For a family of smooth n-pointed curves of genus 0 the projective WZW con-
nection is actually a connection (see e.g. [U] section 5.4).

4. MONODROMY OF THE WZW CONNECTION FOR A FAMILY OF 4-POINTED RATIONAL
CURVES

In this section we review the results by Tsuchiya-Kanie [TK] on the monodromy of the WZW
connection for a family of rational curves with 4 marked points. We consider the universal family
F, over X3 introduced in (2) with the collection

K = (w,m,w,@) € (P)*.



7

The rank of the sheaf of conformal blocks V; (Fy) equals 2 for any [ > 1, see e.g. [TK]

75\‘TK
Theorem 3.3. Moreover, as outlined in section 3.2, the bundle VlT STK

(F4) is equipped with a
flat connection V (not only projective).

Remark 4.1. It is known [TK] that the differential equations satisfied by the flat sections of
(V.. (F4),V) coincide with the Knizhnik-Zamolodchikov equations (see e.g. [EFK]). More-

l’)_\'TK
over, we will show in a forthcoming paper that the local system (VlT STK (F4), V) also coincides

with a certain Gauss-Manin local system.

We observe that the symmetric group Y3 acts naturally on the base variety X3. The local
system (VlT STK (Fy), V) is invariant under this ¥3-action and admits a natural ¥s-linearization.
Thus by descent we obtain a local system (V'.. (F;), V) over X5. Therefore, we obtain a

Z,XTK
monodromy representation

P By =m(X3,p) — GLOV'._(F1) ) = GL(2,C)

IXTK »
Proposition 4.2 ([TK] Theorem 5.2). We put ¢ = exp(2Z). There exists a basis B of the

- 1+2
vector space V;,XTK (.7-"4)5 = VZT,XTK (Fu)p such that

3
q 0 ~ g =1t
( 0 —1 ) ) MatB(pl<92)) - g+ 1 ( t q2 ) ’
with t = \/q(1 + q+ ¢*). Note that both matrices have eigenvalues qi and —q~
Remark 4.3. These matrices have already been used in the paper [AMU].

alw

Matg(pi(g91)) = q~

NI

5. INFINITE MONODROMY OVER 9 4

We denote by p; the restriction of the monodromy representation p; to the subgroup 1 (g 4, )
of Bs (see section 2.4.2)
pr - 7'('1(9:)?074,33) C Bg — GL(2, C)

Proposition 5.1. Let 0 € m (Mo 4, x) be the element introduced in (3). If I # 1,2,4 and 8,
then the element p,(o) has infinite order in both PGL(2, C) and GL(2, C)

Proof. Using the explicit form of the monodromy representation p; given in Proposition 4.2 we
compute the matrix associated to ¥(o) = U(o; ' 02) = 297 °92

- 1 g2+t e g7 )
Mat V(o)) = _ _ .
B(pi(¥(0))) (g1 1)2 ( t(q2—q 2) 22 + ¢*
This matrix has determinant 1 and trace 2 — ¢ — ¢! + ¢®> + ¢~2. Hence the matrix has finite
order if and only if there exists a primitive root of unity A such that

A+ A =2—qg—q '+ +q 2
In [Ma] it is shown that this can only happen if [ = 1,2,4 or 8: using the transitive action of

Gal(Q/Q) on primitive roots of unity, one gets that, if such a \ exists for ¢ = exp(f%), then

for any primitive (I + 2)-th root § there exists a primitive root A such that

5\+5\—1:2_(j_q—1+q~2+g—2.
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In particular, we have the inequality |1 — Re(q) + Re(¢?)| < 1 for any primitive (I + 2)-th
root ¢. But for [ # 1,2,4 and 8, one can always find a primitive (I + 2)-th root ¢ such that
Re(¢®) > Re(g) — for the explicit root ¢ see [Ma].

Finally, since p;(0) has trivial determinant, its class in PGL(2,C) will also have infinite
order. O

Remark 5.2. The same computation shows that the element p;(o10,"') € GL(2,C) also has
infinite order if [ # 1,2,4 and 8. This implies that the orientation chosen for both loops ¢; and
o9 around 0 and 1 is irrelevant. On the other hand, it is immediately seen that the elements
pi(o1), pi(o2) and p;(o102) have finite order for any level .

