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Introduction

This paper is concerned with the moduli space of principal G-bundles on an
algebraic curve, for G a complex semi-simple group. While the case G = SLr ,
which corresponds to vector bundles, has been extensively studied in algebraic ge-
ometry, the general case has attracted much less attention until recently, when it
became clear that these spaces play an important role in Quantum Field Theory. In
particular, if L is a holomorphic line bundle on the moduli space MG , the space
H0(MG, L) is essentially independent of the curve X , and can be naturally identi-
fied with what physicists call the space of conformal blocks associated to the most
standard Conformal Field Theory, the so-called WZW-model. This gives a strong
motivation to determine the group Pic(MG) of holomorphic line bundles on the
moduli space.

Up to this point we have been rather vague about what we should call the
moduli space of G-bundles on X . Unfortunately there are two possible choices, and
both are meaningful. Because G-bundles have usually nontrivial automorphisms,
the natural solution to the moduli problem is not an algebraic variety, but a slightly
more complicated object, the algebraic stack MG . This has all the good properties
one expects from a moduli space; in particular, a line bundle on MG is the functorial
assignment, for every variety S and every G-bundle on X× S , of a line bundle on
S . There is also a more down-to-earth object, the coarse moduli space MG of semi-
stable G-bundles; the group Pic(MG) is a subgroup of Pic(MG) , but its geometric
meaning is less clear.

In this paper we determine the groups Pic(MG) and Pic(MG) for essentially
all classical semi-simple groups, i.e. of type A, B, C, D and G2 . Since the simply-
connected case was treated in [L-S] (see also [K-N]), we are mainly concerned with
non simply-connected groups. One new difficulty appears: the moduli space is no
longer connected, its connected components are naturally indexed by π1(G) . Let
G̃ be the universal covering of G ; for each δ ∈ π1(G) , we construct a natural
“twisted” moduli stack Mδ

G̃
which dominates Mδ

G . (For instance if G = PGLr ,
it is the moduli stack of vector bundles on X of rank r and fixed determinant of

1 Partially supported by the European HCM project “Algebraic Geometry in Europe” (AGE).
2 Partially supported by Europroj.
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degree d , with e2πid/r = δ .) This moduli stack carries in each case a natural line
bundle D , the determinant bundle associated to the standard representation of G̃ .
We can now state some of our results; for simplicity we only consider the adjoint
groups.

Theorem .− Put εG = 1 if the rank of G is even, 2 if it is odd. Let δ ∈ π1(G) .

a) The torsion subgroup of Pic(Mδ
G) is isomorphic to H1(X, π1(G)) . The

torsion-free quotient is infinite cyclic, generated by Dr if G = PGLr , by DεG

if G = PSp2l or PSO2l .

b) The group Pic(Mδ
G) is infinite cyclic, generated by DrεG if G = PGLr , by

D2εG if G = PSp2l or PSO2l . 1

Unfortunately, though our method has some general features, it requires a case-
by-case analysis – in view of the result, this is perhaps unavoidable. An amusing
consequence ( § 13) is that the moduli space MG is not locally factorial, except when
G is simply connected with each simple factor of type A, C or perhaps E . However
it is always a Gorenstein variety.

Notation

Throughout this paper we denote by X a smooth projective connected curve
over C of genus ≥ 1 ; we fix a point p of X . We let G be a complex semi-simple
group; by a G-bundle we always mean a principal bundle with structure group G .
We denote by MG the moduli stack parameterizing G-bundles on X , and by MG

the coarse moduli variety of semi-stable G-bundles (see § 7).

Part I: The Picard group of the moduli stack

1. The stack MG

(1.1) Our main tool to study Pic(MG) will be the uniformization theo-
rem of [B-L], [F2] and [L-S], which we now recall. We denote by LG the loop
group G(C((z))) , viewed as an ind-scheme over C , by L+G the sub-group scheme

1 The statement “ Pic(MG) is generated by Dk ” must be interpreted as “ Dk descends to MG ,

and the line bundle on MG thus obtained generates Pic(MG) ” – and similarly for a).
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G(C[[z]]) , and by QG the infinite Grassmannian LG/L+G ; it is a direct limit
of projective integral varieties (loc. cit.). Finally let LXG be the sub-ind-group
G(O(X p)) of LG . The uniformization theorem defines a canonical isomorphism
of stacks

MG
∼−→ LXG\QG .

Let G̃→ G be the universal cover of G ; its kernel is canonically isomorphic
to π1(G) . We want to compare the stacks MG and M

G̃
.

Lemma 1.2 .− (i) The group π0(LG) is canonically isomorphic to π1(G) .

(ii) The quotient map LG→ QG induces a bijection π0(LG)→ π0(QG) . Each
connected component of QG is isomorphic to Q

G̃
.

(iii) The group π0(LXG) is canonically isomorphic to H1(X, π1(G)) .

(iv) The group LXG is contained in the neutral component (LG)o of LG .

Proof: Let us first prove (i) when G is simply connected. In that case, there exists
a finite family of homomorphisms xα : Ga → G such that for any extension K of
C , the subgroups xα(K) generate G(K) [S1]. Since the ind-group Ga(C((z))) is
connected, it follows that LG is connected.

In the general case, consider the exact sequence 1→ π1(G)→ G̃→ G→ 1 as
an exact sequence of étale sheaves on D∗ := SpecC((z)) . Since H1(D∗, G̃) is trivial
[S2], it gives rise to an exact sequence of C-groups

(1.2 a) 1→ LG̃/π1(G) −→ LG −→ H1(D∗, π1(G))→ 1 .

The assertion (i) follows from the connectedness of LG̃ and the canonical isomor-
phism H1(D∗, π1(G)) ∼−→ π1(G) (Puiseux theorem).

To prove (ii), we first observe that the group L+G is connected: for any
γ ∈ L+G(C) , the map Fγ : G×A1 → L+G defined by Fγ(g, t) = g−1γ(tz) satis-
fies Fγ(γ(0), 0) = 1 and Fγ(1, 1) = γ , hence connects γ to the origin. Therefore
the canonical map π0(LG)→ π0(LG/L+G) is bijective. Moreover it follows from
(1.2 a) that (LG)o is isomorphic to LG̃/π1(G) , which gives (ii).

Consider now the cohomology exact sequence on X∗ associated to the exact
sequence 1→ π1(G)→ G̃→ G→ 1 . Since H1(X∗, G̃) is trivial [Ha], we get an
exact sequence of C-groups

(1.2 b) 1→ LXG̃/π1(G)→ LXG→ H1(X∗, π1(G))→ 1 .

Since the restriction map H1(X, π1(G))→ H1(X∗, π1(G)) is bijective and LXG̃ is
connected ([L-S], Prop. 5.1), we obtain (iii).
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Comparing (1.2 a) and (1.2 b) we see that (iv) is equivalent to saying that the
restriction map H1(X∗, π1(G))→ H1(D∗, π1(G)) is zero. This follows at once from
the commutative diagram of restriction maps

H1(X, π1(G)) ∼−−−−→ H1(X∗, π1(G))y y
H1(D, π1(G)) −−−−→ H1(D∗, π1(G))

and the vanishing of H1(D, π1(G)) .

For δ ∈ π1(G) , let us denote by (LG)δ the component of LG corresponding
to δ via Prop. 1.2 (i).

Proposition 1.3 .− a) There is a canonical bijection π0(MG) ∼−→ π1(G) .
b) For δ ∈ π1(G) , let Mδ

G be the corresponding component of MG ; let ζ be
any element of (LG)δ(C) . There is a canonical isomorphism

Mδ
G

∼−→ (ζ−1 LXG ζ)\Q
G̃

.

Proof: The first assertion follows from the uniformization theorem and Lemma 1.2,
(i), (ii) and (iv). Again by the uniformization theorem, Mδ

G is isomorphic to
LXG\(LG)δ/L+G ; left multiplication by ζ−1 induces an isomorphism of (LG)δ/L+G
onto (LG)o/L+G = Q

G̃
, and therefore an isomorphism of LXG\(LG)δ/L+G onto

(ζ−1 LXG ζ)\Q
G̃

.

Prop. 1.3 a) assigns to any G-bundle P on X an element δ of π1(G) such
that P defines a point of Mδ

G ; we will refer to δ as the degree of P .
We will use Prop. 1.3 to determine the Picard group of Mδ

G ; therefore we
first need to compute Pic(Q

G̃
) . We denote by s the number of simple factors of

Lie(G) .

Lemma 1.4 .− The Picard group of Q
G̃

is isomorphic to Zs .

Proof: Write G̃ as a product
s∏

i=1
G̃i of almost simple simply connected groups. Put

Q = Q
G̃

and Qi = Q
G̃i

; the Grassmannian Q is isomorphic to
∏
Qi . The Picard

group of Qi is free of rank 1 [M]; we denote by OQi
(1) its positive generator.

The projections Q → Qi define a group homomorphism
∏

Pic(Qi)→ Pic(Q) ; we

claim that it is bijective.
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Let L be a line bundle on Q ; there are integers (mi) such that the restriction
of L to {q1} × . . .×Qj × . . .× {qs} , for any (qi) ∈

∏
Qi and any j , is isomorphic

to OQj (mj) . Then L is isomorphic to £iOQi(mi) : by writing each Qi as a
direct limit of varieties Q(n)

i , we are reduced to prove that these two line bundles
are isomorphic over

∏
i

Q(n)
i , which follows immediately from the theorem of the

square.

If A is a finite abelian group, we will denote by Â its Pontrjagin dual
Hom(A,C∗) ; it is isomorphic (non-canonically) to A .

Proposition 1.5 .− For δ ∈ π1(G) , let qδ
G : Q

G̃
→Mδ

G be the canonical projection
(Prop. 1.3). The kernel of the homomorphism

(qδ
G)∗ : Pic(Mδ

G) −→ Pic(Q
G̃

) ∼= Zs

is canonically isomorphic to H1(X, π1(G)̂ ) , and its image has finite index.

Proof: Since qδ
G identifies Mδ

G to the quotient of Q
G̃

by ζ−1 LXG ζ , line bundles
on Mδ

G correspond in a one-to-one way to line bundles on Q
G̃

with a (ζ−1 LXG ζ)-
linearization; in particular, the kernel of (qδ

G)∗ is canonically isomorphic to the char-
acter group Hom(LXG,C∗) . From the exact sequence (1.2 b) and the triviality of the
character group of LXG̃ ([L-S], Cor. 5.2) we see that the group Hom(LXG,C∗) is
isomorphic to H1(X, π1(G))̂ , which can be identified by duality with H1(X, π1(G)̂ ) .

Write G̃ ∼=
s∏

i=1
G̃i as in Lemma 1.4. The image of π1(G) under the i-th pro-

jection pi : G̃→ G̃i is a central subgroup Ai of G̃i ; we denote by Gi the quotient
G̃i/Ai , so that pi induces a homomorphism G→ Gi . Let δi be the image of
δ in π1(Gi) . Choosing a non trivial representation ρ : Gi → SLr gives rise to a
commutative diagram

Q
G̃

pri−−−−→ Q
G̃i

−−−−→ QSLr

qδ
G

y q
δi
Gi

y qSLr

y
Mδ

G −−−−→ Mδi

Gi
−−−−→ MSLr

.

