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SINGULAR SYMPLECTIC MODULI SPACESD. KALEDIN, M. LEHN, AND CH. SORGERAbstrat. Moduli spaes of semistable sheaves on a K3 or abelian surfaewith respet to a general ample divisor are shown to be loally fatorial, withthe exeption of symmetri produts of a K3 or abelian surfae and the lassof moduli spaes found by O'Grady. Consequently, sine singular moduli spaethat do not belong to these exeptional ases have singularities in odimension
≥ 4 they do no admit projetive sympleti resolutions.1. IntrodutionHow to onstrut irreduible holomorphi sympleti manifolds? Exept for thevariety of Beauville and Donagi [4℄ all known examples arise from moduli spaes ofsemistable sheaves on a K3 or abelian surfae.For every element v in the Mukai lattie Heven(X, Z) of a polarised K3 or abeliansurfae (X, H) there is an assoiated moduli spae Mv that parametrises polystablesheaves E with Mukai vetor v = v(E) := ch(E)

√
td(X). If H and v are hosento the e�et that no stritly semistable sheaves exist, i.e. every semistable sheaf isautomatially stable, then Mv is a projetive holomorphially sympleti manifolddue to Mukai [21℄.In the opposite ase, Mv is singular and one may ask whether Mv at least admitsa projetive sympleti resolution. This question has been raised and suessfullyanswered in two ases by O'Grady [23, 24℄, leading to two new deformation lassesof irreduible holomorphi sympleti manifolds.In this paper we give a omplete answer to O'Grady's question for general ampledivisorsH and moduli spaes whose expeted dimension 2+〈v, v〉 is≥ 4. The answerdepends essentially only on the divisibility of the Mukai vetor v ∈ Heven(X, Z) andthe dimension of the moduli spae. We may write v = mv0 with a primitive Mukaivetor v0 = (r, c, a) and a multipliity m ∈ N. Suppose for simpliity that r > 0,and let H denote a v�general ample divisor. Then every semistable sheaf E withMukai vetor v(E) = v0 is stable, and a neessary and su�ient ondition for theexistene of E is that c ∈ NS(X) and that 〈v0, v0〉 ≥ −2. There are �ve prinipalases to distinguish:1) If 〈v0, v0〉 = −2, then Mukai has shown that Mv0

onsists of a single point
[E0] only. As the expeted dimension of the moduli spae Mmv0

is negative for1991 Mathematis Subjet Classi�ation. Primary 14J60; Seondary 14D20, 14J28, 32J27.The �rst author has been partially supported by CRDF Award RM1-2354-MO02 and the�ooperation frano-russe en mathématiques� du CNRS .1



2 D. KALEDIN, M. LEHN, AND CH. SORGER
m > 0 there are no stable sheaves in this ase, and it follows by indution that anysemistable sheaf must be of the form E⊕m

0 . Hene Mv is a single point as well.2) If 〈v0, v0〉 = 0, the moduli spae Mv0
is again a K3 surfae or an abeliansurfae if X is K3 or abelian due to beautiful results of Mukai. It turns out thatany semistable sheaf E with v(E) = mv0 is S-equivalent to a diret sum E =

E1⊕ . . .⊕Em with stable sheaves [Ei] ∈Mv0
. It follows that Mv = Sm(Mv0

). Thusthe moduli spaes are singular in odimension 2, but admit sympleti resolutionsin terms of the Hilbert sheme Hilbm(Mv0
)→Mv.3) Assume now that 〈v0, v0〉 ≥ 2. Due to the ombined e�orts of many authors,with important steps taken by Mukai, Huybrehts, O'Grady and Yoshioka, one�nally has the following result [27℄: Mv0
is a smooth sympleti variety that isdeformation equivalent to Hilb1+

1
2 〈v0,v0〉(X), if X is a K3-surfae, and to Pic0(X)×

Hilb
1
2 〈v0,v0〉, if X is an abelian surfae.Assume in addition that m ≥ 2. The main result of this artile implies that onehas to further distinguish the following two ases:4) Let 〈v0, v0〉 = 2 and m = 2. The moduli spaes MK3(2; 0, 4) and MAb(2; 0, 2)studied by O'Grady [23, 24℄ and Rapagnetta [25℄ fall into this lass. The modulispae Mv has dimension 10, its singular lous has odimension 2 and is in fat iso-morphi to S2Mv0

. As shown in [18℄, the sympleti desingularisations onstrutedby O'Grady exist for all Mukai vetors in this lass and an be obtained by blowing-up the redued singular lous.5) In all other ases our main result states:Theorem A � If either m ≥ 2 and 〈v0, v0〉 > 2 or m > 2 and 〈v0, v0〉 ≥ 2, then
Mmv0

is a loally fatorial singular sympleti variety.As an immediate appliation one obtains:Theorem B� Under the hypotheses of Theorem A, Mmv0
does not admit a propersympleti resolution.Under some tehnial hypotheses theorems A and B hold as well for semistabletorsion sheaves (see the main text). Partial results for Theorem B in the ase

m = 2 have been obtained previously by two of us [17℄, and, independently andwith di�erent methods, by Kiem and Choy [15, 16℄.We note that our approah is rather general; our main tehnial result, Propo-sition 3.5, is essentially a linear-algebrai fat. Therefore, we expet that resultssimilar to Theorem A and B might hold in other situations with similar geometry� in partiular, for the moduli spaes of �at onnetions on an algebrai urve.In fat, Proposition 3.5 is a statement about quiver varieties of H. Nakajima [22℄,although the numerial data orresponding to our quivers are spei�ally exluded



SINGULAR SYMPLECTIC MODULI SPACES 3from onsideration in [22℄ (whih is not surprising as one of the results of [22℄ is thatany quiver variety onsidered there does admit a sympleti resolution). Thus ourapproah and our Proposition 3.5 might be used wherever one �nds quiver varietiesof the same type.Aknowledgements: The moment when Grothendiek's theorem on fatorialitywas shown to us by Duo van Straten turned around our approah to the problem.We thank him as well as Stefan Bauer, Daniel Huybrehts and Joseph Le Potier formany helpful disussions.Many authors have worked on moduli of sheaves on K3 and abelian surfaesever sine the seminal work of Mukai. The most general results for our purposeshave been obtained by Yoshioka [27℄. We refer to the textbook [13℄ and Yoshioka'spaper for further referenes and general information on semistable sheaves and theirmoduli spaes.2. Notation and onventions, plan of the paper2.1. The underlying surfae. Throughout this artile X will denote a omplexprojetive K3 or abelian surfae with a �xed sympleti struture, i.e. an isomor-phism H2(X,OX) ∼= C, and a �xed ample divisor H .The even integral ohomology Heven(X, Z) is equipped with a pairing
〈v, w〉 := −

∫

X

vw∨,where w∨ = (−1)iw for w ∈ H2i(X, Z). Following Mukai we assoiate to eahoherent sheaf E its Mukai vetor
v(E) := ch(E)

√
td(X) ∈ Heven(X, Z).The Hilbert polynomial of E with respet to an ample divisor H an be expressedin terms of its Mukai vetor as follows:

χ(E ⊗OX(mH)) = −〈v(E), v(OX(−mH))〉 =: Pv(m).2.2. Semistable sheaves. Stability or semistability of a oherent sheaf is de�nedwith respet to a �xed ample divisor H . We let Mv denote the moduli spae ofsemistable sheaves with Mukai vetor v. Closed points of Mv are in natural bijetionwith polystable sheaves E. Points orresponding to stable sheaves form a � possiblyempty � open subset M s
v ⊂Mv.Semistable sheaves may have two�, one� or zero�dimensional support. Stabilityin the �rst ase was de�ned by Maruyama and Gieseker, the generalisation to puresheaves of arbitrary dimension is due to Simpson. In the rest of the paper weexlude one for all the ase of zero-dimensional sheaves as being well-known: if theMukai vetor is v = (0, 0, a) then Mv

∼= SaX , the symmetri produt of X , and theHilbert-Chow morphism Hilba(X)→Mv provides a sympleti resolution.