Proposition 5.3. In the four cases | = 1,2,4 and 8, the image p;(m1 (Mo 4, x)) in the projective
linear group PGL(2,C) is finite and isomorphic to the groups given in table

] 1 9 418
pi(m (Mo a,x)) || pr3 | po X pio | Ay | As

Here A,, denotes the alternating group on n letters.

Proof. We denote by my, mys € PGL(2, C) the elements defined by the matrices Matg(p;(01))
and Matg(p;(02)) and denote by ord(m;) their order in the group PGL(2, C). In the first two
cases one immediately checks the relations m; = may, ord(m,) = ord(ms) = 3 (for [ = 1) and
ord(my) = ord(msy) = ord(mymy) = 2 (for [ = 2).
In the case [ = 4 we recall that the alternating group A4 has the following presentation by
generators and relations
Ay ={a,b | a®* =" = (ab)® = 1).
Using the formulae of Proposition 4.2 and 5.1 we check that ord(m;) = ord(ms) = 3 and
ord(mflmg) =2, so that a = m; and b = m; 'm, generate the group Ay.
In the case [ = 8 we recall that the alternating group As has the following presentation by
generators and relations
As = {(a,b| a* =b* = (ab)’ = 1).
Using the formulae of Proposition 4.2 and 5.1 we check that ord(m,) = ord(ms) = 5 and
ord(mj'my) = 3. Moreover a straightforward computation shows that the element m; 'mym;*
is (up to a scalar) conjugate to the matrix

9 o 41+ t(l—q?
MatB(Pl(91 29391 2)) =x* < %(1(_ q2)) (t2 +€]4 ) ) )

which has trace zero. Note that t2 = ¢+ ¢*> + ¢® and ¢~* = —¢. Hence ord(m 'mym;') =

ord(mlmglml) = 2. Therefore if we put a = mlmglml and b = ml_lmg, we have ab = m; and
ab® = my, so that ord(a) = 2, ord(b) = 3, and ord(ab) = 5, i.e. a,b generate the group As. [

Corollary 5.4. In the four cases | = 1,2,4 and 8, the image p;(Bs) in GL(2,C) is finite.

Proof. First, we observe that the image p;(m (9o 4, x)) in GL(2, C) is finite. In fact, by Propo-
sition 5.3 its image in PGL(2,C) is finite and its intersection p;(m (M4, x)) N C*Id with
the center of GL(2,C) is also finite. The latter follows from the fact that the determinant
det Mat5(7;(g:)) = —q 2 has finite order in C*.
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Secondly, we recall that Ps is generated by the normal subgroup m; (94, 2) and by the
element g7. Since p;(g?) has finite order and since B3/P3 = X3 is finite, we obtain that p;(Bs)
is a finite subgroup. 0J

In the proof of the main theorem we will need the following corollary of Proposition 5.1. We
consider the following compact subset of C

(5) B=D\ (A1 UAUA,)

where D C C is the closed disc centered at 0 with radius 2 and A, C C denotes the open disc
centered at 0 with very small radius. We choose as base point b =i € B. Let £ € m(B,b) be
the loop going once around the two points —1 and 0.

Let

1
F =P xB— B;s0,51,5 1, Su;S—u)

be the family of 5-pointed rational curves, where the 5 sections sg, $1,5_1,S4,5_, map u € B
to 0,1, —1,u and —u respectively.

Corollary 5.5. Forl # 1,2,4 and 8, the image of the loop & € m(B,b) under the monodromy
representation

pr (B, b) — GLOV . (F))

1,OXTK

has infinite order.

Proof. Since propagation of vacua is a flat isomorphism (see e.g. [Lo| Proposition 22) we can
drop the point 0 which is marked with the zero weight. Thus it suffices to show the statement for
the same family with the 4 sections s1,s_1, Sy, S_y. The cross-ratio of the 4 points 1, —1,u, —u
equals
(w+1)2 1 1 .
t_—4u _§+Z(u+u ).
We also introduce the 4-pointed family

F' = (P! x B — B; 50,51, 800, 51),

where the section s; maps u to the cross-ratio ¢t and we observe that there exists an automor-
phism a : P! x B — P! x B over B (which can be made explicit) mapping the 4 sections
S1,8_1, Su, S_y 10 the 4 sections sg, S1, S, S¢. Moreover the automorphism « induces an iso-
morphism between the two local systems (V'.. (F),V) and (VlT (F"),V) over B. We now

Z,XTK 7XTK
consider the map induced by the cross-ratio

U:B— P'\{0,1,00} = Moy, U t.