The pull back of the determinant bundle D on MSLr to QSLr is OQ(1) [B-L], and
the pull back of OQ(1) to Qi := Q

G̃i
is OQi(dρ) for some integer dρ (the Dynkin

index of ρ , see [L-S]). Therefore pr∗i OQi(dρ) belongs to the image of (qδ
G)∗ . It

follows that this image has finite index.
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Remark 1.6 .− In the sequel we will be mostly interested in the case where G is
almost simple; then π1(G) is canonically isomorphic to µn (the group of n-th roots
of 1 ) or to µ2 × µ2 , and each of these groups is naturally isomorphic to its dual
(by choosing e2πi/n as generator of µn ). We thus get that the torsion subgroup of
Pic(Mδ

G) is Jn in the first case and J2 × J2 in the second, where Jn denotes the
kernel of the multiplication by n in the Jacobian of X .

2. The twisted moduli stack Mδ
G

(2.1) Proposition 1.5 takes care of the torsion subgroup of Pic(Mδ
G) ; to

complete the description of this group we need to determine the image of (qδ
G)∗ ,

or more precisely to describe geometrically the generators of this image. To do this
we will again compare with the simply connected case, by constructing for every
δ ∈ π1(G) a “twisted” moduli stack Mδ

G̃
which dominates Mδ

G .

Let A be a central subgroup of G , together with an isomorphism A ∼−→
s∏

j=1
µrj

.

Using this isomorphism we identify A to a subgroup of the torus T = (Gm)s ; let
CAG be the quotient of G× T by the diagonal subgroup A . The projection
∂ : CAG→ T/A ∼= T induces a morphism of stacks det :MCAG →MT . For each
element d = (d1, . . . , ds) of Zs , let us denote by OX(dp) the rational point of MT

defined by (OX(d1p), . . . ,OX(dsp)) . The fiber Md
G,A of det at OX(dp) depends

only, up to a canonical isomorphism, of the class of d modulo r = (r1, . . . , rs) .
If S is a complex scheme, an object of Md

G,A(S) is by definition a CAG-
bundle P on X× S together with a T-bundle isomorphism of P×CAG T with the
T-bundle associated to OX(dp) . If d = 0 , giving such an isomorphism amounts to
reduce the structure group of P to Ker∂ = G : in other words, the stack M0

G,A is
canonically isomorphic to MG .

(2.2) The projection p : CAG→ G/A induces a morphism of stacks
π :Md

G,A →MG/A . The exact sequence

1→ A −→ CAG
(p,∂)−−−−→ (G/A)× T→ 1

gives rise to a cohomology exact sequence

H1(X, A)→ H1(X, CAG)→ H1(X, G/A)×H1(X, T)→ H2(X, A)

from which we deduce that the degree δ ∈ π1(G) of the G-bundle π(P) , for P ∈
Md

G,A(C) , satisfies ρ(δ) e2πid/r = 1 , where ρ is the natural homomorphism of
π1(G/A) onto A ⊂ (Gm)s and e2πid/r stands for the element (e2πid1/r1 , . . . , e2πids/rs)
of (Gm)s . We denote by Mδ

G,A the open and closed substack π−1(Mδ
G/A) of
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Md
G,A , where d = (d1, . . . , ds) is the unique element of Zs such that 0 ≤ dt < rt

and ρ(δ) e2πid/r = 1 (if G is simply connected, ρ is bijective and Mδ
G,A is simply

Md
G,A ). The induced morphism π :Mδ

G,A →Mδ
G/A is surjective.

We will be mostly interested in the case when A is the center of G ; then we
will denote simply by Mδ

G the stack Mδ
G,A , for any choice of the isomorphism

A ∼−→
s∏

j=1
µrj

(up to a canonical isomorphism, the stack Mδ
G,A does not depend on

this choice). If δ belongs to π1(G) ⊂ π1(Gad) , one gets ρ(δ) = 1 hence d = 0 : by
the above remark, the notation Mδ

G is thus coherent with the one introduced in
Prop. 1.3.

Examples 2.3 .− a) We take G = SLr , A = µr . The group CAG is canonically
isomorphic to GLr ; the stack Md

SLr
can be identified with the stack of vector

bundles E on X with an isomorphism ΛrE ∼−→ OX(dp) .

b) We take for G the group O2l or Sp2l , for A its center, with the unique
isomorphism A ∼−→ µ2 . The group CAG is the group CO2l or CSp2l of automor-
phisms of C2l respecting the bilinear form up to a (fixed) scalar. The stack Md

G can
therefore be viewed as parameterizing vector bundles E on X with a (symmetric or
alternate) non-degenerate bilinear form with values in OX(dp) . Similarly, the stack
Md

SO2l
parameterizes vector bundles E on X with a non-degenerate quadratic form

q : S2E→ OX(dp) and an orientation, i.e. an isomorphism ω : det E ∼−→ OX(dlp)
such that ω⊗2 coincides with the quadratic form induced by q on det E .

c) We take G = Spinr , A = µ2 . Then CAG is the Clifford group and M−1
G,A

is the moduli stack M−Spinr
considered in [O].

(2.4) Choose any element ζ ∈ (LGad)δ(C) ; reasoning as in Prop. 1.3, one gets
a canonical isomorphism Mδ

G
∼−→ (ζ−1 LXG ζ)\Q

G̃
(see also [B-L], 3.6 for the case

G = SLr ). In particular, the stack Mδ
G is connected. Moreover, we see as in the

proof of Prop. 1.5 that the torsion subgroup of Pic(Mδ
G) is canonically isomorphic

to H1(X, π1(G)̂ ) .

Let us apply the above construction to the group G̃ , with A = π1(G) . Let
δ ∈ π1(G) . From the exact sequence (1.2 a), we see that ζ is the image of an element
of (LG̃)δ . Comparing with Prop. 1.3, we see that the morphism qδ

G : Q
G̃
→Mδ

G

factors as

qδ
G : Q

G̃

qδ

G̃−→Mδ

G̃

π−→Mδ
G .

This shows us the way to determine the group Pic(Mδ
G) : we will first compute

Pic(Mδ
G) when G is simply connected or G = SO2l , then determine which powers

of the generator(s) descend to Mδ
G .
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3. The Picard group of MPGLr

According to (1.3), the connected components of MPGLr are indexed by the
integers d with 0 ≤ d < r ; the component Md

PGLr
is dominated by the mod-

uli stack Md
SLr

parameterizing vector bundles E on X with an isomorphism
ΛrE ∼−→ OX(dp) (2.3 a).

Recall that the determinant bundle D on Md
SLr

is the line bundle
det R(pr2)∗(E) , where E is the universal bundle on X×Md

SLr
. It follows from

[B-L], Prop. 9.2, that D generates Pic(Md
SLr

) and that its inverse image on Q
generates Pic(Q) . Therefore our problem is to determine which powers of D de-
scend to Md

PGLr
.

Proposition 3.1 .− The smallest power of D which descends to Md
PGLr

is Dr .

Proof: Since it preserves the Killing form, the adjoint representation defines a homo-
morphism Ad : GLr → SOr2 . Let f :Md

SLr
→MSOr2 be the induced morphism

of stacks; since Ad factors through PGLr , f factors through Md
PGLr

. By [L-
S], the determinant bundle DSO on MSOr2 admits a square root P ; one has
f∗DSO

∼= D2r since the Dynkin index of Ad is 2r , hence f∗P ∼= Dr , which im-
plies that Dr descends.

Let J be the Jacobian of X , and L the Poincaré bundle on X× J whose
restriction to {p} × J is trivial. Consider the vector bundles

F = L⊕(r−1) ⊕ L1−r(dp) and G = O⊕(r−1)
X ⊕ L−1(dp)

on X× J . We denote by rJ the multiplication by r in J , and put rX×J = IdX×rJ .
Since r∗X×J L ∼= Lr , one has r∗X×J G ∼= F ⊗ L−1 , hence the projective bundles P(F)
and r∗X×J P(G) are isomorphic. Therefore we have a commutative 1 diagram of
stacks

J
f−−→ Md

SLr

rJ

y y π

J
g−−→ Md

PGLr
,

where f and g are the morphisms associated to F and P(G) respectively.
Thus if Dk descends to Md

PGLr
, the class of f∗Dk in the Néron-Severi group

NS(J) must be divisible by r2 . An easy computation shows that the class of f∗D

1 By this we always mean 2-commutative, e.g. in our case the two functors π ◦f and g ◦rJ are

isomorphic.
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in NS(J) is r(r − 1) times the principal polarization; it follows that r2 must divide
kr(r − 1) , which means that r must divide k .

Remark 3.2 .− One can consider more generally the group G = SLr/µs , for each
integer s dividing r , and the corresponding stacks Md

G for d ∈ r
sZ (mod. rZ ).

We can prove that the line bundle Dk descends to Md
G if and only if k is a multiple

of s/(s, r
s ) . The “only if” part is proved exactly as above, but the other implication

requires some descent theory on stacks which lies beyond the scope of this paper.

4. The Picard group of MPSp2l

According to Prop. 1.3 the moduli stack MPSp2l
has 2 components Md

PSp2l

(d = 0, 1) ; the component Md
PSp2l

is dominated by the algebraic stack Md
Sp2l

pa-
rameterizing vector bundles of rank 2l on X with a symplectic form Λ2E→ OX(dp)
(Example 2.3 b). Let D denote the determinant bundle on Md

Sp2l
(i.e. the determi-

nant of the cohomology of the universal bundle on X×Md
Sp2l

); it is the pull back
of the determinant bundle D0 on Md

SL2l
by the f :Md

Sp2l
→Md

SL2l
associated

to the standard representation.

Lemma 4.1 .− The group Pic(Md
Sp2l

) is generated by D .

Proof: Consider the commutative diagram

QSp2l

F−−−−→ QSL2l

qd
Sp2l

y y qd
SL2l

Md
Sp2l

f−−−−→ Md
SL2l

,

where f and F are induced by the embedding Sp2l → SL2l , and qd
G : QG →Md

G

is the canonical projection (2.4). One has D = f∗D0 , (qd
SL2l

)∗D0 = OQSL2l
(1) by

[B-L], 5.5, and F∗OQSL2l
(1) = OQSp2l

(1) since the Dynkin index of the standard
representation of Sp2l is 1 ([L-S], Lemma 6.8). It follows that the homomorphism
(qd

Sp2l
)∗ : Pic(Md

Sp2l
)→ Pic(QSp2l

) = ZOQ(1) is surjective. On the other hand,
the proof of Prop. 6.2 in [L-S] shows that it is injective; our assertion follows.

In view of the above remarks, Prop. 1.5 and (2.4) provide us with an exact
sequence

0→ J2 → Pic(Md
PSp2l

) π∗−→ Pic(Md
Sp2l

) = ZD ;

we now determine the image of π∗ :

9



Proposition 4.2 .− The smallest power of D which descends to Md
PSp2l

is D if
l is even, D2 if l is odd.

Proof: The stack Md
Sp2l

parameterizes vector bundles E with a symplectic form
ϕ : Λ2E→ OX(dp) (2.3 b). For such a pair, the form Λ2ϕ defines a quadratic
form on Λ2E with values in OX(2dp) , hence an OX -valued quadratic form on
Λ2E(−dp) . Put N = l(2l − 1) ; let fd :Md

Sp2l
→MSON be the morphism of stacks

which associates to (E, ϕ) the pair (Λ2E(−dp), Λ2ϕ) . Since the representation
Λ2 : Sp2l → SON factors through PSp2l , the morphism fd factors as

fd :Md
Sp2l
→Md

PSp2l
→MSON .