4 D. KALEDIN, M. LEHN, AND CH. SORGER2.3. General assumptions. An element v0 ∈ Heven(X, Z) is primitive if it isnot an integral multiple of another lattie element. Given a non-trivial element
v ∈ Heven(X, Z) we may always deompose it as v = mv0 with a primitive element v0and a multipliity m ∈ N. Throughout this artile we assume that v0 = (r0, c0, a0)has the following properties:

(∗)






Either r0 > 0 and c0 ∈ NS(X),or r0 = 0, c0 ∈ NS(X) is e�etive, and a0 6= 0;
〈v0, v0〉 ≥ 2.The results of this paper suggest to distinguish systematially between the fol-lowing three ases for a Mukai vetor v satisfying assumptions (∗):(A) m = 1.(B) m = 2 and 〈v0, v0〉 = 2.(C) m ≥ 3, or m = 2 and 〈v0, v0〉 ≥ 4.2.4. General ample divisors. The signi�ane of (∗) lies in the fat that one hasthe notion of a v�general ample divisor H : there is a systems of hyperplanes in theample one of X , alled v�walls, that is ountable but loally �nite for torsion freesheaves ([13℄, h. 4C) and �nite for torsion sheaves ([27℄, se. 1.4.) with the followingproperty: if H is v�general, i.e. if H is not ontained in any v�wall, then for everydiret summand E′ of a polystable sheaf E with v(E) = v one has v(E′) ∈ Qv(E).Let H be a v0�general ample divisor and onsider the following assertions:

(∗∗) Mv0
is non-empty.

(∗ ∗ ∗) Mv0
is irreduible.Yoshioka shows in [27℄, Thm 0.1 and Thm 8.1, that (∗) implies (∗∗) and (∗ ∗ ∗)exept when X is a K3 surfae, r0 = 0 and c0 is not ample. Moreover he has om-muniated to us an unpublished note that �lls this gap, so that (∗∗) and (∗ ∗ ∗) areonsequenes of (∗). An essential tehnique in Yoshioka's work is the deformationof the underlying surfae; the arguments are rather involved. For the irreduibilitypart (∗ ∗ ∗) we give a new and diret proof, based on an old and beautiful idea ofMukai, see Theorem 4.1.2.5. Elements of the onstrution of moduli spaes. We need to reall somebasi elements of the onstrution mahinery of moduli spaes of sheaves followingthe approah of Simpson [26℄ (see also [13℄, h. 4). Let v be a Mukai vetor satisfying

(∗) and let Pv denote the orresponding Hilbert polynomial. Choose a su�ientlylarge integer k = k(v) and put N = Pv(k), H := OX(−kH)⊕N . Then there is alosed subsheme R ⊂ QuotX,H(H, P ) with the following property: a losed point
[q : H → E] ∈ Ris stable or semistable with respet to the anonial PGl(N)�ation and the orre-sponding linearisation of the determinant line bundle on R if and only if q indues



SINGULAR SYMPLECTIC MODULI SPACES 5an isomorphism CN → H0(X, E(kH)) and if E is stable or semistable, respe-tively. Let Rs ⊂ Rss ⊂ R denote the open subsets of stable and semistable points,respetively. Then
Rss// PGl(N)) ∼= Mv and Rs// PGl(N) ∼= M s

v .Let π : Rss → Mv denote the quotient map. The orbit of a point [q : H → E] islosed in Rss if and only if E is polystable. In that ase, the stabiliser subgroup of
[q] in PGl(N) is anonially isomorphi to PAut(E) = Aut(E)/C∗. Moreover, byLuna's slie theorem there is a PAut(E)�invariant subsheme S ⊂ Rss, ontaining
[q], suh that the anonial morphisms

(PGl(N)× S)// PAut(E)→ Rss and S// PAut(E)→Mare étale. The Zariski tangent spae T[q]S is isomorphi to Ext1(E, E).2.6. Loal desription. The ompletion of the loal ring OS,[q] has the followingdeformation theoreti desription:Let C[Ext1(E, E)] denote the ring of polynomial funtions on Ext1(E, E) andlet A := C[Ext1(E, E)]∧ denote its ompletion at the maximal ideal M of fun-tions vanishing at 0. There is a trae map tr : Ext2(E, E) → H2(OX). We denoteits kernel by Ext2(E, E)0. The automorphism group Aut(E) naturally ats on
Ext1(E, E) and Ext2(E, E)0 by onjugation. Sine the salar multiples of the iden-tity at trivially we atually have an ation of the projetive automorphism group
PAut(E) = Aut(E)/C∗. There is a linear map

κ : Ext2(E, E)∗0 −→ C[Ext1(E, E)]∧,the so-alled Kuranishi map, with the following properties:1. κ is PAut(E)�equivariant.2. Let I be the ideal generated by the image of κ. Then there are isomorphismsof omplete rings
ÔS,[q]

∼= A/I and ÔMv ,[E]
∼= (A/I)PAut(E).3. For every linear form ϕ ∈ Ext2(E, E)∗0 one has, for e ∈ Ext1(E, E),

κ(ϕ)(e) = 1
2ϕ(e ∪ e) + higher order terms in e.2.7. Passage to the normal one. Let J ⊂ C[Ext1(E, E)] denote the ideal gen-erated by the image of the quadrati part of κ:

κ2 : Ext2(E, E)∗0 −→ S2 Ext1(E, E)∗, ϕ 7→ (e 7→ 1
2ϕ(e ∪ e))Then J is the ideal of the null-�bre F = µ−1(0) of the morphism

µ : Ext1(E, E) −→ Ext2(E, E)0, µ(e) = 1
2 (e ∪ e).The ideals I ⊂ C[Ext1(E, E)]∧ and J ⊂ C[Ext1(E, E)] are related as follows. Thegraded ring grA assoiated to the m-adi �ltration on A = C[Ext1(E, E)]∧ is anon-ially isomorphi to C[Ext1(E, E)]. For any ideal a ⊂ A let in(a) ⊂ grA denote the



6 D. KALEDIN, M. LEHN, AND CH. SORGERideal generated by the leading terms in(f) of all elements f ∈ a. Then property 3of the Kuranishi�map says that
J ⊂ in(I).Hene there is the following hain of inequalities:(2.1) dim(F ) = dim (grA)/J

≥ dim (grA)/ in(I) = dim gr(A/I) = dim(A/I)

≥ dimExt1(E, E)− dimExt2(E, E)0,where the last inequality omes from the fat that A is regular of dimension =

dimExt1(E, E) and I is generated by dimExt2(E, E)0 elements.We need to desribe µ in greater detail; the resulting desription is similar toNakajima's onstrution of the so-alled quiver varieties [22℄. Write(2.2) E =

s⊕

i=1

Wi ⊗ Eiwith pairwise non-isomorphi stable sheaves Ei and vetor spaes Wi of dimension
ni. Let Wij := Hom(Wi, Wj) and Vij := Ext1(Ei, Ej). Then