One easily checks that the extension W_Of v to P! gives a double cover of P! ramified over
0 =W(—-1) and 1 = ¥(1). Note that U(0) = ¥U(c0) = co. Hence V¥ is an étale double cover
over its image. The map ¥ induces a map, denoted by ®, between fundamental groups

B : 11 (B,1) — m (P {0, 1,00}, %).

An elementary computations shows that ®(¢;) = o2, ®(&) = 02, and ®(&3) = 0, 'oy !, where
&1, & and &5 denote the loops in B going once around the points —1, 1 and 0 respectively. We
recall from section 2.3 that oy and oy denote the loops in 9y 4 around the points 0 and 1. All
orientations of the loops are the same. Hence if we denote £ = &3¢, the loop in B going around
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the two points —1 and 0, then ®(¢) = 0, 01 = o~!. Thus ¢ has infinite order by Proposition
o.1. U

6. INFINITE MONODROMY FOR HIGHER GENUS

6.1. Deformation of families of pointed nodal curves. In this section we explicitly de-
scribe a deformation of two families of rational nodal curves into smooth curves. These defor-
mations will be used in the proof of the main theorem.

6.1.1. A family of rational curves. We consider the family of rational curves p : C — Al
parameterized by the affine line A! and given by the equation

C = Zeros(f) C P? x A' f=ay— 12

where (z : y : z) are homogeneous coordinates on the projective plane and 7 is a coordinate
on Al. We denote by C, the fiber over 7 € Al. For 7 # 0 the curve C, is a smooth conic and
Co = Lo U Ly is the union of two projective lines given by the equations Lo = Zeros(y) and
Ly = Zeros(z). For 7 # 0 we can parameterize the smooth conic C, in the following way

®,:P' — C, C P? (: B) = (B*:7a”: ap).

Note that for 7 = 0 this morphism also gives a parametrization of the line L.

Let m > 2 be an integer. We define 2m + 1 sections 1, ..., Som, Soo Of the family p: C — Al
parameterized by an open subset of A! with coordinate u. We put

si(u,7)=(1:7:1) So(u,7) = (1:7:-1),

s3(u,7) = (1: 70 : u) sq(u,7) = (1:7u? : —u),
and for j =3,....m

-2

S2j-1(u, 7) = (71 j B

1) salu,T) = (77 ).
Finally we put
Soo(t, 7) = (0:1:0).
We observe that for 7 # 0 the 2m + 1 points s1(u, 7), . .., Som (U, T), Soo(u, T) correspond to the
following points in P! via the morphism @,

1,—1,u,—u,3r Y =37t ... omr, —mr !, .

For 7 = 0 the points s;(u,0), s2(u, 0), s3(u,0), s4(u,0) € Ly have coordinates 1, —1,u, —u and
the points s5(u,0),. .., Som(u,0), Seo(u,0) € Ly have coordinates 3, —3,...,m, —m, oo, in par-
ticular they do not depend on u. We consider the open subsets Q = {r : |7| < 3} C A! and
B as defined in (5), and define the family

i : . .
Fome1 = (m=1idxp: B xCo—Bx;s1,5,...,5m, 5x)

of 2m + 1-pointed rational curves.
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6.1.2. A family of hyperelliptic curves. Let g > 2 be an integer and let a be a complex number
satisfying |a| > 1. We consider the family p : C — A x A! of curves parameterized by two
complex numbers (u,7) € A' x A and such that the fiber C(, ) is the double cover of P!
ramified over the 2¢g + 2 points:

0,00,u> +7,u* — 7,14+ 7,1 —7,(3a)? +7,(3a)* —7,...,(ga)* + 7, (9a)* — 7.

We assume that these points are distinct. We denote the projection pr : Cy, ;) — P'. The
family of curves C can be constructed by taking the closure in P? x Al x A of the affine curve
in A% x A! x Al over A! x A! defined by the equation

6) Y=a(x—1+7)(z—-1-7)(z—u®+7)(x—u>—71) H@; — (ja)? +7)(z — (ja)? —7)

7j=3
and by blowing up ¢ times the singular point at oco.