The pull back under fd of the determinant bundle on MSON is D2l−2 ( 2l − 2
is the Dynkin index of the representation Λ2 ). But we know by [L-S] that this
determinant bundle admits a square root, hence Dl−1 descends to Md

PSp2l
. On

the other hand, the same argument applied to the adjoint representation shows that
D2l descends (see the proof of Prop. 3.1). We conclude that D2 descends, and that
D descends when l is even.

To prove that D does not descend when l is odd, we use the notation of the
proof of Prop. 3.1, and consider on X× J the vector bundle H = L⊕l ⊕ L−1(dp)⊕l ,
endowed with the standard hyperbolic alternate form with values in O(dp) . We see
as in loc. cit. that the PSp2l -bundle associated to H descends under the isogeny 2J

(observe that H⊗L descends, and use the exact sequence 1→ Gm → CSp2l →
→ PSp2l → 1 ). Therefore the morphism h : J→Md

Sp2l
defined by H fits in a

commutative diagram

J h−−→ Md
Sp2l

2J

y y
J −−→ Md

PSp2l
.

Since the class of f∗D in NS(J) is 2l times the principal polarization, it follows
that D does not descend.

5. The Picard group of MPSO2l

(5.1) Let us consider first the moduli stack MSOr , for r ≥ 3 . It has two
components Mw

SOr
, distinguished by the second Stiefel-Whitney class w ∈ µ2 .
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The Picard group of these stacks is essentially described in [L-S]: to each theta-
characteristic κ on X is associated a Pfaffian line bundle Pκ whose square is the
determinant bundle D (determinant of the cohomology of the universal bundle on
X×Mw

SOr
); according to Prop. 1.5, there is a canonical exact sequence

0→ J2
λ−→ Pic(Mw

SOr
) −→ Z→ 0 ,

where the torsion free quotient is generated by any of the Pκ ’s.

We can actually be more precise. Let θ(X) be the subgroup of Pic(X) gener-
ated by the theta-characteristics; it is an extension of Z by J2 .

Proposition 5.2 .− The map κ 7→ Pκ extends by linearity to an isomorphism
P : θ(X) ∼−→ Pic(Mw

SOr
) , which coincides with λ on J2 .

In other words, we have a canonical isomorphism of extensions

0→ J2 −−→ θ(X) −−→ Z → 0∥∥∥∥ P

y ∥∥∥∥
0→ J2

λ−−→ Pic(Mw
SOr

) −−→ Z → 0 .

Proof: It suffices to prove the formula Pκ⊗α = Pκ ⊗ λ(α) for any theta-characteristic
κ and element α of J2 .

Let L be the Poincaré bundle on X× J , normalized so that its restriction
to {p} × J is trivial. Put d = 0 if w = 1 , d = 1 if w = −1 . The vector bundle
L(dp)⊕ L−1(−dp)⊕Or−2 , with its natural quadratic form and orientation, defines
a morphism g : J→Mw

SOr
. Let us identify J with Pico(J) via the principal polar-

ization. Then the required formula is a consequence of the following two assertions:

a) One has g∗Pκ⊗α = (g∗Pκ)⊗ α for every theta-characteristic κ and element
α of J2 ;

b) The map g∗ : Pic(Mw
SOr

)tors → J2 is the inverse isomorphism of λ .

Let us prove a). The line bundle g∗Pκ is the pfaffian bundle associated to the
quadratic bundle L(dp)⊕ L−1(−dp) ) and to κ . Now it follows from the construc-
tion in [L-S] that for any vector bundle E on X× S , the pfaffian of the cohomology
of E⊕ (KX ⊗ E∗) , endowed with the standard hyperbolic form with values in KX ,
is the determinant of the cohomology of E . Because the choice of L ensures that
the determinant of the cohomology is the same for L and L(p) , we conclude that
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g∗Pκ is the determinant of the cohomology of L ⊗ κ , i.e. the line bundle OJ(Θκ) .
Since Θκ⊗α = Θκ + α , the assertion a) follows.

Since we already know that Pic(M±SOr
)tors is isomorphic to J2 (Prop. 1.5),

a) implies that g∗ is surjective, and therefore bijective. Hence u = g∗ ◦λ is an
automorphism of J2 . This construction extends to any family of curves f : X → S ,
defining an automorphism of the local system R1f∗(µ2) over S . Since the mono-
dromy group of this local system is the full symplectic group Sp(J2) for the universal
family of curves, it follows that u is the identity.

(5.3) This settles the case of the group SOr ; let us now consider the group
PSOr , for r = 2l ≥ 4 . The moduli space MPSO2l

has 4 components, indexed
by the center Z of Spin2l . This group consists of the elements {1,−1, ε,−ε}
of the Clifford algebra C(C2l) , with ε2 = (−1)l ([Bo], Algèbre IX). Each compo-
nent Mδ

PSO2l
, for δ ∈ Z , is dominated by the algebraic stack Mδ

SO2l
(2.1). For

δ ∈ {±1} , this is the same stack as above; the stack Mε
SO2l

∪M−ε
SO2l

parameter-
izes vector bundles with a quadratic form with values in OX(p) and an orientation
(2.3 b). Changing the sign of the orientation exchanges the two components Mε

and M−ε (this corresponds to the fact that ε and −ε are exchanged by the outer
automorphism of Spin(2l) defined by conjugation by an odd degree element of the
Clifford group).

Lemma 5.4 .− The torsion free quotient of Pic(M±ε
SO2l

) is generated by the deter-
minant bundle D .

Proof: The same proof as in Lemma 4.1 shows that the pull back of D by the
morphism q±ε

SO2l
: QSpin2l

→M±ε
SO2l

is OQ(2) (the Dynkin index of the standard
representation of SO2l is 2 ). Therefore it suffices to prove that D has no square
root in Pic(M±ε

SO2l
) .

Let V be a l-dimensional vector space; we consider the vector bundle
T = (V ⊗C OX)⊕ (V∗ ⊗C OX(p)) , with the obvious hyperbolic quadratic form
q : S2T→ OX(p) and isomorphism ω : det T ∼−→ OX(lp) . We choose the sign of
ω so that the triple Tε := (T, q, ω) defines a rational point of Mε

SO2l
, and put

T−ε := (T, q,−ω) ∈M−ε
SO2l

(C) . The group G = GL(V) acts on T , and this ac-
tion preserves the quadratic form and the orientation. This defines a morphism ι

of the stack BG classifying G-torsors into M±ε
SO2l

: if S is a C-scheme and P a
G-torsor on S , one puts ι(P) = P×G T±ε

S .
Recall [L-MB] that the C-stack BG is the quotient of SpecC by the trivial

action of G ; in particular, line bundles on BG correspond in a one-to-one way to
G-linearizations of the trivial line bundle on SpecC , that is to characters of G . In
our situation, the line bundle ι∗D will correspond to the character of G by which
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G acts on det RΓ(X, T) . As G-modules, we have

det RΓ(X, T) ∼= det RΓ(X, V ⊗C OX)⊗ det RΓ(X, V∗ ⊗C OX(p)) .

Now if L is a line bundle on X , the G-module det RΓ(X, V ⊗C L) is isomorphic to
det(V ⊗H0(L))⊗ det(V ⊗H1(L))−1 = det(V)χ(L) . We conclude that det RΓ(X, T)
is isomorphic to det(V∗) , i.e. that ι∗D corresponds to the character det−1 : G→ C∗ .
Since det generates Hom(G,C∗) , our assertion follows. 1

Proposition 5.5 .− Let δ ∈ Z . The line bundle D (resp. D2) descends on
Mδ

PSO2l
if l is even (resp. odd); the corresponding line bundles on Mδ

PSO2l
gen-

erate the Picard group.

Proof: We first prove that the Pfaffian bundles Pκ do not descend to Mδ
PSO2l

.
If δ ∈ {±ε} , this follows from the above lemma. If δ ∈ {±1} , we consider the
action of J2 on Mδ

SO2l
deduced from the embedding µ2 ⊂ SO2l : each element

α ∈ J2 (trivialized at p ) defines an automorphism – still denoted α – of the stack
M±SO2l

, which maps a quadratic bundle (E, q, ω) onto (E⊗ α, q ⊗ iα, ω ⊗ i⊗l
α ) ,

where iα : α2 ∼−→ OX is the isomorphism which coincides at p with the square of
the given trivialization.

We claim that α∗Pκ is isomorphic to Pκ⊗α for every theta-characteristic κ

and element α of J2 . This is easily seen by using the following characterization of
Pκ ([L-S], 7.10): let E be the universal bundle on X×M±SO2l

; then the divisor
Θκ := div Rpr2∗(E ⊗ κ) is divisible by 2 in DivM±SO2l

, and Pκ is the line bundle
associated to 1

2Θκ . By construction (1X × α)∗E is isomorphic to E ⊗ α , hence

α∗Θκ = div Rpr2∗((1X × α)∗E ⊗ κ) = div Rpr2∗(E ⊗ α⊗ κ) = Θκ⊗α ,

which implies our claim. Since the map κ 7→ Pκ is injective (Prop. 5.2), we conclude
that Pκ does not descend.

The rest of the proof follows closely the symplectic case (Prop. 4.2). For
d = 0, 1 , the representation Λ2 defines a morphism of stacks gd :Md

SO2l
→MSON ,

which factors through Md
PSO2l

. The pull back under gd of a square root of the
determinant bundle is Dl−1 ; since D2l descends, one concludes that D descends
when l is even and D2 when l is odd.

To prove that D does not descend when l is odd, one considers the quadratic
bundle Hδ on X× J defined by

Hδ = L⊕l ⊕ (L−1)⊕l if δ = 1

= L(p)⊕l ⊕ L−1(−p))⊕l if δ = −1

= (L ⊕ L−1(p))⊕l if δ = ±ε ,

1 This argument has been shown to us by V. Drinfeld.
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with the standard hyperbolic quadratic form, and opposite orientations for the cases
δ = ε and δ = −ε .

As above, this gives rise to a commutative diagram

J h−−→ Mδ
SO2l

2J

y y
J −−→ Mδ

PSO2l
,

from which one deduces that D does not descend, since the class of h∗D in NS(J)
is 2l times the principal polarization.

Part II: The Picard group of the moduli space

6. C∗-extension associated to group actions

This part is devoted to the Picard group of the moduli space MG . The case of
a simply connected group being known, we will consider MG as a quotient of M

G̃

by the finite group H1(X, π1(G)) . Therefore we will first develop some general tools
to study the Picard group of a quotient variety.

(6.1) Let H be a finite group acting on an integral projective variety M over
C (or, more generally, any variety with H0(M,O∗M) = C∗ ), and L a line bundle
on M such that h∗L ∼= L for all h ∈ H . We associate to this situation a central
C∗ -extension

1→ C∗ −→ E(H, L)
p−→ H→ 1 ;

the group E(H, L) consists of pairs (h, h̃) , where h runs over H and h̃ is an
automorphism of L covering h , and p is the first projection.

