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ABSTRACT. We construct a new twenty-dimensional family of projective eight-dimen-

sional holomorphically symplectic manifolds: the compactified moduli space M3(Y ) of

twisted cubics on a smooth cubic fourfold Y that does not contain a plane is shown to be

smooth and to admit a contraction M3(Y ) → Z(Y ) to a projective eight-dimensional

symplectic manifold Z(Y ). The construction is based on results on linear determinantal

representations of singular cubic surfaces.

INTRODUCTION

According to Beauville and Donagi [4], the Fano variety M1(Y ) of lines on a smooth

cubic fourfold Y ⊂ P5
C is a smooth four-dimensional holomorphically symplectic variety

which is deformation equivalent to the second Hilbert scheme of a K3-surface. The sym-

plectic structure can be constructed as follows: let C ⊂ M1(Y ) × Y denote the universal

family of lines and let pri be the projection onto the i-th factor of the ambient space. For

any generator α ∈ H3,1(Y ) ∼= C one gets a holomorphic two-form ω1 := pr1∗pr∗2α on

M1(Y ).

More generally, one may consider moduli spaces of smooth rational curves of arbitrary

degree d on Y . For d ≥ 2 such spaces are no longer compact, and depending on the

purpose one might consider compactifications in the Chow variety or the Hilbert scheme

of Y or in the moduli space of stable maps to Y . To be specific we let Md(Y ) denote

the compactification in the Hilbert scheme Hilbdn+1(Y ). The moduli spaces Md(Y ) and

their rationality properties have been studied by de Jong and Starr [8]. They showed that

any desingularisation of Md(Y ) carries a canonical 2-form ωd which at a generic point of

Md(Y ) is non-degenerate if d is odd and ≥ 5 and has 1-dimensional radical if d is even

and ≥ 6. For the remaining small values of d, de Jong and Starr found that the radical of

the form has dimension 3, 2 and 3 at a generic point if d = 2, 3 or 4, respectively.

The geometric reason for the degeneration of ω2 can be seen as follows: Any rational

curve C of degree 2 on Y spans a two dimensional linear space E ⊂ P5 which in turn cuts

out a plane curve of degree 3 from Y . As this curve contains C, it must have a line L as

residual component. Mapping [C] to [L] defines a natural morphism M2(Y ) → M1(Y ),

the fibre over a point [L] ∈ M1(Y ) being isomorphic to the three dimensional space of

planes in P5 that contain the line L.

The geometry of M3(Y ) is much more interesting. We show first:
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Theorem A — Let Y ⊂ P5 be a smooth cubic hypersurface that does not contain a plane.

Then the moduli space M3(Y ) of generalised twisted cubic curves on Y is a smooth and

irreducible projective variety of dimension 10.

Let ω3 denote the holomorphic 2-form defined by de Jong and Starr. The purpose of this

paper is to produce a contraction M3(Y ) → Z to an 8-dimensional symplectic manifold

Z. More precisely, we will prove:

Theorem B — Let Y ⊂ P5 be a smooth cubic hypersurface that does not contain a plane.

Then there is a smooth eight dimensional holomorphically symplectic variety Z and mor-

phisms u : M3(Y )→ Z and j : Y → Z with the following properties:

(1) The symplectic structure ω on Z satisfies u∗ω = ω3.

(2) The morphism j is a closed embedding of Y as a Lagrangian submanifold in Z.

(3) The morphism u factors as follows:

M3(Y )
u //

a
##

Z

Z ′,

σ

??

where a : M3(Y )→ Z ′ is a P2-fibre bundle and σ : Z ′ → Z is the blow-up of Z

along Y .

(4) The topological Euler number of Z is e(Z) = 25650.

Since 25650 is also the Euler number of Hilb4(K3), it seems likely that Z is deforma-

tion equivalent to the fourth Hilbert scheme of a K3 surface.

The manifold Z does of course depend on Y and should systematically be denoted by

Z(Y ). In order to increase the readability of the paper we have decided to stick with Z.

Nevertheless, the construction works well for any flat family Y → T of smooth cubic

fourfolds without planes and yields a family Z → T of symplectic manifolds.

The two-step contraction u : M3(Y ) → Z has an interesting interpretation in terms of

matrix factorisations. Let P = C[x0, . . . , x5] and let R = P/f , where f is the equation

of a smooth cubic hypersurface Y ⊂ P5. The ideal I ⊂ R of a generalised twisted cubic

C ⊂ Y is generated by two linear forms and three quadratic forms. As Eisenbud [12] has

shown, the minimal free resolution

0←− I ←− R0 ←− R1 ←− R2 ←− . . .

becomes 2-periodic for an appropriate choice of bases for the free R-modules Ri. Going

back in the resolution, information about I gets lost at each step before stabilisation sets in.