We notice that for any 7 # 0 with |7| sufficiently small and for u varying in a Zariski open
subset U, of A' the curves C, ) are smooth hyperelliptic curves of genus g. For 7 = 0 and
u? # 0,1, (3a)?,.. ., (ga)? the curve C,  is a rational nodal curve with g nodes lying over the
points 1,u%, (3)?,..., (9o)? of P'. The normalization map 7 : P! — C(,) is explicitly given
over A! C P! by the expressions

A = A% e (), (1) = (0 - 1) =) [ [ - ()?).

j=3
This shows that the pre-images by 1 of the g nodes are

1, —-1,u, —u,3a, —3a, ..., ga, —ga.

We put se(u, 7) = 00 € Cu,r) for any (u,7) and B as defined in (5). Let Q = {7 : |7| < 1}
We define the family
f;yp = (7 : Claxa — B x £, 55)

of 1-pointed hyperelliptic curves.

6.2. The sewing procedure. We will briefly sketch the construction of the sewing map and
give some of its properties (for the details see [TUY] or [U]).

We consider a flat family
F=m:C—>BxQs1,...,5)

of n-pointed connected projective curves parameterized by B x (), where B is a complex manifold
and Q C A' is an open subset of the complex affine line A! containing the origin 0. We assume
that the family F satisfies the following conditions:

(1) the curve Cp, -y is smooth if 7 # 0.
(2) the curve Cp ) has exactly one node.

We also introduce the family Fof n+ 2-pointed curves associated to F
F= (%:C~—> B; sy, ..., Spt2)
which desingularizes the family of nodal curves Figy(o;. Here s,.1(b) and s,,2(b) are the two
points of Gy lying over the node of C ).
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Remark 6.1. An example of a family F satisfying the above conditions is given in section
6.1.1.

For any dominant weight p the Virasoro operator L, induces a decomposition of the rep-
resentation space H,, into a direct sum of eigenspaces H,(d) for the eigenvalue d + A, of Ly,
where A, € Q is the trace anomaly and d € N. We recall that there exists a unique (up to a
scalar) bilinear pairing

(.|.): HyxHu —C  such that (X (n)ulv) + (u|X(—n)v) =0
for any X € sl(2), n € Z, u € H,, v € H,r and (.|.) is zero on H,(d) x H,i(d') if d # d'.
We choose a basis {v1(d), ..., vm,(d)} of H,(d) and let {v'(d),...,v™(d)} be its dual basis of
H,.i(d) with respect to the above bilinear form. Then the element
mq
va =Y _vi(d) @ v'(d) € Hy(d) @ H(d) C My ® Hy
i=1

does not depend on the basis. We recall that VlT ' (]t" ) is a locally free Og-module. Given a

section ¢ € VlT St (F) we define an H;—Valued power series ¢ € 7‘[}[[7‘“ ® Op as follows. For

any non-negative integer d the inclusion H; — Hs

-yt
(7) 7Td . HX,N,

it VP U® v(d) induces a dual projection

— HL.

pt A
We denote by 1y the image m4(v)) € HTX ® Op. We then define

)= ar’ € Hyl[r]] @ Op.
d=0

It is shown in [TUY] that

~

Ve VI(F) ©0g.0 O,
Where/\@ denotes the structure sheaf of the completion of B x (2 filong the divisor B x {0}. Note
that O = Ogl[7]]. Therefore we obtain for any u € P, and any A € ()" an Opxg-linear map
50t Vi5,i(F) @05 O — VI(F) @050 O, 00 s,(4) =4,
called the sewing map. We denote Q° = Q \ {0}.

We recall that the sheaf VZT %t (]T“ ) over B, as well as its pull-back to the product B x 0°

under the first projection, is equipped with the WZW-connection (see section 3.2). On the
other hand, the restriction of the sheaf V;X(}" ) to B x Q° which is the open subset of B x

parameterizing smooth curves, is also equipped with the WZW-connection. The main result of
this section (Theorem 6.5) says that the sewing map s, is projectively flat for both connections.
We first need to recall the following

Theorem 6.2 ([TUY] Theorem 6.2.2). For any section ¢ € VlTquT (F) the multi-valued formal

power series {D\ = TAMZ has the following properties :
(1) it satisfies the relation

V_a (12) =0 mod OBXQQZ.