(6.2) We will need a few elementary properties of these groups:
a) Let f : M′ → M be a H-equivariant rational map. Pulling back automor-

phisms induces an isomorphism f∗ : E(H, L)→ E(H, f∗L) .

b) Recall that the isomorphism classes of central C∗ -extensions of H form
a group, canonically isomorphic to H2(H,C∗) . Let r be a positive integer. The
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extension E(H, Lr) is isomorphic to the sum of r copies of E(H, L) ; more precisely,
the homomorphism ϕr : E(H, L)→ E(H, Lr) given by ϕr(h, h̃) = (h, h̃⊗r) is a sur-
jective homomorphism, with kernel the group µr of r-roots of unity, and therefore
induces an isomorphism of the push forward of E(H, L) by the endomorphism t 7→ tr

of C∗ onto E(H, Lr) .

c) Let M′ be another projective variety, H′ a finite group acting on M′ , L′

a line bundle on M′ preserved by H′ . The map E(H, L)× E(H′, L′)→ E(H×H′,
L£ L′) given by ((h, h̃), (h′, h̃′)) 7→ (h× h′, h̃£ h̃′) is a surjective homomorphism,
with kernel C∗ embedded by t 7→ (t, t−1) .

d) Let K be a normal subgroup of H . The group H/K acts on M/K ; let L0

be a line bundle on M/K preserved by this action, and L the pull back of L0 to
L . Then the extension E(H, L) is the pull back of E(H/K, L0) by the projection
H→ H/K .

(6.3) A H-linearization of L is a section of the extension E(H, L) . Such a
linearization allows us to define, for each point m of M , an action of the stabilizer
Hm of m in H on the fibre Lm ; this action is given by a character of Hm , denoted
by χm .

Let π : M→ M/H be the quotient map; if L0 is a line bundle on the quotient
M/H , the line bundle L = π∗L0 has a canonical H-linearization. By construction
it has the property that at each point m of M , the character χm of Hm is trivial.
The converse is true (“Kempf’s lemma”), and is actually quite easy to prove in our
set-up. Since two H-linearizations differ by a character of H , we can restate this
lemma as follows: assume that L admits a H-linearization; then L descends to
M/H if and only if there exists a character χ of H such that χm = χ|Hm

for all
m ∈ M .

It follows from the above description that the kernel of the homomorphism
π∗ : Pic(M/H)→ Pic(M) consists of the H-linearizations of OM such that the as-
sociated characters χm are trivial, i.e. of the characters of H which are trivial on the
stabilizers Hm . In particular, if the subgroups Hm generate H , π∗ is injective.

(6.4) Let M′ be another projective variety with an action of H , and L′ a
line bundle admitting a H-linearization. The H-linearizations of L and L′ define
a H-linearization of L£ L′ ; at each point (m, m′) , the corresponding character of
H(m,m′) = Hm ∩Hm′ is the product of the characters χm of Hm and χ′m′ of Hm′

associated to the linearizations of L and L′ . As a consequence, assume that L and
L£ L′ descend to M/H and (M×M′)/H respectively, and that H = ∪mHm ; then
L′ descends to M′/H .

(6.5) From (6.2 b) we see that the smallest positive integer n such that Ln
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admits a H-linearization is the order of E(H, L) in H2(H,C∗) . We want to know
which powers of Ln descend to M/H .

Let r be a multiple of n . The class e of E(H, L) in H2(H,C∗) comes from
an element of H2(H,µr) , which means that there exists a cocycle c ∈ Z2(H,µr)
representing e , or in other words a map σ : H→ E(H, L) such that p◦σ = IdH

and σ(hh′) ≡ σ(h) σ(h′) (mod. µr) – let us call such a map a section (mod. µr)
of E(H, L) . Composing σ with the homomorphism ϕr : E(H, L)→ E(H, Lr) (6.2
b) gives a section of the extension E(H, Lr) , that is a H-linearization of Lr .

Let m be a point of M . Using this H-linearization we get a character χm of
Hm (6.3), which can be computed as follows: for h ∈ Hm the element σ(h) acts on
Lm , and we have χm(h) = (σ(h)m)r . Assume moreover that hr = 1 for all h ∈ H ;
then the element σ(h)r of E(H, L) belongs to the center C∗ . Thus Lr endowed
with the H-linearization deduced from σ descends to M/H if and only if σ(h)r = 1
for all h in ∪Hm . Using 6.3 we can conclude:

Proposition 6.6 .− Assume that the order of E(H, L) in H2(H,C∗) and of every
element of H divides r . Let σ : H→ E(H, L) be a section (mod. µr) . Then
Lr descends to M/H if and only if there exists a character χ of H such that
σ(h)r = χ(h) for all h ∈ H fixing some point of M .

In the applications we have in mind we will always have ∪Hm = H . In this
case we get the following condition, which depends only on the extension E(H, L)
and not on the variety M :

Corollary 6.7 .− Assume that every element of H fixes some point in M . Then
Lr descends to M/H if and only if the map h 7→ σr(h) from H to C∗ is a homo-
morphism.

(6.8) From now on we will assume that the finite group H is abelian. In that
case there is a canonical isomorphism of H2(H,C∗) onto the group Alt(H,C∗) of
bilinear alternate forms on H with values in C∗ (see e.g. [Br], V.6, exer. 5) : to a
central C∗ -extension H̃

p−→ H corresponds the form e such that e(p(x), p(y)) =
xyx−1y−1 ∈ Ker p = C∗ . Conversely, given e ∈ Alt(H,C∗) , one defines an exten-
sion of H in the following way: choose any bilinear form ϕ : H×H→ C∗ such that
e(α, β) = ϕ(α, β)ϕ(β, α)−1 ; take H̃ = H×C∗ , with the multiplication law given by

(α, t) (β, u) = (α + β, tu ϕ(α, β)) ,

the homomorphism p : H̃→ H being given by the first projection.

(6.9) Let r be an integer such that rH = 0 . Then the group H2(H,C∗) ∼=
Alt(H,C∗) is also annihilated by r . Let e ∈ Alt(H,C∗) ; we can choose the bilinear
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form ϕ with values in µr . Consider the extension defined as above by ϕ . The map
σ : H→ H̃ defined by σ(α) = (α, 1) is a section (mod. µr) . An easy computation
gives σ(α)r = ϕ(α, α)

1
2 r(r−1) ∈ {1,−1} . One has σ2r(α) = 1 , and σ(α)r = 1 for

all α if r is odd. If r is even, the function ε : α 7→ σ(α)r is “quadratic” in
the sense that ε(α + β) = ε(α)ε(β) e(α, β)r/2 . In particular, we see that σr is a
homomorphism if and only if the alternate form er/2 (with values in µ2 ) is trivial.
In summary:

Proposition 6.10 .− Assume H is commutative, annihilated by r ; let e be the
alternate form associated to E(H, L) . The line bundle L2r descends to M/H ;
moreover Lr descends, except if r is even and the form er/2 is not trivial. In this
last case, if every element of H has some fixed point on M , Lr does not descend.

Example 6.11 .− Let A be an abelian variety of dimension g ≥ 1 , and Θ a divisor
on A defining a principal polarization. Let Ar be the kernel of the multiplica-
tion by r in A . The group E(Ar,O(rΘ)) is the Heisenberg group which plays
a fundamental role in Mumford’s theory of theta functions; the corresponding al-
ternate form er : Ar ×Ar → µr is the Weil pairing. The group Ar acts on the
linear system |rΘ| , and the morphism A→ |rΘ|∗ associated to this linear system
is Ar -equivariant; therefore by (6.2 a), the extension E(Ar,O|rΘ|∗(1)) is isomorphic
to E(Ar,O(rΘ)) . It follows easily that E(Ar,O|rΘ|(1)) corresponds to the nonde-
generate form e−1

r . Let s be a positive integer dividing r ; an easy computation
shows that

(6.12) the restriction of er to As is equal to e
r/s
s .

We conclude from the proposition that:

– the line bundle O(2s) descends to |rΘ|/As ;

– the line bundle O(s) descends to |rΘ|/As if s is odd or r/s is even, but does
not descend if s is even and r/s odd.

7. The moduli space MG

(7.1) Recall [R1, R2] that a G-bundle P on X is semi-stable (resp. stable)
if for every parabolic subgroup Π , every dominant character χ of Π and every
Π-bundle P′ whose associated G-bundle is isomorphic to P , the line bundle P′χ
has nonpositive (resp. negative) degree.

Let ρ : G→ G′ be a homomorphism of semi-simple groups, and P a G-
bundle. If P is semi-stable the G′ -bundle Pρ = P×G G′ is semi-stable; the con-
verse is true if ρ has finite kernel. In particular P is semi-stable if and only if its
adjoint bundle Ad(P) is semi-stable.
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We denote by MG the coarse moduli space of semi-stable principal G-bundles
on X (loc. cit.). It is a projective normal variety. Let Mss

G be the open substack
of MG corresponding to semi-stable G-bundles; there is a canonical surjective
morphism f :Mss

G → MG . For δ ∈ π1(G) , f maps the component (Mss
G )δ onto

the connected component Mδ
G of MG parameterizing G-bundles of degree δ .

The definition of (semi-) stability extends to any reductive group H : a H-
bundle P is semi-stable (resp. stable) if and only if the (H/Zo)-bundle P/Zo has
the same property, where Zo is the neutral component of the center of H . The
construction of the moduli space MH makes sense in this set-up; each component
of MH is normal and projective.

Let Z be the center of G ; we choose an isomorphism Z ∼−→
∏
µrj

. Let

δ ∈ π1(Gad) . The construction of the “twisted” moduli stack Mδ
G (Section 2)

obviously makes sense in the framework of coarse moduli spaces. We get a coarse
moduli space Mδ

G , which parameterizes semi-stable CZG-bundles with determinant
OX(dp) , such that the associated Gad -bundle has degree δ , with ρ(δ) e2πid/r = 1
(2.2). The open substack Mδ,ss

G of Mδ
G parameterizing semi-stable bundles maps

surjectively onto Mδ
G . If A is a central subgroup of G , there is a canonical mor-

phism π : Mδ
G → Mδ

G/A which is a (ramified) Galois covering with Galois group
H1(X, A) . The next lemma will allow us to compare the Picard groups of these
moduli spaces by applying the results of section 6, in particular Prop. 6.10, to the
action of H1(X, A) on Mδ

G .

Lemma 7.2 .− Let δ ∈ π1(Gad) .

a) The moduli space Mδ
G is unirational.

b) Any finite order automorphism of Mδ
G has fixed points.

Proof: a) The proof in [K-N-R], Cor. 6.3, for the untwisted case extends in a straight-
forward way: by (2.4) we have a surjective morphism Q

G̃
→Mδ

G ; so the open subset
of Q

G̃
parameterizing semi-stable bundles maps surjectively onto Mδ

G . Since Q
G̃

is a direct limit of an increasing sequence of generalized Schubert varieties, which
are rational, the lemma follows.

b) This is actually true for any finite order automorphism g of a projective
unirational variety M . One (rather sophisticated) proof goes as follows: there exists
a desingularization M̃ of M to which g lifts to an automorphism g̃ [H], necessarily
of finite order. Since Hi(M̃,O

M̃
) is zero for i > 0 , we deduce from the holomorphic

Lefschetz formula that g̃ has fixed points, hence also g .