One can show that this stepwise loss of information corresponds exactly to the two phases

M3(Y )→ Z ′ and Z ′ → Z

of the contraction of M3(Y ). Thus periodicity begins one step earlier for curves that

are arithmetically Cohen-Macaulay (aCM) than for those that are not (non-CM). Con-

sequently, Z truly parameterises isomorphism classes of Cohen-Macaulay approximations
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in the sense of Auslander and Buchweitz [2]. We intend to return to these questions in a

subsequent paper.

Structure of the paper. In Section §1 we introduce the basic objects of the discussion:

generalised twisted cubics and their moduli space. The focus lies on describing the possible

degenerations of a smooth twisted cubic space curve and understanding the fundamental

difference between curves that are arithmetically CM and those that are not. Any gen-

eralised twisted cubic C spans a 3-dimensional projective space 〈C〉 and defines a cubic

surface S = Y ∩ 〈C〉. In Section §2 we describe the moduli spaces of generalised twisted

cubics on possibly singular cubic surfaces S. Such curves are related to linear determinan-

tal representations of S. In Section §3 we study this relation in the universal situation of

integral cubic surfaces in a fixed P3. This is the technical heart of the paper. The main

tool are methods from geometric invariant theory. The results obtained in this section will

be applied in Section §4 to the family of cubic surfaces cut out from Y by arbitrary 3-

dimensional projective subspaces in P5. With these preparations we can finally prove all

parts of the main theorems.
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§1. HILBERT SCHEMES OF GENERALISED TWISTED CUBICS

A rational normal curve of degree 3, or twisted cubic for short, is a smooth curve C ⊂
P3 that is projectively equivalent to the image of P1 under the Veronese embedding P1 →
P3 of degree 3. The set of all twisted cubics is a 12-dimensional orbit under the action of

PGL4. Piene and Schlessinger [29] showed that its closureH0 is a smooth 12-dimensional

component of Hilb3n+1(P3) and that the full Hilbert scheme is in fact scheme theoretically

the union of H0 and a 15-dimensional smooth variety H1 that intersect transversely along

a smooth divisor J0 ⊂ H0. The second component H1 parameterises plane cubic curves

together with an additional and possibly embedded point; it will play no further rôle in our

discussion.

We will refer to any subscheme C ⊂ P3 that belongs to a point in H0 as a generalised

twisted cubic and to H0 as the Hilbert scheme of generalised twisted cubics on P3.

There is an essential difference between curves parameterised by H0 \ J0 and those

parameterised by J0. This difference is crucial for almost all arguments in this article and

enters all aspects of the construction. We therefore recall the following facts from the

articles of Ellingsrud, Piene, Schlessinger and Strømme [29, 14, 13] in some detail.

(1) Curves C with [C] ∈ H0 \ J0 are arithmetically Cohen-Macaulay (aCM), i.e. their

affine cone in C4 is Cohen-Macaulay at the origin. The homogeneous ideal of such a

curve is generated by a net of quadrics (q0, q1, q2) that arise as minors of a 3×2-matrix

A0 with linear entries. There is an exact sequence

(1.1) 0→ OP3(−3)⊕2 A0−−→ OP3(−2)⊕3 Λ2At
0−−−→ OP3 −→ OC −→ 0.

Up to projective equivalence there are exactly 8 isomorphism types of aCM-curves

represented by the following matrices:

A(1) =
(
x0 x1
x1 x2
x2 x3

)
, A(2) =

(
x0 0
x1 x2
x2 x3

)
, A(3) =

(
x0 0
x1 x2
0 x3

)
, A(4) =

(
x0 0
x1 x1
0 x3

)
A(5) =

(
x0 0
x1 x0
x2 x3

)
, A(6) =

(
x0 0
x1 x0
0 x3

)
, A(7) =

(
x0 0
x1 x0
x2 x1

)
, A(8) =

(
x0 0
x1 x0
0 x1

)
.