13

(2) for any b € B, the power series Uy converges.
(3) if B is compact, there ezists a non-zero positive real number v such that the power series

J defines a holomorphic section of VZTX(]:) over B x D,., where D, C € is the open disc
centered at 0 with radius r. ’

Proof. Only part (3) is not proved in [TUY] Theorem 6.2.2. Consider a point a € B. We

choose holomorphic coordinates uy, ..., un, centered at the point a € B. Locally around the
point a € B the section 1 can be expanded as a Hf_\.-valued power series in the m + 1 variables
Uy, U, . . ., U, T. Given a second point b # a with coordinates b = (by,...,b,) with b; # 0,

we know by part (2) that v, converges if |7| < p for some real p. By the general theory of
functions in several complex variables (see e.g. [O] Proposition 1.2) we deduce that v, converges
for |7] < p and for any ¢ = (cy,...,¢y) such that |¢;| < |b;]. Therefore, there exists for any
a € B a polydisc A, around a and a real number 7, such that the radius of convergence of the
series 1. for any ¢ € A, is at least r,. By considering the covering of B by the polydiscs A,
and by the fact that B is compact, we then obtain the desired non-zero real number 7. O

Remark 6.3. We note that the statement given in [TUY] Theorem 6.2.2 says that there exists
a vector field £ over the family of curves C such that

(—Ti + [ﬂ) 7:0\ =0 mod OBxQQZa
dr

which is equivalent to the above statement using the property H(K_j = —7‘%. This last equality
is actually proved in [TUY] Corollary 6.1.4, but there is a sign error. The correct formula of
[TUY] Corollary 6.1.4 is §(¢) = —7-L, which is obtained by writing the 1-cocycle f5(u,7) =

’
gu,T|U2 - gUaT‘Ul :

Remark 6.4. By making the base change 1) = 7, where j is the denominator of the trace
anomaly A ,, we obtain a section ¢ € VITX(}")@)OBXQ Og|[v]] satisfying V,a (¢) = 0 mod Opxat.

The next result says that the sewing map is projectively flat.

Theorem 6.5. For any p € P, and any Xe (P)™ the restriction of the sewing map s, to the
open subset B x Q°

~

s.: VL (F) ®0p Opxao — VZ;(]:) B0y, 00 O

lv)‘ulL7ILT BxQO0

1s projectively flat for the WZW connections on both sheaves of conformal blocks.

Proof. We need to check that VD(J) = 0 mod Op, ot if V() = 0 mod Opgyqotp for any
vector field D over B x Q°. By Opgyqo-linearity of the connection, it suffices to check the
following two points:

(1) V%(J) = 0 mod Opyat for any section 1.
(2) Va(@) = 0 mod OBXQozZ if Vo(¢b) =0 mod Ogy for any vector field 0 on B.

Part (1) is an immediate corollary of the previous Theorem 6.2 (1). Note that V s () =0

for any section ¢ over B.
We now prove part (2). We start with a lemma, which is an analogue of [U] Lemma 5.3.1.
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Lemma 6.6. Let b € B and let O be a vector field in some neighbourhood U of b. If we choose
U C B sufficiently small, then there ezist local coordinates (uy, ..., Um, 2) (resp. (g, ..., Up,w))

of a neighbourhood X (resp. Y ) of sps1(U) C 5|U (resp. Spi2(U) C aU) and a vector field
over Cjiy, which is constant along the fibers

(e H(Cly,O5(+ Y _ si(B))#)
i=1
and which satisfy the following conditions :
(1) the sections Spy1 and S,4o are given by the mappings

Spa1: (Uy ey Um) = (U, e ey U, 0) = (U, ooy Uiy, 2)
Spao (U, .oy Um) > (U, e U, 0) = (Ugy oo Uy, W)

(2) aX = Zd% + 0, ay = —w% + 0. In particular, H(Z) =0, i.e. mejects onto the vector
field 0. Here 0 denotes the projection on the horizontal component, see (4).

Proof. The proof follows the lines of the proof of [U] Lemma 5.3.1.