Recall that the moduli space MG is constructed as a good quotient of a smooth
scheme R by a reductive group Γ [Se] – this implies in particular that the closed
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points of MG correspond to the closed orbits of Γ in R . In order to compare the
Picard groups of Pic(MG) and Pic(MG) , we will need a more precise result:

Lemma 7.3 .− There exists a presentation of Mδ,ss
G as a quotient of a smooth

scheme R by a reductive group Γ , such that the moduli space Mδ
G is a good quotient

of R by Γ .

Proof: We will explain the proof in some detail for the untwisted case, then indicate
how to adapt the argument to the general situation.

We fix a faithful representation ρ : G→ SLr and an integer N such that for
every semi-stable G-bundle P , the vector bundle Pρ(Np) is generated by its global
sections and satisfies H1(X, Pρ(Np)) = 0 . Let M = r(N + 1− g) . For any complex
scheme S , we denote by RG(S) the set of isomorphism classes of pairs (P, α) , where
P is a G-bundle on X× S whose restriction to X× {s} , for each closed point
s ∈ S , is semi-stable, and α : OM

S
∼−→ pr1∗Pρ(Np) an isomorphism. We define in

this way a functor RG from the category of C-schemes to the category of sets;
we claim that it is representable by a scheme RG . If G = SLr , this follows from
Grothendieck theory of the Hilbert scheme [G1]. In the general case, we observe that
reductions to G of the structure group of a SLr -bundle P correspond canonically to
global sections of the bundle P/G ; it follows that RG is isomorphic to the functor
of global sections of P/G , where P is the universal SLr -bundle on X× RSLr

.
Again by [G1], this functor is representable by a scheme RG , which is affine over
RSLr .

Put Γ = GLM . The group Γ acts on RG , and therefore on RG , by the
rule g · (P, α) = (P, αg−1) . This action lifts to the universal G-bundle P over
X× RG as follows: by construction the universal pair (P, α) is isomorphic to
((Id×g)∗P, α◦g) , hence there is an isomorphism of G-bundles σg : (Id×g)∗P → P
such that α◦g−1 = pr1∗(σg,ρ)◦α . Since ρ is faithful this isomorphism is uniquely
determined by pr1∗(σg,ρ) , hence depends only on g and defines the required lifting.

The Γ-equivariant morphism ϕP : RG →MG induces a morphism of stacks
ϕP : [RG/Γ]→Mss

G which is easily seen to be an isomorphism. We also have a
Γ -equivariant morphism ψP : RG → MG ; if there exists a good quotient RG//Γ ,
the universal property of MG implies that ψP must induce an isomorphism of this
quotient onto MG . The existence of such a good quotient is classical in the case
G = SLr (possibly after increasing N ); for general G , since the canonical map
RG → RSLr is Γ-equivariant and affine, the existence of a good quotient of RSLr

by Γ implies the same property for RG thanks to a lemma of Ramanathan ([R1],
lemma 4.1).

Let us finally consider the twisted case. We choose an embedding of the center
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Z of G in a torus T = Gs
m , and an embedding ρ : G→

s∏
i=1

GLri
such that ρ(Z)

is central; we put S = (
∏

GLri)× (T/Z) . The map (g, t) 7→ (t−1ρ(g), t mod. Z) of

G× T into S defines an embedding of CZG into S , which maps the center of CZG
into the center of S , so that a CZG-bundle P on X is semi-stable if and only if
the associated S-bundle is semi-stable. We then argue as before, replacing SLr by
S .

Proposition 7.4 .− Assume that the group G is almost simple. The group Pic(Mδ
G)

is infinite cyclic, and the homomorphism π∗ : Pic(Mδ
G)→ Pic(Mδ

G̃
) is injective.

The second assertion follows from Lemma 7.2 b) and (6.3); it is therefore
enough to prove the first one when G is simply connected. The proof then is
the same as in the untwisted case ([L-S] or [K-N]): since the stack Mδ

G is smooth,
the restriction map Pic(Mδ

G)→ Pic(Mδ,ss
G ) is surjective, hence by Prop. 1.5 the

group Pic(Mδ,ss
G ) is cyclic; it remains to prove that the pull back homomorphism

Pic(Mδ
G)→ Pic(Mδ,ss

G ) is injective.

We choose a presentation of Mδ,ss
G as a quotient of a smooth scheme R by a

reductive group Γ , such that the moduli space Mδ
G is a good quotient of R by Γ

(lemma 7.3); then line bundles on Mδ,ss
G (resp. on Mδ

G ) correspond to line bundles
on R with a Γ-linearization (resp. a Γ-linearization σ such that σ(γ)r = 1 for
each (γ, r) ∈ Γ× R such that γr = r ), hence our assertion.

In what follows we will identify the group Pic(Mδ
G) with its image in Pic(Mδ

G̃
) ;

our aim will be to find its generator.

8. The Picard groups of MSpinr
and MG2

(8.1) In this section we complete the results of [L-S] in the simply connected
case. The cases G = SLr or Sp2l are dealt with in loc. cit.. We now consider the
case G = Spinr ; we denote by D the determinant bundle on MSpinr

associated
to the standard representation σ of Spinr in Cr .

Proposition 8.2 .− Let r be an integer ≥ 7 . The group Pic(MSpinr
) is generated

by D .

Proof: Choose a presentation of Mss
Spinr

as a quotient of a smooth scheme R by a
reductive group Γ , such that MSpinr

is a good quotient of R by Γ (lemma 7.3).
Let S be the universal Spinr -bundle on X× R . We fix a theta-characteristic κ

on X ; this allows us to define the pfaffian line bundle Pκ on R , which is a square
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root of det Rpr2∗(Sσ ⊗ κ) [L-S]. The action of Γ on S defines a Γ-linearization of
Pκ .

By [L-S] we know that the group of Γ-linearized line bundles on R (isomorphic
to Pic(Mss

Spinr
) ) is generated by Pκ , so all we have to prove is that Pκ itself

does not descend to R//Γ , i.e. to exhibit a closed point s ∈ R whose stabilizer
in Γ acts nontrivially on the fibre of Pκ at s . If s corresponds to a semi-stable
Spinr -bundle P , its stabilizer is the group Aut(P) ; since the formation of pfaffians
commutes with base change, its action on (Pκ)s is the natural action of Aut(P) on(
ΛmaxH0(X, Pσ ⊗ κ)

)−1 [L-S].

To construct P we follow [L-S], prop. 9.5: we choose a stable SO4 -bundle Q
and a stable SOr−4 -bundle Q′ with w2(Q) = w2(Q′) = 1 . Let H be the subgroup
SO4 × SOr−4 of SOr , and H̃ its inverse image in Spinr . The H-bundle Q×Q′

has w2 = 0 by construction, hence admits a H̃-structure; we choose one, and take
for P the associated Spinr -bundle. Let γ be a central element of H̃ lifting the
element (−1, 1) of H . Then γ defines an automorphism of P , which acts on the
associated vector bundle Pσ = Qσ ⊕Q′σ as (− Id, Id) (we use the same letter σ to
denote the standard representation of all orthogonal group in sight). Therefore γ

acts on (Pκ)s by multiplication by (−1)h0(Qσ⊗κ) . But h0(Qσ ⊗ κ) is congruent to
w2(Q) (mod. 2 ) [L-S, 7.10.1], hence our assertion.

Remark 8.3 .− For r ≤ 6 the group Spinr is of type A or C, so we already have
a complete description of Pic(MSpinr

) . It is worth noticing that the above result
does not hold for r ≤ 6 : using the exceptional isomorphisms one checks easily that
Pic(MSpinr

) is generated by a square root of D for r = 5 or 6 and a fourth root
for r = 3 – while it is isomorphic to Z2 for r = 4 .

We now consider the case when G is of type G2 . The group G is the au-
tomorphism group of the octonion algebra O over C ([Bo], Algèbre III, App.);
in particular it has a natural orthogonal representation σ in the 7-dimensional
space O/C . We denote by D the determinant bundle on MG associated to this
representation.

Proposition 8.4 .− The group Pic(MG) is generated by D .

Proof: As before we choose a presentation of Mss
G as a quotient of a smooth

scheme R by a reductive group Γ , such that MG = R//Γ ; choosing a theta-
characteristic κ on X allows to define a pfaffian line bundle Pκ on R , with a
natural Γ-linearization. By [L-S], thm. 1.1, Pκ generates the group of Γ-linearized
line bundles on R ; we must again prove that it does not descend to R//Γ , i.e.
exhibit a G-bundle P such that Aut(P) acts nontrivially on ΛmaxH0(Pσ ⊗ κ) .
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Let V be a 3-dimensional vector space over F2 . The algebra O has a basis
(eα)α∈V , with multiplication rule

eα eβ = ε(α, β) eα+β ,

for a certain function ε : V ×V→ {±1} . Suppose given a homomorphism α 7→ Lα

of V into J . We view J as the moduli space for degree 0 line bundles with
a trivialization at p ; for each pair (α, β) in V we have a unique isomorphism
uαβ : Lα ⊗ Lβ → Lα+β compatible with these trivializations. We endow the OX -
module A = ⊕

α∈V
Lα with the algebra structure defined by the map A⊗A → A

which coincides with ε(α, β) uαβ on Lα ⊗ Lβ . It is a sheaf of OX -algebras, locally
isomorphic to OX ⊗C O . Let P be the associated G-bundle (the sections of P over
an open subset U of X are algebra isomorphisms of OU ⊗C O onto A|U ). Since
the pull back of P to any finite covering of X on which the Lα ’s are trivial is trivial,
P is semi-stable. The vector bundle Pσ is simply ⊕

α 6=0
Lα . Let χ : V→ {±1} be

a nontrivial character; the diagonal endomorphism (χ(α))α∈V of A is an algebra
automorphism, and therefore defines an automorphism ι of P , which acts on Pσ

with eigenvalues (χ(α))α 6=0 . Hence ι acts on ΛmaxH0(Pσ ⊗ κ) by multiplication
by (−1)h , with h =

∑
χ(α)=−1 h0(Lα ⊗ κ) . Since the function α 7→ h0(Lα ⊗ κ)

(mod. 2 ) is quadratic, an easy computation gives that h is even if and only if the
image of Ker χ in J2 is totally isotropic with respect to the Weil pairing. Clearly
we can choose our map V→ J2 and the character χ so that this does not hold;
this provides the required example.

9. The Picard group of M0
G

In the study of Pic(Mδ
G) , contrary to what we found for the moduli stacks, the

degree δ plays an important role. We treat first the degree 0 case, which is easier.
Let us start with the case Al . We recall that the determinant bundle D exists on
the moduli space MSLr , and generates its Picard group.

Proposition 9.1 .− Let G = SLr/µs , with s dividing r .
a) If s is odd or r/s is even, Pic(M0

G) is generated by Ds .
b) If s is even and r/s is odd, Pic(M0

G) is generated by D2s .
In particular, Pic(M0

PGLr
) is generated by Dr if r is odd and by D2r if r

is even.

Proof: We identify MSLr with the moduli space of semi-stable vector bundles of
rank r and trivial determinant on X . Let Jg−1 be the component of the Pi-
card variety of X parameterizing line bundles of degree g − 1 , and Θ ⊂ Jg−1 the
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canonical theta divisor. It is shown in [B-N-R] that for E general in MSLr
, the

condition H0(X, E⊗ L) 6= 0 defines a divisor D(E) in Jg−1 which belongs to the
linear system |rΘ| , and that the rational map D : MSLr

99K |rΘ| thus defined sat-
isfies D∗O(1) = D . Using (6.2 a) we deduce that the alternate form associated to
E(Jr,D) is the inverse of the Weil pairing er ; its restriction to Js is e

−r/s
s (6.12).