End(E) =
⊕

i

Wii, Ext1(E, E) =
⊕

i,j

Wij ⊗ Vij , Ext2(E, E) =
⊕

i

Wii.The automorphism group
Aut(E) =

∏

i

Aut(Wi) ∼=
∏

i

Gl(ni) =: G(n)ats on Ext1(E, E) by onjugation on the �rst fator in eah diret summand. BySerre-Duality, the pairing
Vij ⊗ Vji → C, e⊗ e′ 7→ tr(e′ ∪ e)is non-degenerate and antisymmetri. This yields a sympleti form ω on Ext1(E, E)suh that Wij ⊗ Vij and Wab ⊗ Vab are perpendiular, unless i = b and j = a, inwhih ase

ω : (Wij ⊗ Vij)⊗ (Wji ⊗ Vji) −→ C, ω(A⊗ e, A′ ⊗ e′) = tr(A′A) tr(e′ ∪ e).Moreover, the quadrati map µ : Ext1(E, E)→ Ext2(E, E)0 is given by(2.3) µ




∑

ij

∑

k

Ak
ij ⊗ ek

ij



 =
∑

ij

∑

k,ℓ

Ak
ijA

ℓ
ji tr(ek

ije
ℓ
ji).2.8. Strategy. In general we do not know how to ompute the Kuranishi mapexpliitly. However, the expliit desription of the quadrati part µ given aboveallows for a detailed study of the �bre F := µ−1(0) ⊂ Ext1(E, E). The passagefrom κ to µ orresponds to the passage from the loal ring ÔS,[q] to the oordinatering OF of its tangent one.In setion 3 we show that under ertain hypotheses the �bre F is an irreduiblenormal omplete intersetion whih is, in ase (C), regular in odimension ≤ 3 andstate onsequenes for the loal rings ORss,[q] of points [q] in losed orbits of Rss.



SINGULAR SYMPLECTIC MODULI SPACES 7Setion 4 ontains a basi irreduibility result for moduli spaes of sheaves on aK3 or abelian surfae.In setion 5 it is proved � under the hypothesis that the ample divisor is v�general � that the moduli spae M is a non-empty irreduible normal variety ofexpeted dimension, and that it is loally fatorial in ase (C). As an appliationwe show in setion 6 that in ase (C) the moduli spae does not admit a sympletiresolution. 3. Sympleti redution3.1. The sympleti momentum map. Let U be a smooth a�ne algebrai vari-ety over C endowed with a sympleti form ω. Let G be a redutive group that atson U preserving ω. This ation indues an in�nitesimal ation of the Lie algebra
g of G, i.e. a homomorphism of Lie algebras g → Γ(U, TU ). We denote the vetor�eld orresponding to A ∈ g at x ∈ U by Ax. A momentum map for the ation is a
G-equivariant morphism µ : U → g∗ with the property that dµx(ξ)(A) = ω(ξ, Ax)for all x ∈ U and ξ ∈ TxU . If a momentum map exists, it is unique up to an additiveonstant in (g∗)G.Let µ : U → g∗ be a momentum map with null-�bre F := µ−1(0).Lemma 3.2. � Let x ∈ F be a point with stabiliser subgroup H ⊂ G. Then theimage of dµx : TxU → g∗ is (g/h)∗ = h⊥, where h ⊂ g denotes the Lie algebra of
H. In partiular, if H is �nite then dµx has maximal rank and F is regular at x ofdimension dim(U)− dim(G).Proof. The image dµx annihilates A ∈ g if and only if ω(ξ, Ax) = 0 for all ξ ∈ TxU ,i.e. if Ax is perpendiular to TxU with respet to ω. As ω is non-degenerate, thisis equivalent to saying that Ax vanishes, hene is a tangent vetor to the stabilisersubgroup H . �Lemma 3.3. � Let µ : U → g∗ be a momentum map with null-�bre F . Let Z ⊂ Fbe the losed subset of points with non-�nite stabiliser group. Let d = dimU−dim g.1. If dim(Z) ≤ d− 1, then F is a redued omplete intersetion of dimension d.2. If dim(Z) ≤ d− 2, then F is normal.Proof. Every irreduible omponent of F must have dimension ≥ d sine F is utout by dim g equations. By Lemma 3.2, F has dimension d in eah point x ∈ F \Z.If dimZ < d, then F \Z is dense in F and every irreduible omponent has preiselydimension d. Hene F is a omplete intersetion and in partiular Cohen-Maaulay([2℄, Cor. III 4.5). Sine F \ Z is smooth, F in addition satis�es ondition R0 andis therefore redued ([2℄, Prop. VII 2.2). If in addition dim(Z) ≤ d − 2, then F isregular in odimension 1 and normal by Serre's riterion ([2℄, Cor. VII 2.13). �3.4. The key estimate. We want to apply the lemma to the following partiularsituation, that arises in the study of loal rings of the moduli spae of sheaves.



8 D. KALEDIN, M. LEHN, AND CH. SORGERSet-up: Let W1, . . . , Ws be a sequene of vetor spaes, s ≥ 1. The dimensions
ni = dim(Wi) form the omponents of a vetor n ∈ Ns

0. Furthermore, let Wij =

Hom(Wi, Wj). There is a natural symmetri pairing
Wij ⊗Wji → C, (A, B) 7→ tr(BA).Moreover, let Vij , 1 ≤ i, j ≤ s, be vetor spaes, equipped with non-degeneratepairings

ωij : Vij ⊗ Vji → C,that are skew-symmetri in the sense that ωij(e, e
′) = −ωji(e

′, e). Then the vetorspae U(n) :=
⊕

i,j Wij ⊗Vij arries a natural sympleti form ω with the propertythat Wij ⊗ Vij is perpendiular to all Wab ⊗ Vab, (a, b) 6= (j, i) and
ω :
(
Wij ⊗ Vij

)
⊗
(
Wji ⊗ Vji

)
−→ C, (A⊗ e)⊗ (A′ ⊗ e′) 7→ tr(A′A)ωij(e, e

′).In the following arguments the vetor spaes Vij are �xed and hosen one for all,whereas the sequene of vetor spaes Wi an be replaed by appropriate subspaeset. We will argue by indution over the dimension vetor n as an element in themonoid Ns
0. Most objets de�ned below will therefore be indexed by n, like thespae U(n) above, even if this is not quite aurate as they really depend on thespaes Wi.The group G(n) =

∏
i Aut(Wi) ats on U(n) by onjugation on the �rst fators inthe deomposition. The subgroup of salars C∗ ⊂ G(n) ats trivially. Let PG(n) :=

G(n)/C∗. The ation of PG(n) on U(n) preserves the sympleti struture. Themoment map for the ation is
µ(n) : U(n) −→ pg(n)∗ ≃ Ker

(⊕

i

gl(ni)
tr
−−−→ C

)
,

∑

i,j,k

A
(k)
ij v

(k)
ij 7→

∑

k,ℓ

∑

i,j

A
(k)
ij A

(ℓ)
ji tr(v

(k)
ij ∪ v

(ℓ)
ji )Let F (n) := µ(n)−1(0) ⊂ U(n) denote the null-�bre of the moment map. Thestruture of F (n) depends only on n and the dimensions dij := dim(Vij). Let Ddenote the matrix (dij) and let a := min{dij − 2δij}.Proposition 3.5. � Assume that a ≥ 2. Then F (n) is an irreduible normalomplete intersetion of dimension d := nt(D− I)n + 1. Moreover, F (n) is regularin odimension ≤ 3 with the possible exeption of the two ases1. n = (1, 1), d12 = 2, and2. n = (2), d11 = 4.Proof. 1. Sine dim(U(n)) =