The dimension of the corresponding strata in H0 are 12, 11, 10, 9, 9, 8, 7 and 4 in

the given order. A(1) defines a smooth twisted cubic, A(2) the union of a smooth

plane conic and a line, and A(3) a chain of three lines. These three types are local

complete intersections. A(4) defines the union of three collinear but not coplanar
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lines. The matrices in the second row define non-reduced curves that contain a line

with multiplicity ≥ 2, but are always purely 1-dimensional.
(2) Curves C with [C] ∈ J0 are not Cohen-Macaulay (non-CM). The homogeneous

ideal of such a curve C is generated by three quadrics, which in appropriate coor-
dinates can be written as x2

0, x0x1, x0x2, and a cubic polynomial h(x1, x2, x3) =

x2
1a(x1, x2, x3) + x1x2b(x1, x2, x3) + x2

2c(x1, x2, x3). The latter defines a cubic
curve in the plane {x0 = 0} with a singularity at the point [0 : 0 : 0 : 1]. Note
that the three quadratic generators still arise as minors of a 3 × 2-matrix, namely
A0 =

(
0 −x0 x1
x0 0 −x2

)t
. There is an exact sequence

0→ OP3(−4)→ OP3(−3)
3 ⊕OP3(−4)→ OP3(−2)

3 ⊕OP3(−3)→ OP3 → OC → 0.

Up to projective equivalence there are 9 isomorphism types of non-CM curves: The

generic 11-dimensional orbit is represented by a nodal curve with polynomial h =

x3
1 + x3

2 + x1x2x3, and the 6-dimensional unique closed orbit by a line with a planar

triple structure defined by h = x3
1.

In each case, the linear span of C is the ambient space P3. Because of this it is easy to

see that for any m ≥ 3 the Hilbert scheme Hilb3n+1(Pm) contains a smooth component

Hilbgtc(Pm) that parameterises generalised twisted cubics and that fibres locally trivially

over the Grassmannian variety of 3-spaces in Pm. The morphism

s : Hilbgtc(Pm)→ Grass(Cm+1, 4)

maps a generalised twisted cubic in Pm to the projective 3-space 〈C〉 spanned by C. Con-

versely, if [p] ∈ Grass(Cm+1, 4) is a point represented by an epimorphism p : Cm+1 →
W onto a four-dimensional vector space W , or equivalently, by a threedimensional space

P(W ) ⊂ Pm, then the fibre s−1([p]) is the Hilbert scheme of generalised twisted cubics

in P(W ). Clearly, dim Hilbgtc(Pm) = 4m. For any projective scheme X ⊂ Pm let

Hilbgtc(X) := Hilb3n+1(X) ∩ Hilbgtc(Pm) denote the Hilbert scheme of generalised

twisted cubics on X .

Let C ⊂ Hilbgtc(P5) × P5 denote the universal family of generalised twisted cubics

and let pr1 and pr2 be the projections to Hilbgtc(P5) and P5, respectively. It follows from

[13], Cor. 2.4., that the sheaf A := pr1∗(OC ⊗ pr∗2OP5(3)) is locally free of rank 10 and

that the natural restriction homomorphism ε : S3C6 ⊗OHilbgtc(P5) → A is surjective. Let

f ∈ S3C6 be a non-zero homogeneous polynomial of degree 3 and Y = {f = 0} the

corresponding cubic hypersurfaces. Then the Hilbert scheme

(1.2) M3(Y ) := Hilbgtc(Y )

of generalised twisted cubic curves on Y is scheme theoretically isomorphic to the van-

ishing locus of the section ε(f) ∈ H0(Hilbgtc(P5),A). In particular, any irreducible

component of M3(Y ) is at least 10-dimensional.

A simple dimension count shows that the set of cubic polynomials in six variables that

vanish along a plane is 55 dimensional and hence a divisor in the 56-dimensional space of

all cubic polynomials. We will from now on impose the condition that Y is smooth and
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does not contain a plane. As we will show in Section 4.3 this implies thatM3(Y ) is smooth

as well.

To simplify the notation we put G := Grass(C6, 4). Closed points in G parameterise

epimorphisms p : C6 → W or equivalently 3-dimensional linear subspaces P(W ) ⊂ P5.

Since a smooth cubic hypersurface cannot contain a 3-space, the intersection S = P(W )∩
Y is a cubic surface in P(W ), and since Y does not even contain a plane, the surface S is

reduced and irreducible, i.e. integral.

By construction, M3(Y ) = Hilbgtc(Y ) comes equipped with a morphism

s : Hilbgtc(Y )→ G, [C ⊂ Y ] 7→ [〈C〉 ⊂ P5],

with fibres

s−1([p]) = Hilbgtc(S), S = Y ∩ P(W ).

§2. TWISTED CUBICS ON CUBIC SURFACES

Since the morphism s : Hilbgtc(Y ) → G constructed at the end of the previous para-

graph has fibres of the form Hilbgtc(S), where S is an integral cubic surface, we will study

these Hilbert schemes for arbitrary integral cubic surfaces abstractly and quite indepen-

dently of Y .