From Prop. 6.10, we conclude that the line bundles Ds in case a) and D2s in case
b) descend to M0

G .
It remains to prove that these line bundles are indeed in each case generators

of Pic(M0
G) . Consider first the case s = r . Since the extension E(Jr,D) is of order

r in H2(Jr,C∗) , the smallest power of D which admits a Jr -linearization is Dr ,
so the conclusion follows from Prop. 6.10. In the general case, put M := MSLr , and
assume that some power Dk of D descends to M/Js . Observe that M/Jr can be
viewed as the quotient of M/Js by Jr/s .

Assume that r/s is even. We know by Prop. 6.10 that D2kr/s descends to
M/Jr ; since r is even, this implies by what we have seen that 2r divides 2kr/s ,
hence that k is a multiple of s . If r/s is odd, then Dkr/s descends by Prop. 6.10,
and therefore k is a multiple of s or 2s according to the parity of r .

(9.2) We now consider the case of the orthogonal and symplectic group. If
G = SOr or Spr ( r even), we will denote by D the determinant bundle on MG ,
i.e. the pull back of the determinant bundle on MSLr by the morphism associated
to the standard representation. We know that the group Pic(MSpr

) is generated
by D ([L-S], 1.6), and that Pic(MSpinr

) is generated by the pull back of D (Prop.
8.2); it follows that the Picard group of each component of MSOr is generated by
D . It remains to consider the groups PSp2l and PSO2l .

Proposition 9.3 .− Let G = PSp2l or PSO2l (l ≥ 2) .
a) If l is even, Pic(M0

G) is generated by D2 .
b) If l is odd, Pic(M0

G) is generated by D4 .

Proof: The extension E(J2,D) is the pull back to J2 of the Heisenberg extension of
J2l , and the corresponding alternate form is el

2 (6.12). We deduce from Proposition
6.10 that D2 descends to M0

G if l is even, and that D4 descends but D2 does
not if l is odd.

It remains to prove that D does not descend when l is even. Let us con-
sider for instance the case of the symplectic group; for every integer n , we put
Mn = MSp2n

and denote by Dn the determinant line bundle on Mn . Write
l = p + q , where p and q are odd (e.g. p = 1 , q = l − 1) , and consider the mor-
phism u : Mp ×Mq → Ml given by u((E, ϕ), (E′, ϕ′)) = (E⊕ E′, ϕ⊕ ϕ′) . It is J2 -
equivariant and satisfies u∗Dl = Dp £Dq . The group J2 × J2 acts on Mp ×Mq ;
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from (6.2 c) one deduces that the alternate form e corresponding to the extension
E(J2 × J2,Dp £Dq) is given by e((α, α′), (β, β′)) = e2(α, β) e2(α′, β′) . If Dl de-
scends to Ml/J2 , then Dp £Dq descends to (Mp ×Mq)/J2 , and we can apply (6.2
d) to the variety Mp ×Mq and the diagonal embedding J2 ⊂ J2 × J2 . We con-
clude that the form e is the pull back of an alternate form on J2 by the sum map
J2 × J2 → J2 . This is clearly impossible, which proves that Dl does not descend to
Ml/J2 .

The same argument applies to the orthogonal groups, except that one has to
be careful about the definition of M1 : we take it to be the Jacobian of X , by
associating to a line bundle α on X the vector bundle α⊕ α−1 with the standard
isotropic form. Then D1 is the line bundle O(2Θ) . The alternate form associated
to E(J2,D1) is e2 , and the rest of the argument applies without any change.

Remark 9.4 .− There remains one case to deal with. When l is even, the center
Z of Spin2l is isomorphic to µ2 × µ2 , so it contains two subgroups of order 2
(besides the kernel of the homomorphism Spin2l → SO2l ). These subgroups are
exchanged by the outer automorphisms of Spin2l , so the corresponding quotient
groups are canonically isomorphic; let us denote them by G . Since M0

G dominates
M0

PSO2l
, it follows from Prop. 9.3 that D2 descends to M0

G . If l is not divisible
by 4 , one can show that D does not descend to M0

G , so Pic(M0
G) is generated by

D2 . If l = 4 , one sees using the triality automorphism that D descends; we do not
know what happens for l = 4m , m ≥ 2 .

10. The Picard group of Md
PGLr

In this section we consider the component Md
PGLr

of the moduli space MPGLr
,

for 0 < d < r . It is the quotient by Jr of the moduli space Md
SLr

of semi-stable
vector bundles of rank r and determinant OX(dp) . We denote by δ the g.c.d. of
r and d . If A is a vector bundle on X of rank r/δ and degree (r(g − 1)− d)/δ

which is general enough, the condition H0(X, E⊗A) 6= 0 defines a Cartier divisor
on Md

SLr
; the associated line bundle L (sometimes called the theta line bundle) is

independent of the choice of A , and generates Pic(Md
SLr

) [D-N].

Proposition 10.1 .− The group Pic(Md
PGLr

) is generated by Lδ if r is odd and
by L2δ if r is even.

Choose a stable vector bundle A of rank r/δ and determinant OX(−d
δ p) ,

and consider the morphism a : E 7→ E⊗A of Md
SLr

into M0
SLr2/δ

. By definition
L is the pull back of the determinant bundle D on the target. The map a is Jr

equivariant, hence induces an isomorphism E(Jr,D) ∼= E(Jr,L) . We have seen in
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the proof of Prop. 9.1 that the alternate form associated to E(Jr,D) is e
−r/δ
r ; hence

the smallest power of L which descends to Md
PGLr

is Lδ . Therefore it is enough
to prove that Lδ descends to Md

PGLr
when r is odd and that L2δ but not Lδ

descends when r is even.

We will prove this by reducing to the degree 0 case with the help of the Hecke
correspondence. Let us denote simply by M the moduli space M1

SLr
of stable

vector bundles of rank r and determinant OX(p) on X . There exists a Poincaré
bundle E on X×M ; we denote by Ep its restriction to {p} ×M , viewed as a
vector bundle on M . We fix an integer h with 0 < h < r and let P = GM(h, Ep)
the Grassmann bundle parameterizing rank h locally free quotients of Ep . A point
of P can be viewed as a pair (E, F) of vector bundles with E ∈ M , E(−p) ⊂ F ⊂ E
and dim(Ep/Fp) = h .

Lemma 10.2 .− If E is general enough in M , for any pair (E, F) in P the vector
bundle F is semi-stable, and stable if g ≥ 3 .

Proof: We will actually prove a more precise result. If G is a vector bundle on
X , define the stability degree s(G) of G as the minimum of the rational numbers
µ(G′′)− µ(G′) over all exact sequences 0→ G′ → G→ G′′ → 0 . One has s(G) ≥ 0
if and only if G is semi-stable, s(G) > 0 if and only if G is stable, and s(G) = g − 1
when G is a general stable vector bundle [L, Hi].

Let E, F be two vector bundles on X , with E(−p) ⊂ F ⊂ E . The lemma will
follow from the inequality

s(F) ≥ s(E)− 1

(note that since E and F play a symmetric role, this implies |s(E)− s(F)| ≤ 1 ).
Let Qp be the sheaf E/F (with support {p} ), and h the dimension of its fi-
bre at p . Let F′ be a subbundle of F , of rank r′ . From the exact sequence
0→ F/F′ → E/F′ → Qp → 0 we get

µ(F/F′)− µ(F′) = µ(E/F′)− h

r − r′
− µ(F′) ≥ s(E)− h

r − r′
.

Let Kp := Ker(Ep → Qp) . The exact sequence 0→ E(−p)→ F→ Kp → 0 induces
an exact sequence 0→ E′ → F′ → Kp , with E′ := F′ ∩ E(−p) . Therefore

µ(F/F′)− µ(F′) ≥ µ(E(−p)/E′)− µ(E′)− r − h

r′
≥ s(E)− r − h

r′
.

Since one of the two numbers
h

r − r′
and

r − h

r′
is ≤ 1 , we get the required in-

equality.
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Let us denote by M′ the moduli space M1−h
SLr

. Using the lemma we get a dia-
gram

P

~~

q

~

~

~

~

~

~

~

~

q′

  

A

A

A

A

M M′

(“Hecke diagram”), where q (resp. q′ ) associates to a pair (E, F) the vector bundle
E (resp. F , provided F is semi-stable).

Let L and L′ be the theta line bundles on M and M′ . Let δ be the g.c.d.
of r and 1− h .

Lemma 10.3 .− One has KP = q∗L−1 ⊗ q′∗L′−δ .

Proof: Let E be a general vector bundle in M ; let us compute the restriction of
q′∗L′ to the fibre q−1(E) . On X× P we have a canonical exact sequence

0→ F −→ (1X × q)∗E −→ (ip)∗Qp → 0 ,

where Qp is the universal quotient bundle of q∗Ep on P and ip the embedding
of P = {p} × P in X× P . For each point P = (E, F) of P this exact sequence
gives by restriction to X× {P} the exact sequence 0→ F→ E→ Qp → 0 defining
P ; in particular, one has FX×{P} = F , and the map q′ : P 99K M′ is the classifying
map associated to F . It follows that q′∗L′ is the determinant bundle associated to
F ⊗A , where A is a vector bundle of rank r/δ and appropriate degree.

Now let E ∈ M ; put G = q−1(E) = G(h, Ep) , and denote by π : X×G→ X
and ρ : X×G→ G the two projections. The restriction of the above exact sequence
to X×G gives, after tensor product with π∗A , an exact sequence

0→ F ⊗ π∗A −→ π∗(E ⊗A) −→ (ip)∗Qr/δ
p → 0 ;

applying Rρ∗ and taking determinants, we obtain

det Rρ∗(F ⊗ π∗A) ∼= (detQp)r/δ = OG(r/δ) .

The restriction of KP to G is KG = OG(−r) ; since Pic(P) is generated by
OP(1) and q∗ Pic(M) , one can write KP = q′∗L′−δ ⊗ q∗La for some integer a . To
compute a we consider the restriction of q∗L to a general fibre q′−1(F) : by lemma
(10.2) this fibre can be identified with the Grassmann variety G(r − h, Fp) , and the
same argument as above shows that the restriction of q∗L is equal to OG(r) , that
is to the restriction of K−1

P . This gives a = −1 , hence the lemma.

Observe that the group Jr acts in a natural way on P , by the rule α · (E, F) =
(E⊗ α, F⊗ α) ; the Hecke diagram is Jr -equivariant.
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Lemma 10.4 .− Let s be an integer dividing r . The canonical bundle KP de-
scends to P/Js , except if s is even and h and r/s are odd; in this last case K2

P
descends.