∑
i,j ninjdij and sine the range of µ has dimension

∑
i nini − 1, the expeted dimension of F (n) is

d =
∑

i,j

ninjdij −
∑

i

nini + 1 = nt(D − I)n + 1.Also, F (n) is a one and hene onneted. By Lemma 3.3, it su�es to show thatthe lous Z of points in F (n) with non-trivial stabiliser in PG(n) has dimension



SINGULAR SYMPLECTIC MODULI SPACES 9
≤ d − 4 in general and ≤ d − 3 in the two exeptional ases. This will be done byindution on the dimension vetor n ∈ Ns

0.The indution starts with n = (0, . . . , 1, . . . , 0), in whih ase the statement istrivial. So let n ∈ Ns
0 be an arbitrary element and assume that the propositionholds for all n′ ∈ Ns

0 suh that 0 <
∑

i n′
i <

∑
i ni.2. We an analyse Z as follows: Let g ∈ G(n), g /∈ C∗, and onsider theorresponding �xed point lous F (n)g. The image G(n)F (n)g of the morphism

ϕ : G(n) × F (n)g → F (n), (g′, x) 7→ g′x, onsists of all points y ∈ F whosestabiliser subgroup G(n)y ontains an element onjugate to g. Suppose that H ⊂

G(n) is a subgroup that stabilises the �xed point set F (n)g. Then we an boundthe dimension of the �bres of ϕ by dim(H). It follows that dim(G(n)F (n)g) ≤

dimF (n)g + dimG(n) − dimH . In the following we will desribe a �nite set ofelements g suh that Z is overed by the orresponding sets G(n)F (n)g and suhthat for eah g one has dim(G(n)F (n)g) ≤ d− 3 or ≤ d− 4. This gives the desiredbound for dim(Z).3. Let g = (g1, . . . , gs) ∈ G(n), g /∈ C∗. We distinguish three ases:3.1. Case: g is semisimple. For eah λ ∈ C onsider the eigenspaes Wi(λ) ⊂Wiof gi, and let ni(λ) = dim(Wi(λ)), n(λ) = (ni(λ))i. Then n =
∑

λ n(λ). There is adeomposition
U(n)g =

⊕

λ

U(n(λ)), U(n(λ)) =
⊕

ij

Hom(Wi(λ), Wj(λ)) ⊗ Vij .Moreover, the restrition of the momentum map to the �xed point lous splits intoa produt of momentum maps for eah U(n(λ)):
µ(n)|U(n)g =

∏

λ

µ(n(λ)), µ(n(λ)) : U(n(λ)) −→ pg(n(λ))∗.It follows that
F (n)g =

∏

λ

F (n(λ)) with F (n(λ)) = µ(n(λ))−1(0).By indution, we have
dim(F (n)g) =

∑

λ

dim(F (n(λ)) =
∑

λ

′
(
n(λ)t(D − I)n(λ) + 1

)
,where ∑ ′ indiates that we only sum over all λ with n(λ) 6= 0.Next, U(n)g is stabilised by H =

∏
λ G(n(λ)), a subgroup in G(n) of odimension

ntn −
∑

λ n(λ)tn(λ). We obtain the following upper bound for the dimension of
G(n)F (n)g :

dim(G(n)F (n)g) ≤
∑

λ

′
(
n(λ)t(D − 2I)n(λ) + 1

)
+ ntn.



10 D. KALEDIN, M. LEHN, AND CH. SORGERNote that ν := |{λ | n(λ) 6= 0}| ≥ 2, sine g /∈ C∗. The di�erene of dim(G(n)F (n)g)to the expeted dimension of F (n) is therefore bounded below by
∆ :=

(
nt(D − 2I)n + 1

)
−
∑

λ

′
(
n(λ)t(D − 2I)n(λ) + 1

)

=
∑

λ6=µ

n(λ)t(D − 2I)n(µ)− (ν − 1)

≥ 2ν(ν − 1)− (ν − 1) = (2ν − 1)(ν − 1) ≥ 3.Clearly, ∆ ≥ 4 for ν ≥ 3. Assume that ν = 2, say with the distint eigenvalues λand λ′. Then
∆ ≥ 2

∑

i,j

ni(λ
′)nj(λ

′′)(dij − 2δij)− 1 ≥ 2a
∑

i

ni(λ
′)
∑

i

ni(λ)− 1.Thus ∆ = 3 implies a = 2 and ∑i ni(λ) = 1 =
∑

i ni(λ
′). Hene there are only thefollowing exeptional ases:1. s = 1, n = 2, d11 = 2 + 2δ11 = 4, or2. s = 2, n = (1, 1) and d12 = d21 = 2.If a point f ∈ F (n) is �xed by a semisimple element, it is also �xed by a wholesubtorus T ⊂ G(n). Up to a onjugation, there is only a �nite number of suhsubtori Ti ⊂ G(n). Choosing an element gi ∈ Ti in eah of these subtori, we seethat the union of all sets G(n)F (n)g , g semisimple, is overed by the �nite union ofall sets G(n)F (n)gi .3.2. Case: g is unipotent. We may write g = 1 + h, with a non-zero nilpotentelement h = (h1, . . . , hs) ∈

⊕
i End(Wi). Let K

(ℓ)
i := ker(hℓ

i) ⊂ Wi and mi(ℓ) :=

dimK
(ℓ)
i for all ℓ ∈ N0. There is a �ltration

0 = K
(0)
i ⊂ K

(1)
i ⊂ . . . = Wi.For eah level ℓ > 0 we hoose a graded omplement W

(ℓ)
i to hK

(ℓ+1)
i + K

(ℓ−1)
i in

K(ℓ) and let n
(ℓ)
i = dimW

(ℓ)
i . (We note that this is an instane of the so-alledJaobson-Morozov-Deligne �ltration assoiated to a nilpotent element, see [8, 1.6℄;the spaes W

(ℓ)
i are the primitive subspaes with respet to an sl2-triple ontaining

h.)Suppose that A = (Aij) ∈
⊕

ij Hom(Wi, Wj) ommutes with h. Then Aij isompletely determined by its value on the spaes W
(ℓ)
i , ℓ ∈ N, and onversely, anyvalue of Aij : W

(ℓ)
i → K

(ℓ)
j an be presribed. The omposition with the anonialprojetion K

(ℓ)
j → W

(ℓ)
j de�nes a homomorphism A

(ℓ)
ij : W

(ℓ)
i −→ W

(ℓ)
j , and themap

Φ :




⊕

ij

Hom(Wi, Wj)




g

−→
⊕

ℓ




⊕

ij

Hom(W
(ℓ)
i , W

(ℓ)
j )



 , (Aij) 7→ (A
(ℓ)
ij ),is a ring homomorphism. Let

ΦV : U(n)g =




⊕

i,j

Wij ⊗ Vij




g

−→
⊕

ℓ

U(n(ℓ)) =
⊕

ℓ

⊕

i,j

Hom(W
(ℓ)
i , W

(ℓ)
j )⊗ Vij



SINGULAR SYMPLECTIC MODULI SPACES 11be analogously de�ned. Then ΦV (F (n)g) ⊂
∏

ℓ F (n(ℓ)), and the �bres of ΦV havedimension ∑ℓ n(ℓ)tD(m(ℓ) − n(ℓ)). By indution, this yields the bound
dim(F (n)g) ≤