Cubic surfaces form a classical subject of algebraic geometry. The classification of the

different types of singularities was given by Schläfli [31] in 1864. A classical source of

information on cubic surfaces is the book of Henderson [19]. For treatments in modern

terminology see the papers of Looijenga [26] and Bruce and Wall [7]. We refer to the book

of Dolgachev [10], Ch. 9, and the seminar notes of Demazure [9] for further references

and all facts not proved here. A cubic surface S ⊂ P3 belongs to one of the following four

classes:

(1) S has at most rational double point singularities,

(2) S has a simple-elliptic singularity,

(3) S is integral but not normal, or

(4) S is not integral, i.e. its defining polynomial is reducible.

Let B := P(S3C4∗) denote the 19-dimensional moduli space of embedded cubic surfaces,

and let Bint ⊂ B denote the open subset of integral surfaces. It is stratified by locally

closed subsets B(Σ), where Σ is a string describing the common singularity type of the

surfaces [S] ∈ B(Σ). For example, B(A1 + 2A2) will denote the 5-codimensional stratum

of surfaces with one A1 and two A2-singularities, whereas the 7-codimensional stratum

B(Ẽ6) parameterises surfaces with a simple-elliptic singularity. For most singularity types,

the stratum B(Σ) is a single PGL4-orbit with the exception of Σ = ∅, A1, 2A1, 3A1, A2,

A1 +A2 and Ẽ6. In these cases, the isomorphism type is not determined by the singularity

type. The moduli problem for isomorphism types of cubic surfaces is treated by Beauville

in [3] in terms of geometric invariant theory.
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2.1. Cubic surfaces with rational double points. Let S ⊂ P3 be a cubic surface with

at most rational double point singularities and let σ : S̃ → S be its minimal resolution.

The canonical divisors of S and S̃ are K = −H , if H denotes a hyperplane section,

and K̃ = −σ∗H , since σ is crepant. In fact, σ is defined by the complete anti-canonical

linear system | − K̃|. The smooth surface S̃ is an almost (or weak) Del Pezzo surface.

The orthogonal complement Λ := K̃⊥ ⊂ H2(S̃;Z) of the canonical divisor is a negative

definite root lattice of type E6. The components E1, . . . , Em of the exceptional divisor of

σ are−2-curves whose classes α1, . . . , αm form a subset ∆0 in the root systemR ⊂ Λ that

is a root basis for a subsystem R0 ⊂ R. Let Λ0 ⊂ Λ denote the corresponding sub-lattice.

Configurations Λ0 ⊂ Λ are classified by subdiagrams of the extended Dynkin diagram

Ẽ6 (cf. [6] exc. 4.4, p. 126, or [32], Thm. 2B.). That all lattice theoretically admissible

configurations also arise geometrically was shown in [26]. (As Looijenga pointed out to

us, the equivalent statement is not true for the other simple elliptic singularities.) The

connected components of the Dynkin diagram of R0 are in bijection with the singularities

of S. This limits the possible combinations of singularity types of S to the following list:

A1, 2A1, A2, 3A1, A1 + A2, A3, 4A1, 2A1 + A2, A1 + A3, 2A2, A4, D4, 2A1 + A3,

A1 + 2A2, A5, D5, A1 +A5, 3A2, E6.

It is classically known that there is a close connection between roots in the E6-lattice

of the resolution S̃, twisted cubics on S and representations of the cubic equation of S

as a linear determinant, and we will further exploit this connection in Section §3. We

refer to the book of Dolgachev [10] for further information. We could, however, not find

a reference for the rôle of the Weyl group in this context and therefore include a detailed

discussion here. We also take the occasion (cf. Table 1 in Sec. 3.1) to correct Table 9.2. in

[10], where this action was overlooked.

Let W (R0) denote the subgroup of the Weyl group W (R) that is generated by the

reflections si in the effective roots αi, i = 1, . . . ,m. The root system R decomposes into

finitely many orbits with respect to this action. The orbits contained in R0 are exactly the

irreducible components ofR0 and are therefore in bijection with the singularities of S. It is

a well-known property of root systems that every W (R0)-orbit of Λ0⊗Q meets the closed

Weyl chamber C = {β | β.αi ≤ 0} (and the opposite chamber −C̄) exactly once (cf. [21]

Thm. 1.12). If we apply this to the orthogonal projection of any root α to Λ0⊗Q we find in

every W (R0)-orbit B ⊂ R unique roots α+
B and α−B that are characterised by the property

±α±B .αi ≤ 0 for i = 1, . . . ,m. We will refer to α+
B and α−B as the maximal resp. minimal

root of the orbit. Note that −α+
B equals α−B only if B = −B, i.e. if B is a subset of R0. If

Rp is the irreducible subsystem of R0 that corresponds to a singularity p ∈ S, then α+
Rp

is

the longest root in the root system Rp with respect to the root basis given by exceptional

curves in the fibre of p. It also equals the cohomology class of the fundamental cycle Zp
as defined by Artin [1].
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Theorem 2.1 — Let S be a cubic surface with at most rational double point singularities.