For a small neighbourhood U of b, we choose (uy, ..., Uy, ) and (uy, ..., Uy, y) local coordi-
nates in 7 1(U) satisfying condition (1) of the Lemma. We denote by 7 : ¢’ —» B the family
of nodal curves parameterized by B obtained from the family C by identifying the two divisors
Spi1(B) and s,42(B). Note that we have a sequence of maps over B

C~L> C~/ — C\Bx{o}-
By choosing U small enough, we can lift the vector field 0 over U C B to a vector field  over C~"U

which is constant along the fibers of CNl’U — U and has poles only at Siy, iL.e. lies in OF, (xS)7.

The inclusion
0% (x8)5 = v (O4(+S = 80:1(B) — 5012(B))

allows us to see £ as a vector field over 5|U having the property

da db
0w, 0) + Z(u,0) = 0
T (0,0) + 5 (1,0) =0,
where the functions a(u, ) and b(u, y) are defined by the expressions of the restriction of £ to
the neighboorhoods X and Y
L d .
lx = a(u, x)% and )y = b(u,y)@.
Note that a(u,0) = 0 and b(u,0) = 0 for any u € U. The rest of the proof then goes as in [U]
Lemma 5.3.1 or [TUY] Lemma 6.1.2. O

Let b € B and let 0 be a vector field in some neighbourhood U of b. Taking U sufficiently

small, we can lift the projective connection V on the sheaf VZT 5 (JE ) over U to a connection.

ot
We consider the vector field ¢ constructed in Lemma 6.6. Then for a local section ¢ over U the
equation

V(1) = 0 mod Oy

is equivalent to the equation

—

(8) o + Tl + av = 0
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for some local section a of Op. We will take as local coordinates &,.1 = z and &,,» = w around

the divisors s,41(U) and s,,2(U), as introduced in Lemma 6.6. Then the image of ¢ under p
can be written

d d d d
g =/ ) n y Sn n
( TR dc, 3 HgE =& +2d€n+2>
Since T[fid%_] = Lg acting on the i-th component of the tensor product, we obtain the following
decomposition
Z Al n+1 L(()n-I—Z)

where the exponent (i) of the Vlrasoro operator Ly denotes an action on the ¢-th component.
For any non-negative integer d we then project equation (8) via the map 7, defined in (7)
into ’H;, which leads to

Ouba+ 3 TIJ + ma(LE ) — ma(LEH0) + vy = 0.

=1

We have the equalities (L") = (A, + d)ibg and mg(L{ ) = (ALt + d)thg. Hence both
terms cancel, since A, = A +. This leads to the equations for any d

(9) Oa+ Y T[l]tha+ athg = 0.

Multiplying (9) with 7¢ and summing over d, we obtain the equation
(10) 0U+ > T[]y + av) = 0.
i=1

Note that 9(1py7%) = (9hq) 7%, since the vector field d comes from B.

The vector field ¢ over CN‘U determines a vector field m over the family of smooth curves
Cluxqo as follows. We fix a point b € B and a non-zero complex number 7 with |7| < 1. The
smooth curve C, -y is obtained from the curve 51) by removing the two closed discs D,, 1 and
Do centered at s,.1(b) and s,49(b) with radius ||, and by identifying in the open curve
Cy \ (Dps1U Dy y9) the two annuli

Anir ={p €Cy : |7 < |2(p)| <1} and Apyy = {p € Gy : |7] < Jw(p)| < 1}

according to the relation
Zw =T.

Under this identification, we see that the two restrictions of vector fields E| {(b¥xAny, and 67 {(bYx A

n+1 n+2
correspond (since zdi = —wdi) and thus define a vector field m over C ), which has poles
only at the n points s1(b), ..., s,(b). Moreover the Laurent expansion of 7 at s1(b), ..., $,(b)
coincide with the Laurent expansmn of £. For the construction in a family, see [U] section 5.3.

Hence §(m) = 0 and p(m) = ({;-% IR End& ). So equation (10) can be written as

Vb = 0 + T = 0 mod Opyaotb.