∑

ℓ

dim(F (n(ℓ)) + dim(ker(ΦV ))

=
∑

ℓ

′
(
n(ℓ)t(D − I)n(ℓ) + 1

)
+
∑

ℓ

n(ℓ)tD(m(ℓ) − n(ℓ)),where ∑ ′ signi�es summation over all ℓ with n(ℓ) 6= 0. Moreover, the entraliser
H ⊂ G(n) of g is an open subset in

(
⊕

i

End(Wi)

)g

∼=
⊕

ℓ

⊕

i

Hom(W
(ℓ)
i , K

(ℓ)
i )and therefore has dimension dim(H) =

∑
ℓ n(ℓ)tm(ℓ). Conneting these piees ofinformation we obtain

dim(G(n)F (n)g) ≤ dim(F (n)g) + dim(G(n)) − dim(H)

≤
∑

ℓ

′
(
n(ℓ)t(D − I)n(ℓ) + 1

)
+
∑

ℓ

n(ℓ)tD(m(ℓ) − n(ℓ))

+ntn−
∑

ℓ

n(ℓ)tm(ℓ).The di�erene of the last expression to the expeted dimension of F (n) is
∆ :=

[
nt(D − I)n− ntn + 1

]
−
∑

ℓ

′
[
n(ℓ)t(D − I)m(ℓ) − n(ℓ)tn(ℓ) + 1

]
.Note that the two braketed expressions are not quite symmetri to eah other dueto the presene of m(ℓ) instead on n(ℓ). We an get rid of n and m(ℓ) due to therelations

m(ℓ) =
∑

k

n(k) min{k, ℓ}, n =
∑

k

n(k)k,and an rewrite the bound ∆ in terms of the n(k) as follows:
∆ =

∑

ℓ,k

n(k)t(D− I)n(ℓ)
(
kℓ−min{k, ℓ}

)
−
∑

k,ℓ

n(k)tn(ℓ)kℓ+
∑

k

′
(
n(k)tn(k)−1

)
+1Reorganise the sum in olleting those terms that ontain n(1):

∆ = 1 +
[
− 1 + 2n(1)t

∑

k≥2

(
(k − 1)(D − 2I)− I

)
n(k)

]
+
∑

k≥2

′
(
n(k)tn(k) − 1

)

+
∑

k,ℓ≥2

n(k)t
(
(kℓ−min{k, ℓ})(D − 2I)−min{k, ℓ}I

)
n(ℓ)Here the seond summand [. . .] appears only if n(1) 6= 0. Note that there always isat least one index k ≥ 2 with n(k) 6= 2, sine h 6= 0. This shows that all summandsin the last expression for ∆ are non-negative.The minimal ontribution of a non-zero vetor n(k), k 6= 2, to ∆ is

k((k − 1)a− 1)

(
∑

i

n
(k)
i

)2

≥ 2.



12 D. KALEDIN, M. LEHN, AND CH. SORGERThus we always have ∆ ≥ 3, and even better: ∆ ≥ 4 in all ases exept
a = 2, n(2) = (1), n(k) = 0 for all k 6= 2.In this ase s = 1, n = (2), and d11 = 4, whih is the same exeptional ase asbefore.As in the semisimple ase, the union of all sets G(n)F (n)g, g unipotent, is overedby a �nite number of suh sets. In fat, this is even easier to see: up to onjugationthere are only �nitely many di�erent nilpotent elements h and hene only �nitelymany di�erent subshemes G(n)F (n)1+h ⊂ Z.3.3. Case: g ∈ G(n) \ C∗ arbitrary. Consider the multipliative Jordan deom-position g = su, where s is semisimple, u is unipotent and s and u ommute. Anyendomorphism that ommutes with g also ommutes with s and u. This impliesthat F (n)g ⊂ F (n)s ∩ F (n)u, so that the general ase is overed by 3.1. and 3.2.above. �3.6. Return from the normal one. Let v0 ∈ Heven(X, Z) be a primitive Mukaivetor satisfying (∗). Let v = mv0 for some multipliity m ∈ N. We keep thenotation introdued earlier.Proposition 3.7. � Let H be an arbitrary ample divisor. Let E =

⊕s
i=1 E⊕ni

i bea polystable sheaf whose stable diret summands Ei satisfy the ondition(3.1) v(Ei) ∈ Nv0Consider a point [q : H → E] ∈ Rss and a slie S ⊂ Rss to the orbit of [q] as above.Then OS,[q] is a normal omplete intersetion domain of dimension
dimExt1(E, E)− dimExt2(E, E)0 = 1 +

∑

i,j

ni(dim Ext1(Ei, Ej)− δij)nj ,that has property R3 in all ases exept the following two:1. s = 1, n1 = 2, dimExt1(E1, E1) = 4,2. s = 2, n1 = n2 = 1, dimExt1(E1, E2) = 2.Proof. Reall the notation introdued in setions 2.6 and 2.7. By Proposition 3.5,
F = µ−1(0) = Spec(grA/J) is a normal omplete intersetion variety of dimension

dim(F ) = 1 +
∑

i,j

ni(dimExt1(Ei, Ej)− δij)nj

= dimExt1(E, E)− dimExt2(E, E)0.Therefore, we must have equality at all plaes in inequality (2.1). Furthermore, sine
F = Spec(grA/J) is redued and irreduible, the equality of dimensions implies
J = in(I). It follows that

gr(ÔS,[q]) = gr(A/I) = grA/ in(I) = Γ(F,OF )is a normal omplete intersetion. In partiular, gr(ÔS,[q]) is Cohen-Maaulay, henesatis�es Sk for all k ∈ N. Unless we are in the two exeptional ases, gr(ÔS,[q]) is



SINGULAR SYMPLECTIC MODULI SPACES 13smooth in odimension 3. Now remark that gr(ÔS,[q]) = gr(OS,[q]) ([1℄, 10.22) andthen use the following proposition whih shows that OS,[q] itself is a normal ompleteintersetion whih, unless we are in the two exeptional ases, satis�es R3. �Proposition 3.8. � Let B be a noetherian loal ring with maximal ideal m andresidue �eld B/m ∼= C. Let grB denote the graded ring assoiated to the m-adi�ltration of B. Then dim(B) = dim(grB), and if grB is an integral domain ornormal or a omplete intersetion then the same is true for B. Moreover if grBsatis�es Rk and Sk+1 for some k ∈ N then B satis�es Rk.Proof. The assertion about integrality and normality is Krull's theorem (see [20℄(17.D) Thm 34). The assertions about omplete intersetions and the property Rkare due to Cavaliere and Niesi ([6℄, Theorems 3.4 and 3.13). �Lemma 3.9. � The assumption (3.1) in Proposition 3.7 is satis�ed in any of thefollowing two situations:1. H is v�general.2. E = E⊕m
0 for some stable sheaf E0 with v(E0) = v0.The exeptions of Proposition 3.7 are met in ase (B) only, i. e. if 〈v0, v0〉 = 2 and

m = 2.Proof. Under the assumption that H is v�general one has v(Ej) = rjv0 for some
rj ∈ N and all diret summands Ej of E. Then dim Ext1(Ei, Ej) = rirj〈v0, v0〉 ≥ 2.Thus Proposition 3.7 applies. �Proposition 3.10. � 1. Let H be a v�general ample divisor. Then Rss is normaland loally a omplete intersetion of dimension 〈v, v〉+ 1 + N2. In ase (C) it hasproperty R3 and hene is loally fatorial.2. Suppose that E = E⊕m