Proof: a) We first prove that KM descends to M/Jr . Let π and ρ denote the
projections from X×M onto X and M respectively. By deformation theory, the
tangent bundle TM is canonically isomorphic to R1ρ∗(End0(E)) , where End0 de-
note the sheaf of traceless endomorphisms; it follows that KM is the inverse of
the determinant bundle det Rρ∗(End0(E)) . Since End0(E) has trivial determinant,
this is also equal to det Rρ∗(End0(E)⊗ π∗L) for any line bundle L on X (see e.g.
[B-L], 3.8); therefore K−1

M is the pull back of the generator L of Pic(MSLr2−1
) by

the morphism M→ MSLr2−1
which maps E to End0(E) . This morphism factors

through the quotient M/Jr , hence our assertion.
b) Therefore we need only to consider the relative canonical bundle KP/M , with

its canonical Jr -linearization. Let α ∈ Jr , and let P = (E, F) be a fixed point of α

in P ; we want to compute the tangent map TP(α) to α at P . The vector bundle
E ∈ M is fixed by α , and the action of α on the fibre q−1(E) = G(Ep) is induced
by the automorphism α̃ of Ep obtained from the isomorphism ϕα : E→ E⊗ α

(note that ϕα , hence also α̃ , are uniquely determined up to a scalar, since E is
stable).

Let 0→ Kp → Ep → Qp → 0 be the exact sequence corresponding to P . The
tangent space to G(Ep) at P is canonically isomorphic to Hom(Kp, Qp) , hence
its determinant is canonically isomorphic to (det Ep)−h(det Qp)r ; we conclude that
det TP(α) is equal to (det α̃)h , where α̃ is normalized so that α̃r = 1 .

c) It remains to compute det α̃ . Now the fixed points of α on M are easy
to describe [N-R]: let s be the order of α , and π : X̃→ X the associated étale s-
sheeted covering; a vector bundle E on X satisfies E ⊗ α ∼= E if and only if it is of
the form π∗Ẽ for some vector bundle Ẽ on X̃ , of rank r/s . To evaluate ϕα at p ,
we can trivialize Ẽ in a neighborhood of π−1(p) : write Ẽ = π∗T , where T = Or/s

X .
Then one has π∗Ẽ = ⊕

i∈Z/s
T⊗ αi , and the isomorphism ϕα maps identically T⊗ αi

onto (T⊗ αi−1)⊗ α . It follows that the eigenvalues of α̃ are the s-th roots of 1 ,
each counted with multiplicity r/s . This implies in particular det α̃ = ζr(s−1)/2 ,
where ζ is a primitive s-th root of 1 , and therefore det TP(α) = (−1)h(s−1) r

s . The
lemma follows.

(10.5) Proof of Proposition 10.1:
We first observe that a line bundle L on M descends to M/Js if and only if its

pull back to P descends to P/Js . In fact, we know by (6.2 a) that G-linearizations
of L correspond bijectively by pull back to G-linearizations of q∗L ; for α ∈ Js ,
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any fixed point E of α in M is the image of a point P ∈ P fixed by α , so with
the notation of (6.3) one has χE(α) = χP(α) , which implies our assertion.

Similarly, a line bundle on M′ descends to M′/Js if and only if its pull back to
P descends to P/Js : what we have to check in order to apply the same argument is
that every component of the fixed locus FixM′(α) is dominated by a component of
FixP(α) , and conversely that every component of FixP(α) dominates a component
of FixM′(α) . But this follows easily from the description of the fixed points of α

given above (10.4 c).
We first consider the case h = 1 . If r is odd, we know from Prop. 9.1 and

lemma 10.4 that L′r and KP = q∗L−1 ⊗ q′∗L′−r descend to P/Jr ; it follows that
L descends to M/Jr . Assume that r is even. Endow KP with its canonical
Jr -linearization, Lr with the Jr -linearization defined in (6.10), and q∗L with the
Jr -linearization deduced from the isomorphism KP ∼= q∗L−1 ⊗ q′∗L′−r . Let α be
an element of order r in Jr , and P a fixed point of α in P ; we know that α

acts on (KP)P by multiplication by −1 (10.4 c) and on (q′∗L′r)P by multiplica-
tion by ε(α) (6.10), hence it acts on (q∗L)P by multiplication by −ε(α) . Since
−ε(α + β) 6= (−ε(α) (−ε(β))) when α and β are two elements of order r orthog-
onal for the Weil pairing, we conclude that L does not descend, while of course L2

descends.
We now apply the same argument with h arbitrary. If r is odd, KP and q∗L

descend, hence L′δ descends. If r is even, we get a Jr -linearization on q′∗L′δ such
that an element α of order r in Jr acts by multiplication by (−1)h+1ε(α) ; again
this implies that L′δ does not descend, while L′2δ descends.

Remark 10.6 .− The methods of this section allow to treat more generally in most
cases the group SLr/µs , for s dividing r . We will contend ourselves with an
example, which we will need below: the case G = SL2l/µ2 ( l ≥ 1 ). The moduli
space MG has two components, namely M0

G (treated in Prop. 9.1) and the quotient
Ml

G of Ml
SL2l

by J2 . The theta line bundle L on Ml
SL2l

is the pull back of the
determinant bundle on M0

SL4l
under the map E 7→ E⊗A , where A is a stable

vector bundle of rank 2 and degree −1 . It follows from Prop. 9.1 that L2 descends
to Ml

G ; on the other hand, by Prop. 10.1, Ll and therefore L do not descend if l

is odd. We shall now prove that L descends to Ml
G when l is even.

Let λ : Ml
SL2l

→ MSLl(2l−1)) be the morphism E 7→ Λ2E(−p) . One checks eas-
ily that the pull back of the determinant bundle D on MSL(l(2l−1)) is Ll−1 (e.g.
by pulling back to the moduli stack, and using the fact that the Dynkin index of the
representation Λ2 is 2l − 2 ). Now λ factors through Ml

SL2l
/J2 , therefore Ll−1

descends to this quotient. When l is even, this implies that L itself descends.
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11. The Picard groups of MPSp2l
and MPSO2l

(11.1) In the case Cl , it remains only to consider the component M1
PSp2l

,
which is the quotient by J2 of the moduli space M1

PSp2l
of semi-stable pairs (E, ϕ) ,

where E is a vector bundle of rank 2l on X and ϕ : Λ2E→ OX(p) a non-degenerate
alternate form. Let L denote the pull back of the theta line bundle by the natural
map M1

Sp2l
→ M1

SL2l
.

Proposition 11.2 .− a) The group Pic(M1
Sp2l

) is generated by L .

b) The group Pic(M1
PSp2l

) is generated by L if l is even, and by L2 if l is
odd.

Proof: By Prop. 7.4 to prove a) it suffices to prove that L is not divisible. Choose
an element (A, ψ) of M1

Sp2l−2
, and consider the map u : M1

SL2
→ M1

Sp2l
given by

u(E) = (E, det)⊕ (A, ψ) . The pull back of L is the theta line bundle Θ on M1
SL2

,
hence the assertion a).

Let us prove b). By Remark 10.6 we already know that L2 descends to
M1

PSp2l
, and that L descends if l is even. Consider the morphism µ : M1

SL2
→ M1

Sp2l

given by µ(E) = (E, det)⊕l . One has µ∗L = Θl , so if L descends Θl descends to
M1

PGL2
; by Prop. 10.1 this implies that l is even.

(11.3) Let us consider the group G = PSO2l . The moduli space MG has 4
components, indexed by the center {1,−1, ε,−ε} of Spin2l (5.3).

The component M1
PSO2l

has already been dealt with in Prop. 9.3. The com-
ponent M−1

PSO2l
is the quotient by the action of J2 of the moduli space M−1

SO2l
of

semi-stable quadratic bundles with w2 = 1 . Let D denote the determinant bundle
on this moduli space.

Proposition 11.4 .− The group Pic(M−1
PSO2l

) is generated by D2 if l is even, by
D4 if l is odd.

Proof: The same proof as in 9.3 shows that D2 descends to M−1
PSO2l

if l is
even, and that D4 descends but D2 does not if l is odd. To prove that D
does not descend when l is even ≥ 3 , we apply the argument of loc. cit. to
the morphism u : JX×M−1

SO2l−2
→ M−1

SO2l
deduced from the natural embedding

SO2 × SO2l−2 ↪−→ SO2l (note that w2 is additive and w2(α⊕ α−1) = 0 for α ∈ JX ).

When l = 2 we consider the morphism v : M1
SL2
×M1

SL2
−→ M−1

SO4
which as-

sociates to a pair (E, F) the vector bundle Hom(E, F) with the quadratic form
defined by the determinant and the orientation deduced from the canonical isomor-
phism det(E∗ ⊗ F) ∼−→ (det E)−2 ⊗ (det F)2 . One has v∗D = L£ L , where L is
the theta line bundle on M1

SL2
. Since L does not descend to M1

PGL2
(Prop. 10.1),

29



it follows from the commutative diagram

M1
SL2
×M1

SL2

v−−−−→ M−1
SO4y y

M1
PGL2

×M1
PGL2

−−−−→ M−1
PSO4

that D does not descend to M−1
PSO4

.

We now consider the components M±ε
PSO2l

corresponding to the elements +ε

and −ε of the center of Spin2l . Each of these is the quotient by J2 of the
moduli space M±ε

SO2l
of semi-stable quadratic bundles (E, q, ω) , where E is a vector

bundle of rank 2l , q : S2E→ OX(p) a quadratic form and ω : det E→ OX(lp) an
isomorphism compatible with q ; changing the sign of ω exchanges Mε and M−ε

(5.3). We denote by Ll the pull back of the theta line bundle on MSLl
2l

under the
natural map M±ε

SO2l
→ MSLl

2l
.

Proposition 11.5 .− The group Pic(M±ε
PSO2l

) is generated by Ll when l is even,
and by L2

l when l is odd.

Proof: We already know that the theta line bundle descends to Ml
SL2l

/J2 when l

is even and that its square descends when l is odd (10.6), so we have only to prove
that Ll does not descend when l is odd.

Let us first consider the case l = 3 . If E is a vector bundle of rank 4 and
determinant OX(p) on X , the bundle Λ2E carries a quadratic form with values
in OX(p) (defined by the exterior product) and an orientation. We thus get a
morphism λ : M1

SL4
→ M±ε

SO6
such that λ(E⊗ α) = λ(E)⊗ α2 for α ∈ J4 . An easy

computation shows that λ∗L3 is the theta line bundle on M1
SL4

, which does not
descend to M1

PGL4
(10.1); our assertion follows.

For l odd ≥ 5 , we consider the morphism µ : M±ε
SO2l−6

×M±ε
SO6
−→ M±ε

SO2l

deduced from the embedding SO2l−6 × SO6 ↪−→ SO2l . It is J2 -equivariant (with
respect to the canonical action of J2 on the spaces M±ε

SO2n
, and the diagonal action

on the product), and the pull back µ∗Ll is isomorphic to Ll−3 £ L3 . Assume
that Ll descends to M±ε

PSO2l
; since Ll−3 descends, we deduce from 6.4 that L3

descends, contradicting what we just proved.

12. Determinantal line bundles
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(12.1) We can express the above results in a more suggestive way. Assume
G is of type A, B, C or D ; let δ ∈ π1(G) . We identify Pic(Mδ

G) to a subgroup
of Pic(Mδ,ss

G̃
) . Let σ be the standard representation of G̃ in Cr (for G̃ = SLr ,

Spinr or Spr ), and Dσ the corresponding determinant bundle on Mδ,ss

G̃
. The

results of sections 8 to 11 express the generator of Pic(Mδ
G) as a certain power of

Dσ . Using the fact that the pull back to Md,ss
SLr

of the theta line bundle on Md
SLr

is (Dσ)
r

(d,r) , one finds:

Proposition 12.2 .− Assume that G is one of the groups PGLr , PSp2l or
PSO2l . Put εG = 1 if the rank of G is even, 2 if it is odd. Let δ ∈ π1(G) . The
group Pic(Mδ

G) is generated by (Dσ)rεG for G = PGLr , and by (Dσ)2εG for the
other groups.