The last equation means that QZ is a projectively flat section for the WZW connection. U
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From now on we assume that B is compact. Since by Theorem 6.2 (3) the formal power
series 1/1 determines a holomorphic section over B X D, we can choose a complex number

7o # 0 with |7p| < r and evaluate ¢ at 7o. This gives a section ¢ (7) of the conformal block

Vi(Fr) = VI (F) s

Moreover, using the factorization rules (see e.g. [TUY| Theorem 6.2.6 or [U] Theorem 4.4.9)
we obtain by summing over all dominant weights © € P, an Op-linear isomorphism

®s,(70) : @ uuuf _>VT ('7: ):
neP

which is projectively flat for the WZW connections on both sheaves over B by Theorem 6.5.
We fix a base point b € B, which gives a direct sum decomposition

(11) PV, (Fp= V(Fds.

Lt
HEP

We denote by D the subgroup of PGL(V 5(Fro)p) consisting of projective linear maps pre-

serving the direct sum decomposition (11) and by p,: D — PGL(VZXMM (]? )») the projection

onto the summand corresponding to u € P,.

The next proposition is an immediate consequence of the fact that the maps s,(m) are
projectively flat.

Proposition 6.7. With the above notation we have for any p € P, and any X e (P)"™

(1) the monodromy representation of the sheaf of conformal blocks VZTX(}"TO) over B x {m}
takes values in the subgroup D, i.e., 7

pi s m(B,b) — D C PGLV/ (Fr )y)-

(2) we have a commutative diagram

Px

7T1(B7 b) — D

- e

m(B,b) Sl paLvi. (F)y)

Lt

In the proof of the main theorem we will use the above proposition for a slightly more general
family F of n-pointed connected projective curves. We shall assume that F satisfies the two
conditions:

(1) the curve Cp, -y is smooth if 7 # 0.
(2) the curve C 0) has exactly m nodes.

The desmgularlzmg family F will thus be a n + 2m-pointed family.

Remark 6.8. An example of a family F satisfying the above conditions is given in section
6.1.2.
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Given an m-tuple i = (pi1, .. . , fim) € (B)™ of dominant weights, we denote it = (ul, ..., ul ) €
(P)™. The next proposition is shown along the same lines as Proposition 6.7. First we note
that there is a decomposition

T T ~ T
(12) @ Vst (Fho — VZ,X(}—TO)”'

pE(P)™

We denote by D the subgroup of PGL(VZT X(}"To)b) preserving the above decomposition.

Proposition 6.9. With the above notation we have for any i € (P,)™ and any X e (P)™
(1) the monodromy representation of the sheaf of conformal blocks VJTX(}—TO) over B x {7y}
takes values in the subgroup D, i.e., ’
px m(B,b) — D C PGL(V! (Fr)s).

(2) we have a commutative diagram

m(B,b) —% D

] :
m(B,b) T paLvi (F),)

LT
6.3. Proof of the Theorem. We will now prove the theorem stated in the introduction. We
know by [La] assuming® g > 2 that there is a projectively flat isomorphism between the two
projectivized vector bundles
Pz PV,
equipped with the Hitchin connection and the WZW connection respectively. Here VZT(D stands

for the sheaf of conformal blocks VZ o(F) associated to the family F = (7 : C — B;s1) of curves
with one point labeled with the trivial representation A\; = 0 (propagation of vacua).

We consider the family of hyperelliptic curves F = f;yp defined in section 6.1.2 for some

a with |o| > 1. The family F which desingularizes the nodal curves Figyqoy is a family of
(2g + 1)-pointed rational curves with points

oo, 1, —1,u, —u, 3o, —3a, . .., ga, —ga.
We then deduce from Proposition 6.9 (2) applied to the family F = F;yp withn=1, m=g
and the choice of weights \; = 0 and p; = --- = g = w, where we associate the weight 0 to

oo and the weight @ to the remaining 2g points (note that @ = '), that it suffices to show
that the monodromy representation

(B, b) —s PGL(V! (F)b)

1,0,w,...,w0

has an element of infinite order in its image.

In order to show the last statement we consider the family of rational curves F;gil defined

in section 6.1.1. The family F which desingularizes the nodal curves Fgx{oy is a family of

'In fact in [La] one makes the assumption g > 3 for simplicity. It can be shown that the isomorphism also
holds for g = 2.
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(2g + 3)-pointed rational curves consisting of the disjoint union of two projectve lines with
5 points 0,1, —1,u, —u on one projective line and 2¢g — 2 points 0,00,3,—3,...,9,—¢g on the
second projective line.