0 for some stable sheaf E0 with v(E0) = v0. Let Hbe an arbitrary ample divisor. In ase (C), there is an open neighbourhood U of
[E] ∈Mv suh that π−1(U) ⊂ Rss is loally fatorial of dimension 〈v, v〉+ 1 + N2.Proof. 1. Let [q] ∈ Rss be a point with losed orbit, and let S ⊂ Rss be a PAut(E)�equivariant subsheme as in subsetion 2.5. By Lemma 3.9 and Proposition 3.7, theloal ring OS,[q] is a normal omplete intersetion that has property R3 in ase (C).But being normal or loally a omplete intersetion or having property Rk are openproperties [EGA IV 19.3.3, 6.12.9℄. Hene there is an open neighbourhood U of [q]in S that is normal, loally a omplete intersetion, and has property R3 in ase (C).The natural morphism PGl(N)× S → Rss is smooth. Therefore every losed orbitin Rss has an open neighbourhood that is normal, loally a omplete intersetion,and has property R3 in ase (C). Finally, every PGl(N)�orbit of Rss meets suh anopen neighbourhood. It follows that Rss is normal, loally a omplete intersetion.In ase (C), Rss is regular in odimension 3 and hene loally fatorial due to thefollowing theorem of Grothendiek.2. The seond assertion follows analogously. �



14 D. KALEDIN, M. LEHN, AND CH. SORGERTheorem 3.11. (Grothendiek [12℄ Exp. XI Cor. 3.14) � Let B be noetherianloal ring. If B is a omplete intersetion and regular in odimension ≤ 3, then Bis fatorial. 4. A basi irreduibility resultThe following theorem generalises a beautiful result of Mukai [21℄.Theorem 4.1. � Let X be a projetive K3 or abelian surfae with an ample divisor
H. Let Mv be the moduli spae of semistable sheaves assoiated to a vetor v ∈

Heven(X, Z). Suppose that Y ⊂ Mv is a onneted omponent parametrising stablesheaves only. Then Mv = Y .Proof. 1. Sine all points in Y orrespond to stable sheaves, Y is smooth of expeteddimension dim(Y ) = 2 + 〈v, v〉. Fix a point [F ] ∈ Y and suppose that there is apoint [G] ∈Mv \ Y . We shall exploit a beautiful old idea of Mukai [21℄: assume fora moment that there were a universal family F ∈ Coh(Y ×X). Let p : Y ×X → Yand q : Y × X → X be the projetions. We may then ompare the relative Ext-sheaves Ext•p(q
∗F, F) and Ext•p(q

∗G, F). Sine F and G are numerially equal on X ,the same is true for the lasses of the Ext-sheaves aording to the Grothendiek-Riemann-Roh theorem. This will lead to a ontradition.2. In general, there is no universal family, but the following onstrution will besu�ient:Lemma 4.2. � There is a smooth projetive variety Y ′ that parametrises a family
F of stable sheaves on X with Mukai vetor v suh that the lassifying morphism
f : Y ′ → Y is surjetive, generially �nite, and étale over a neighbourhood of [F ].Proof. Let R′ := Y ×Mv

Rss. Then R′ → Y is a PGl(N)�prinipal �bre bundle,loally trivial in the étale topology. Moreover, there is a universal epimorphism
OR′ ⊠ H → F′. We form the quotient P := (PN−1 × R′)// Gl(N). Then P is asmooth projetive variety, and the natural morphism P → Y is loally a produtin the étale topology with �bres isomorphi to PN−1. The enter C∗ ⊂ Gl(N) atstrivially on the family OPN−1(−1) ⊠ F′. Therefore, this sheaf desends to a family
FP on P ×X . Let L be a very ample line bundle on P . Choose a linear subspae
Z ⊂ P(H0(P, L)) of odimension N − 1 in suh a way that Y ′ := Z ∩ P is smoothand f : Y ′ → Y is étale over a neighbourhood of [F ]. Finally, let F := FP |Y ′×X . �3. Let f : Y ′ → Y and F be hosen as in the lemma and let p : Y ′×X → Y ′ and
q : Y ′×X → X denote the two projetions. Moreover, let f−1([F ]) = {p1, . . . , pn}.As G represents a point in M \ Y and hene is not isomorphi to any of thestable sheaves E, [E] ∈ Y , one has Hom(G, E) = 0 = Ext2(G, E) for all [E] ∈ Y .It follows that Ext0p(q

∗G, F) and Ext2p(q
∗G, F) vanish and that W := Ext1p(q

∗G, F)is a loally free sheaf on Y ′ of rank 〈v, v〉 = dim(Y )− 2.



SINGULAR SYMPLECTIC MODULI SPACES 15If G is replaed by F the situation gets more ompliated as the dimension of theExt-groups jumps on the �bre T . There is a omplex of loally free OY ′�sheaves(4.1) 0 −→ A0 α
−−→ A1 β

−−→ A2 −→ 0with the property that Exti
p

S
(t∗

X
q∗G, t∗XF) ∼= hi(t∗(A•)) for every base hange(4.2) S ×X

tX−−→ Y ′ ×X
q
−→ X

pS

y p

y
S

t
−→ Y ′.Lemma 4.3. � The degeneray lous of α and β is the union of the redued points

p1, . . . , pn. Moreover, rk α(pi) = rkA0−1 and rkβ(pi) = rkA2−1 for i = 1, . . . , n.Proof. For all [E] ∈ Y , E 6∼= F , one has Hom(F, E) = 0 = Ext2(F, E). This impliesthat α and β have maximal rank on Y ′ \ {p1, . . . , pn}. Moreover, Hom(F, F ) =

C = Ext2(F, F ), and this gives the seond assertion of the lemma. It remains toshow that the degeneray lous is redued. Reall that tangent vetors in T[F ]Yorrespond bijetively to elements γ ∈ Ext1(F, F ). Let Fγ be the in�nitesimalextension of F over Spec C[ε] orresponding to γ. The extension(4.3) 0 −→ F
ε
−→ Fγ −→ F −→ 0indues a long exat sequene

−→ Exti(F, F ) −→ Exti
Spec C[ε](F ⊗ C[ε], Fγ) −→ Exti(F, F )

∂
−−→ Exti+1(F, F ) −→where the boundary operator is given by ∂(e) = γ∪e. Now γ∪− : C = End(F, F )→

Ext1(F, F ) is learly injetive, and γ ∪ − : Ext1(F, F ) → Ext2(F, F ) is surje-tive sine the sympleti form on Ext1(F, F ) is non-degenerate. It follows that
Ext0(F, F ) ∼= Ext0Spec C[ε](F ⊗C[ε], Fγ) and Ext2Spec C[ε](F ⊗C[ε], Fγ) ∼= Ext2(F, F ).If the degeneray lous of α resp. β were not redued, the orresponding Ext groupsshould be bigger than C for at least one γ. The alulation shows that this is notthe ase. �4. Let σ : Z → Y denote the blow-up of Y in [F ] with exeptional divisor Dand similarly ϕ : Z ′ → Y ′ the blow-up of Y ′ in all points pi with orrespondingexeptional divisors Di.(4.4) D ⊂ Z

g
←− Z ′ ⊃ Diy σ

y ϕ

y
y

[F ] ∈ Y
f
←−− Y ′ ∋ piAording to the lemma, the degeneray lous of both ϕ∗(α) and ϕ∗(β) is preiselythe smooth divisor D′ = D1 ∪ . . . ∪Dn. Therefore these maps fator as follows:(4.5) ϕ∗A0 ⊂ A′0 α′

−−→ ϕ∗A1 β′

−−→ A′2 ⊂ ϕ∗A2,



16 D. KALEDIN, M. LEHN, AND CH. SORGERwhere A′0 and A′2 are loally free, α′ and β′ are homomorphisms of maximalrank. Moreover, the line bundles L := ϕ∗A2
/
A′2 and M := A′0

/
ϕ∗A0 on D′ areharaterised by the anonial isomorphisms

L⊗OD′
∼= Ext2D′(q∗F,OD ⊠ F|f−1([F ])×X) ∼= Ext2(F, F )⊗C OD′and

Tor
OZ′

1 (M,OD′) ∼= Ext0D′(q∗F,OD ⊠ F|f−1([F ])×X) ∼= Hom(F, F ) ⊗C OD′ ,implying(4.6) L ∼=

n⊕

i=1

ODi
and M ∼=

n⊕

i=1

ODi
(Di).5. Let W ′ denote the middle ohomology of the omplex

0 −→ A′0 α′

−−→ ϕ∗A1 β′

−−→ A′2 −→ 0.