(12.3) To produce line bundles on Mδ
G , we have already used the following

recipe: to any representation ρ : G→ SLN we associate the pull back Dρ of the
determinant bundle under the morphism Mδ

G → MSLN deduced from ρ . These
line bundles generate a subgroup Picdet(Mδ

G) of Pic(Mδ
G) . We suspect that this

subgroup is actually equal to Pic(Mδ
G) , i.e. that all line bundles on Mδ

G can be
constructed from representations of G . We have checked this in some cases:

Proposition 12.4 .− Assume G is of classical type or of type G2 , and either
simply connected or adjoint or isomorphic to SOr . Then, for every δ ∈ π1(G) ,
one has Picdet(Mδ

G) = Pic(Mδ
G) .

Proof: The simply connected case, and also the case G = SOr , follow from [L-S],
Prop. 8.2 and 8.4.

The other groups are those which appear in the above Proposition; let us
denote by eG the positive integer such that (Dσ)eG generates Pic(Mδ

G) . If ρ

is a representation of G , with Dynkin index dρ , the line bundle Dρ on Md
G is

isomorphic to (Dσ)dρ/dσ ( dσ is 1 for the types A, C and 2 for B, D ). It follows
that eG divides dρ/dσ , and that our assertion is equivalent to saying that eG is
the g.c.d. of the numbers dρ/dσ when ρ runs over the representations of G .

Let us consider the case G = PGLr . We have dAd = 2r , which settles the
case r even. If r is odd, consider the representation S2 ⊗ Λr−2 of SLr ; since µr

acts trivially, it defines a representation ρ of PGLr , whose Dynkin index is

dρ = dS2 dim Λr−2 + dΛ2 dim S2

= (r + 2)
(

r

2

)
+ (r − 2)

(
r + 1

2

)
= r3 − 2r .

Then (dAd, dρ) = r = eG , which proves the result in this case.
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For G = PSp2l , easy computations give dAd = 2l + 2 and dΛ2 = 2l − 2 , hence
eG = (dAd, dΛ2) . For G = PSO2l , one has dAd = 2(2l − 2) and dS2 = 2(2l + 2) ,
hence eG = (dAd, dΛ2)/dσ .

Remark 12.5 .− We can also prove the equality Picdet(M0
G) = Pic(M0

G) for G = SLr/µs

when s and r/s are coprime. Reasoning as above and using Prop. 9.1, we need
to prove that the g.c.d. of the dρ ’s is 2s if s is even, and s if it is odd. We
consider the representation ρp = Sp ⊗ Λs−p for 1 ≤ p ≤ s . Using some nontrivial

combinatorics we can prove the relation
s∑

p=1

p dρp = (−1)ss2 . Since dAd = 2r we

find that the g.c.d. of the dρ ’ divides (2r, s2) = s(2 r
s , s) , hence our assertion.

13. Local properties of the moduli spaces MG

(13.1) A G-bundle P is called regularly stable if it is stable and its automor-
phism group is equal to the center Z(G) of G . The open subset Mreg

G of MG

corresponding to regularly stable G-bundles is smooth, and its complement in MG

is of codimension ≥ 2 , except when X is of genus 2 and G maps onto PGL2 :
this is seen exactly as the analogous statement for Higgs bundles, which is proved in
[F1], thm. II.6. In what follows we will assume that we are not in this exceptional
case, leaving to the reader to check that our assertions extend by using the explicit
description of MSL2 in genus 2 .

Let i be the natural injection of Mreg
G into MG . Then the map i∗ identifies

Pic(Mreg
G ) with the Weil divisor class group Cl(MG) , that is the group of isomor-

phism classes of rank 1 reflexive sheaves on MG (see [Re], App. to § 1); the restric-
tion map i∗ : Pic(MG)→ Pic(Mreg

G ) corresponds to the inclusion Pic(MG) ⊂ Cl(MG) .
Local factoriality of M G is equivalent to the equality Pic(MG) = Cl(MG) .

We already know from [D-N] and [L-S] that MG is locally factorial when G
is SLr or Sp2l . We want to show that these are essentially the only cases where
this occurs.

Proposition 13.2 .− Let G be a simply connected group, containing a factor of
type Bl (l ≥ 3) , Dl (l ≥ 4) , F4 or G2 . Then MG is not locally factorial.

We believe that this still holds if G contains a factor of type El . This would
have the amusing consequence that the semi-simple groups G for which MG is
locally factorial are exactly those which are special in the sense of Serre, i.e. such
that all G-bundles are locally trivial for the Zariski topology (see [G2]).

Proof of the Proposition: We can assume that G is almost simple. Choose a pre-
sentation of MG as a quotient of a smooth scheme R by a reductive group Γ ,
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such that MG is a good quotient of R by Γ (lemma 7.3). We denote by σ the
standard representation in Cr in case G = Spinr , in C7 if G is of type G2 , and
the orthogonal representation in C26 with highest weight $4 if G is of type F4

(we use the standard notation of [Bo], Lie VII). Let D be the determinant bundle on
R associated to σ . As in the proof of Prop. 8.2, the choice of a theta-characteristic
κ on X allows us to define a square root Pκ of D on R , with a canonical Γ-
linearization. We will show that Pκ descends to the open subset Mreg

G , but not to
MG , thus showing that the restriction map is not surjective.

The first assertion is clear if G is of type F4 or G2 , because then Z(G)
is trivial, so Γ acts freely on the open subset of R corresponding to regularly
stable G-bundles. Suppose G = Spinr ; let Q be a G-bundle, and z an element
of Z(G) . The image of z in SOr is either 1 or possibly −1 if r is even; since
h0(Qσ ⊗ κ) ≡ rh0(κ) (mod. 2 ) by [L-S], 7.10.1, we conclude that z acts trivially
on ΛmaxH0(Qσ ⊗ κ) , i.e. on the fibre of Pκ at Q (8.2).

We already know that Pκ does not descend to MG when G = Spinr (Prop.
8.2) or G is of type G2 (Prop. 8.4); it remains to show that the class of D is not
divisible by 2 in Pic(MG) when G is of type F4 . There is a natural inclusion
Spin8 ⊂ G , which induces a morphism f : MSpin8

→ MG . An easy computation
gives that the Dynkin index of the restriction to Spin8 of the standard repre-
sentation of G is 6 . Since the Dynkin index of the standard representation of
Spin8 is 2 , it follows that f∗D is isomorphic to D⊗3

0 , where D0 is the generator
Pic(MSpin8

) ; this implies that D is not divisible by 2 in Pic(MG) .

We now treat the case of a non simply connected group. We start with two
lemmas which are certainly well known, but for which we could find no reference:

Lemma 13.3 .− Let π : Ỹ → Y be a ramified Galois covering, with abelian Galois
group A . If π is étale in codimension 1 , the variety Y is not locally factorial.

Proof: Let Yo be an open subset of Y such that Y Yo has codimension ≥ 2
and the induced covering πo : Ỹo → Yo is étale. This covering corresponds to a
homomorphism L : Â→ Pic(Yo) such that π∗OỸo = ⊕

χ∈Â

L(χ) . If Y is locally fac-

torial, the restriction map Pic(Y)→ Pic(Yo) is bijective, so L extends to a homo-
morphism Â→ Pic(Y) which defines an étale covering of Y extending πo , and
therefore equal to π . Then π is étale, contrary to our hypothesis.

Lemma 13.4 .− Let S be a scheme, H an algebraic group, A a closed central
subgroup of H , P a principal H-bundle on S . The cokernel of the natural homo-
morphism Aut(P)→ Aut(P/A) is canonically isomorphic to the stabilizer of P in
H1(X, A) (for the natural action of H1(X, A) on H1(X, H) ) .
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Proof: Denote by Aut (P) the automorphism bundle of the H-bundle P . We have
an exact sequence of groups over S

1→ AS −→ Aut (P) −→ Aut (P/A)→ 1

(to check exactness one may replace P by the trivial H-bundle, for which this is
clear). The associated cohomology exact sequence reads

1→ A −→ Aut(P) −→ Aut(P/A) −→ H1(S, A) h−→ H1(S,Aut (P)) .

The map h associates to an A-bundle α the class of the Aut (P)-bundle α×A Aut (P) ,
which is canonically isomorphic to Isom (P, α×A P) ; the element h(α) is trivial
if and only if this last bundle admits a global section, which means exactly that
α×A P is isomorphic to P , hence the lemma.

Proposition 13.5 .− Suppose G is not simpy connected; let δ ∈ π1(G) . The
moduli space Mδ

G is not locally factorial.

Proof: We first prove that the Galois covering π : Mδ

G̃
→ Mδ

G is étale above (Mδ
G)reg .

We put A = π1(G) , and choose an isomorphism A ∼−→
s∏

j=1
µrj

; we use freely the

notation of (2.1). We denote by H the group CAG̃ = (G̃× T)/A . Let Q ∈ (Mδ
G)reg

and P a point of Mδ

G̃
above Q ; we will use the same letters to denote the

corresponding bundles. Using the isomorphism H/A ∼= G× (T/A) , the condition
π(P) = Q means that the (H/A)-bundle P/A is isomorphic to Q×OX(dp) . Since
Aut(Q) is reduced to the center of G , the map Aut(P)→ Aut(P/A) is surjective;
we deduce from lemma 13.4 that the stabilizer of P in H1(X, A) is trivial, i.e. π is
étale at P .

It follows that the abelian cover π : Mδ

G̃
→ Mδ

G is étale in codimension one.
Since it is ramified by lemma 7.2, we conclude from lemma 13.3 that Mδ

G is not
locally factorial.

Finally we observe that, though the moduli space is not locally factorial in
most cases, it is always Gorenstein (this is proved in [K-N], thm. 2.8, for a simply
connected G ):

Proposition 13.6 .− The moduli space MG is Gorenstein.

Proof: We choose again a presentation of MG as a quotient of a smooth scheme
R by a reductive group Γ , such that MG is a good quotient of R by Γ (lemma
7.3); we denote by P the universal bundle on X× R , and by Rreg the open subset
of R corresponding to regularly stable bundles. Since the center of G is killed by
the adjoint representation, the vector bundle Ad(P) descends to a vector bundle
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on X×Mreg
G , that we will still denote Ad(P) . Deformation theory provides an

isomorphism TMreg
G

∼−→ R1pr2∗(AdP) ; since H0(X, Ad(P)) = 0 for P ∈ Mreg
G , the

line bundle det TMreg
G

is isomorphic to det Rpr2∗(AdP)) , that is to the restriction
to Mreg

G of the determinant bundle DAd associated to the adjoint representation.
Since MG is Cohen-Macaulay, it admits a dualizing sheaf ω , which is torsion-

free and reflexive ([Re], App. of § 1). The reflexive sheaves ω and D−1
Ad , which are

isomorphic above Mreg
G , are isomorphic (loc. cit.), hence ω is invertible.
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