Next we observe that the conformal block for the projective line with 2g — 2 marked points
0,00,3,—3,...,9,—g with the zero weight at the points 0 and co and the weight w at the other
2g — 4 points is non-zero. This follows from an iterated use of the propagation of vacua, the
factorization rules and from the fact that dim V), , . (P!) = 1.

The previous observation together with Corollary 5.5 then implies that the family F of
(29 + 2)-pointed curves with weights 0, w, @, w, @ on the 5 points 0,1, —1,u, —u of the first
projective line and weights 0,0, wq,...,w on the 2g — 2 points 0,00,3,—3,...,9,—g on the
2g — 2 points on the second projective line has infinite monodromy. We then deduce from
Proposition 6.7 (2) applied to the family F = F37%, with X=(w,...,w) and p = 0 that the
monodromy representation

mi(B.b) — PGL(Vl . (F))
has an element of infinite order in its image, which completes the proof.

Remark 6.10. For the convenience of the reader we recall that we have taken the family of
smooth hyperelliptic curves given by the affine equation (6) for two complex numbers o and 7
with a~! and 7 sufficiently small — note that ! and 7 measure the size of the domain where
the sewing elements ¢ for the two families Fiot ) and }":yp converge. The parameter u varies
in B as defined in (5). Then the loop £ € m(B,7) which starts at ¢ and goes once around the
points —1 and 0 has monodromy of infinite order.

7. FINITENESS OF THE MONODROMY REPRESENTATION IN GENUS ONE

In this section we collect for the reader’s convenience some existing results on the monodromy
representation on the conformal blocks associated to the Lie algebra sl(2) for a family of one-
marked elliptic curves labeled with the trivial representation. We consider the upper half plane
H = {w e C|Im w > 0} with the standard action of the modular group PSL(2,Z), which is
generated by the two elements

(0 -1 (11 e s
S_(l 0 ), T_<0 1) satisfying S* = (ST)” =e.

Let F denote the universal family of elliptic curves parameterized by H. We denote by VZO(}" )
the sheaf of conformal blocks of level [ with trivial representation at the origin. The sheaf
VZO(}" ) has rank [+ 1 and for each A\ € P, we obtain by the sewing procedure a section 1, over
H given by the formal series

o0

(Wa()]6) =T (Wla@¢)r?,  with 7 = exp(2imw),

d=0
where 1) is the unique (up to a multiplicative scalar) section of VZT wao(Ph) and ¢ is any element

in H,. Because of Theorem 6.2 the [ 4+ 1 sections 1%\ are projectively flat for the projective
WZW connection on VI o(F) and are linearly independent by the factorization rules (11). Note

that this decomposition of the sheaf V;E o(F) into a sum of rank-1 subsheaves corresponds to a
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degeneration to the nodal elliptic curve given by Im w — 0o, or equivalently 7 = exp(2irw) — 0.
Moreover by evaluating the sections 1, at the highest weight vector ¢ = vy € H, we obtain

analytic functions x(w) = (¥ (w)|vy), which correspond to the character of the representations
H)\Z

0o myg
E E v;(d riatd — E dim H ()75 = tryg, (710),
d=0 i—1 d=0

see e.g. [U] equation (4.3.1). This shows that in the genus one case the local system given
by the conformal blocks with trivial marking equipped with the WZW connection coincides
with the local system given by the characters y,(w). Moreover the monodromy action of the
modular group PSL(2,Z) on the vector space spanned by the characters {xa(w)}rep, has been
determined.

Proposition 7.1 ([GW]). The monodromy representation
pr: PSL(2,Z) — PGL(I + 1)
is given by the two unitary matrices p(S) and p(T')

2 . w1k
e = (),

oD = Sy (im(zl = D).

With this notation the main statement of this section is the following

Theorem 7.2. The image of the representation p; is finite.

Proof. Using the explicit expression of the matrix p;(U) for any element U € PSL(2,Z) com-
puted in [J] section 2, it is shown in [G] section 2 that the matrix p;(U) has all its entries in
the set 50 +2)Z[exp(ﬁ)]. Since moreover the representation p; is unitary, we may deduce

finiteness along the same lines as in [G] proof of corollary. U
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