W ′ is loally free of rank dimY − 2. We obtain the following equation of Chernlasses in H∗(Z ′, Z):(4.7) ϕ∗c(A1 −A0 −A2) = c(W ′ + M − L).On the other hand, as c(F ) = c(G) in H∗(X, Z), the Grothendiek-Riemann-RohTheorem yields the following identity in H∗(Y ′, Z):(4.8) c(A1 −A0 −A2) = c(Ext•p(q
∗F, F)) = c(Ext•p(q

∗G, F)) = c(W ).Combining (4.7) and (4.8), we onlude that(4.9) c(W ′) = ϕ∗c(W ) · c(L−M) ∈ H∗(Z ′, Z)Moreover,
c(L−M) =

n∏

i=1

c(ODi
)

c(ODi
(Di))

=

n∏

i=1

1

c(OZ′ (−Di))c(OZ′ (Di))
= 1 +

∞∑

k=1

n∑

i=1

D2k
i .The produt of any ohomology lass in H∗(Y ′, Z) of positive degree with any ofthe lasses Di is zero. It follows that

c2k(W ′) = ϕ∗c2k(W ) +
n∑

i=1

D2k
i for all k > 0.The key point now is that both W and W ′ are vetor bundles of rank dim(Y )− 2,so that the Chern lasses cdim(Y )(W ) and cdim(Y )(W

′) vanish (f. [19℄, Lemma 4).We get the ontradition
0 =

n∑

i=1

D
dim(Y )
i = −n.This �nishes the proof of Theorem 4.1. �Theorem 4.4. � Let v0 be a primitive Mukai vetor satisfying ondition (∗) and

(∗∗). Let v = mv0 and let H be a v�general ample divisor. Then Mv is a normalirreduible variety of dimension 2 + 〈v, v〉.



SINGULAR SYMPLECTIC MODULI SPACES 17This theorem is due to Yoshioka [28℄ in the ase of torsion free sheaves. Usingthe loal information obtained in Proposition 3.10, the basi irreduibility result ofTheorem 4.1, we an give a simple diret proof.Proof. By Proposition 3.10, Rss is normal. As a GIT-quotient of a normal sheme,
Mv is also normal. If m = 1, all points in Mv = Mv0

orrespond to stable sheavesand hene Mv is smooth. By Theorem 4.1, Mv0
is irreduible. By (∗∗), Mv0

isnon-empty.Assume now that m ≥ 2 and that the assertion of the theorem has been provedfor all moduli spaes Mm′v0
, 1 ≤ m′ < m. For any deomposition m = m′ + m′′with 1 ≤ m′ ≤ m′′, onsider the morphism

ϕ(m′, m′′) : Mm′v0
×Mm′′v0

−→Mmv0
, ([E′], [E′′]) 7→ [E′ ⊕ E′′],and let Y (m′, m′′) ⊂ Mv denote its image. The subshemes Y (m′, m′′), 1 ≤ m′ ≤

m′′, are the irreduible omponents of the stritly semistable lous of Mv. Sine all
Y (m′, m′′) are irreduible by indution and interset in the points of the form [E⊕m

0 ],
[E0] ∈ Mv0

, the stritly semistable lous is onneted. Sine Mv is normal, theonneted omponents are irreduible. In partiular, there is exatly one omponentthat meets the stritly semistable lous. Theorem 4.1 exludes the possibility of aomponent that does not meet the stritly semistable lous. �5. Fatoriality of moduli spaesProposition 5.1. � Let v0 be a primitive Mukai vetor satisfying (∗). Let v = mv0for some m ∈ N0. Assume that� either E = E⊕m
0 , for some E0 stable with v(E0) = v0, and H is arbitrary,� or E is arbitrary polystable with v(E) = v, and H is v�general.Assume further that ase (C) applies. Then Mv is loally fatorial at [E] if and onlyif the isotropy subgroup PGl(N)[q] ∼= PAut(E) of any point [q] in the losed orbitin π−1([E]) ⊂ Rss ats trivially on the �bre L([q]) for every PGl(N)-linearised linebundle L on an invariant open neighbourhood of the orbit of [q].Proof. This is Drezet's Théorème A [10℄. In Drezet's situation the Quot sheme

Rss is smooth. However, all his arguments go through under the weaker hypothesisthat Rss is loally fatorial in a PGl(N)�equivariant open neighbourhood of thelosed orbit in the �bre π−1([E]). But this is true under the given hypothesis dueto Proposition 3.10 �Corollary 5.2. � Let E0 be a stable sheaf with Mukai vetor v(E0) = v0 satisfying
(∗) and assume that v = mv0 satis�es (C). Then Mv is loally fatorial at [E⊕m

0 ].Proof. The isotropy subgroup of any point [q] in the losed orbit in π−1([E⊕m
0 ]) ⊂

Rss is isomorphi to PGl(m) and therefore has no non-trivial haraters. Henethe ation of PGl(m) on L([q]) is neessarily trivial (notations as in Proposition5.1). �



18 D. KALEDIN, M. LEHN, AND CH. SORGERTheorem 5.3. � Let v0 be a primitive Mukai vetor satisfying (∗) and (∗∗). As-sume that v = mv0, m ∈ N, satis�es (C) and let H be a v�general ample divisor.Then Mv is loally fatorial.Proof. Let [E] ∈ Mv be an arbitrary point that is represented by the polystablesheaf E =
⊕s

i=1 E
⊕

ni

i , and let [q : H → E] be a point in the losed orbit in
π−1([E]) ⊂ Rss. Sine H is v�general, the Mukai vetors of the stable diretsummands Ei have the form

v(Ei) = miv0, mi ∈ N,

s∑

i=1

mini = m.We repeat the onstrution in setion 2.5 for eah of the Mukai vetors miv0, i =

1, . . . , s. Note that we an hoose a su�iently large integer k that works for allMukai vetors simultaneously. Let Pi(z) = −mi〈v0, v(OX(−zH)〉, Ni = Pi(k) and
Hi = OX(−kH)⊕Ni . Then N =

∑
i niNi and H =

⊕
iH

⊕ni

i . Moreover there areparameter spaes Rss
i ⊂ QuotX,H(Hi, Pi) with PGl(Ni)-ations and quotient maps

πi : Rss
i →Mmiv0

. Finally there is a anonial map
Φ :
∏

i

Rss
i −→ Rss,

(
[Hi → Fi]

)
i
7→
[
H =

⊕

i

H⊕ni

i →
⊕

i

F⊕ni

i ].Let Z denote the image of Φ. It has the following properties:
• By Theorem 4.4, the moduli spaes Mmiv0

are irreduible. It follows thatthe shemes Rss
i and Z are irreduible, too.

• Z ontains the point [q] and as well a point [q′ : H → E⊕m
0 ] for some stablesheaf E0 with v(E0) = v0.

• The group G :=
(∏

i Gl(ni)
)
/C∗ ⊂ PGl(N) �xes Z pointwise. It equals thestabiliser subgroup of [q] and is ontained in the stabiliser subgroup of [q′].Now let L be a PGl(N)�linearised line bundle on Rss. The group G ats on L|Z witha loally onstant harater, whih must in fat be onstant, sine Z is onneted.Moreover, the ation is trivial at the point [q′] aording to the proof of Corollary5.2. Thus the harater is trivial everywhere on Z and in partiular at [q]. Aordingto Drezet's riterion (Proposition 5.1), Mv is loally fatorial at [E]. �Remark 5.4. It is also known that the moduli spae of semi-stable torsion freesheaves on the projetive plane is loally fatorial by the work of Drezet [9℄. Howeverit may be false for other surfaes as has been observed by Le Potier: the modulispae MP1×P1(2, 0, 2) is not loally fatorial at the point represented by O(1,−1)⊕

O(−1, 1) (see [10℄, p. 106).6. Sympleti resolutionsLet v0 be a primitive Mukai vetor satisfying (∗) and (∗∗). Let v = mv0 and let
H be a v�general divisor. Reall that the following three ases are possible:(A) m = 1.(B) m = 2 and 〈v0, v0〉 = 2.



SINGULAR SYMPLECTIC MODULI SPACES 19(C) m ≥ 3, or m = 2 and 〈v0, v0〉 ≥ 4.In ase (A) the moduli spae Mv onsists only of stable sheaves. It is irreduibleand smooth of dimension 2 + 〈v, v〉. Mukai [21℄ has de�ned a sympleti strutureon Mv.Proposition 6.1. � Assume that m ≥ 2. The singular lous Mv,sing of Mv is non-empty and equals the semistable lous. The irreduible omponents of Mv,sing orre-spond to integers m′, 1 ≤ m′ ≤ m/2, and have odimension 2m′(m−m′)〈v0, v0〉−2,respetively. In partiular, codimMv,sing = 2 in ase (B) and ≥ 4 in ase (C).Proof. Reall the varieties Y (m′, m′′) introdued in the proof of Theorem 4.4. Theunion of the Y (m′, m′′) is the stritly semistable lous. The maps
ϕ(m′, m′′) : Mm′v0

×Mm′′v0
→ Y (m′, m′′)are �nite and surjetive, hene

codim(Y (m′, m′′)) = 2 + m2〈v0, v0〉 − (2 + m′2〈v0, v0〉)− (2 + m′′2〈v0, v0〉)

= 2m′m′′〈v0, v0〉 − 2.Clearly, the odimension 2 is attained only if m′ = m′′ = 1 and 〈v0, v0〉 = 2, whihis ase (B). As Mv is smooth in all stable points, it remains to show that the stritlysemistable points are really singular. For this it su�es to show that Mv is singularat a generi point [E = E′⊕E′′] ∈ Y (m′, m′′), where E′ and E′′ are stable sheaveswith v(E′) = m′v0 and v(E′′) = m′′v0. In this ase, PAut(E) ∼= C∗, Ext2(E, E)0 ∼=

C, and the Kuranishi map Ext2(E, E)0 → C[Ext1(E, E)]∧ is ompletely desribedby an invariant funtion f ∈ C[Ext1(E, E)]∧. It follows, that
ÔMv ,[E]

∼=
(
C[Ext1(E, E)]∧

)C∗/
(f).Now C∗ ats on the four summands of

Ext1(E, E) = Ext1(E′, E′)⊕ Ext1(E′, E′′)⊕ Ext1(E′′, E′)⊕ Ext1(E′′, E′′)with weights 0, 1, −1, and 0. It follows that
Ext1(E, E)//C∗ = Ext1(E′, E′)× C × Ext1(E′′, E′′),where C ⊂M(d, C) is the one of matries of rank ≤ 1 and

d = dim Ext1(E′, E′′) = m′m′′〈v0, v0〉 ≥ 2.Sine the quotient of a singular loal ring by a non-zero divisor annot beomeregular, ÔMv ,[E] is singular. �Theorem 6.2. � Suppose that v belongs to ase (C). Then Mv is a loally fatorialsympleti variety of dimension 2+ 〈v, v〉. The singular lous is non-empty and hasodimension 4. All singularities are sympleti, but there is no open neighbourhoodof a singular point in Mv that admits a projetive sympleti resolution.



20 D. KALEDIN, M. LEHN, AND CH. SORGERProof. We have already seen that Mv is a loally fatorial variety. Mukai [21℄onstruted a non-degenerate 2-form on M s
v . This form is losed even if M s

v is notprojetive ([13℄ Prop. 10.3.2). By Flenner's theorem [11℄ this form extends to anyresolution of the singularities of Mv. Hene the singularities are sympleti in thesense of Beauville [5℄. Now let [E] ∈Mv be a singular point and let U ⊂Mv be anopen neighbourhood of [E]. A projetive sympleti resolution of U is a projetiveresolution σ : U ′ → U of the singularities of U suh that the restrition of thesympleti form on M s
v to U reg extends to a sympleti form on U ′. In suh aase the morphism σ would have to be semismall aording to a result of Kaledin,[14℄ Lemma 2.11. As the singular lous of U has odimension ≥ 4 aording toProposition 6.1, the exeptional lous of σ has odimension ≥ 2 in U ′. On the otherhand OMv ,[E] is fatorial by Theorem 5.3. This implies that the exeptional lousmust be a divisor (see [7℄ no. 1.40 p. 28). �Remark 6.3. � 1) The ompletion of a fatorial loal ring is not fatorial in general.The loal rings of the moduli spaes of type (C) provide nie examples of thisphenomenon. Pushing the arguments in the previous proof a bit further, one seesthat

ÔMv ,[E]
∼= C[Ext1(E′, E′)⊕ Ext1(E′′, E′′)]∧ ⊗̂ B,where B is the ompleted oordinate ring of the one C0 ⊂ C ⊂M(d, C) of traelessmatries of rank ≤ 1, with d ≥ 4. But ÔMv ,[E] annot be fatorial: the vertex of C0is an isolated singularity of odimension ≥ 6, and there are two small sympletiresolutions T ∗P(Ext1(E′, E′′)) → C0 ← T ∗P(Ext1(E′′, E′)). We see that in thisase OM,[E] is fatorial due to Theorem 5.3, but ÔM,[E] is not. Geometrially, whathappens is this: an irreduible Weil divisor beomes reduible after ompletion;while the whole thing still is a Cartier divisor, some of its newly aquired irreduibleomponents need not be.2) On the other hand, for polystable sheaves E⊕m

0 with E0 stable and v(E0)satisfying (∗), the ompleted loal ring ÔMv ,[E⊕m
0

] is fatorial. In fat, the proof ofproposition 3.7 shows that ÔS,[q] is fatorial. Moreover, the stabiliser is isomorphito PGl(m) hene has no non-trivial haraters. Under these onditions one anshow that the invariant ring (ÔS,[q])
PGl(m) ≃ ÔMv ,[E⊕m

0
] is also fatorial.
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