Then

Hilbgtc(S)red
∼=

∐
B∈R/W(R0)

|OS̃(α−B − K̃)| ∼= (R/W(R0))× P2.

Moreover, an orbit B corresponds to families of non-CM or aCM-curves depending on

whether B contains effective roots or not. The generic curve in a linear system of aCM

curves is smooth.

Some components of Hilbgtc(S) can be non-reduced, as can be easily seen from the fact

that the morphism Hilbgtc(Y ) → G is ramified along the divisor in G that corresponds to

singular surfaces. For the purpose of this article there is no need to discuss this question in

any detail.

We will prove the theorem in several steps.

Proposition 2.2 — 1. Let C ⊂ S be a generalised twisted cubic, and let C̃ = σ−1(C) ⊂
S̃ denote the scheme theoretic inverse image. Then C̃ is an effective divisor such that

the class of C̃ + K̃ is a root in R. This root is the maximal root in its orbit. Moreover,

σ∗OC̃ = OC .

2. Conversely, let α be a maximal root and let C̃ ∈ |α − K̃|. Then C := σ(C̃) ⊂ S is a

subscheme with Hilbert polynomial 3n+ 1.

Proof. Ad 1: Let I ⊂ OS and Ĩ ⊂ OS̃ denote the ideal sheaves of C and C̃, respec-

tively, so that σ∗I � Ĩ and I ⊂ σ∗Ĩ . For any singular point p ∈ S, there is an

open neighbourhood U and an epimorphism OnU � I|U . This induces surjective maps

OnV → σ∗I|V → Ĩ|V on a neighbourhood V = σ−1(U) of the fibre σ−1(p). As σ has

at most 1-dimensional fibres, all second or higher direct images of coherent sheaves on S̃

vanish, and pushing down the epimorphism OnV → Ĩ|V along σ yields an epimorphism

(R1σ∗OS̃)n|U → R1σ∗Ĩ|U . Since S has rational singularities, R1σ∗OS̃ = 0 and so

R1σ∗Ĩ = 0. This implies that in the following commutative diagram both rows are exact,

that α is injective and that β is surjective:

(2.1)

0 −→ σ∗Ĩ −→ σ∗OS̃ −→ σ∗OC̃ −→ 0

α

x ∥∥∥ β

x
0 −→ I −→ OS −→ OC −→ 0

The homomorphism β is generically an isomorphism. If C has no embedded points, β is

an isomorphism everywhere. In this case C̃ cannot have embedded points either as they

would show up as embedded points in σ∗OC̃ . Hence C̃ is an effective divisor.

If on the other hand C has an embedded point at p then C is a non-CM curve, and

it follows from the global structure of such curves that p is a singular point of S, say

with ideal sheaf m, and that I is of the form m · OS(−H) for a hyperplane section H

through p. Let Zp denote the fundamental cycle supported on the exceptional fibre σ−1(p).

By Artin’s Theorem 4 in [1], σ∗m · OS̃ = OS̃(−Zp) and σ∗OS̃(−Zp) = m, so that

Ĩ = OS̃(−Zp − σ∗H) and I = σ∗Ĩ .
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Thus C̃ is always an effective divisor and σ∗OC̃ = OC . Since Riσ∗OS̃ = 0 and

Riσ∗Ĩ = 0 for i > 0 one also gets Riσ∗OC̃ = 0 for i > 0, and χ(OC̃) = χ(OC) = 1.

Since C̃.(−K̃) = C.H = 3, an application of the Riemann-Roch-formula gives (C̃)2 =

1 and hence (C̃ + K̃).K̃ = 0 and (C̃ + K̃)2 = −2. This shows that α := C̃ + K̃ is a

root in the lattice Λ. Since the ideal sheaf Ĩ = OS̃(−C̃) = OS̃(−α + K̃) is generated

by global sections in a neighbourhood of every effective (−2)-curve E one gets α.E =

−deg(Ĩ|E) ≤ 0. This shows that α is the maximal root of its orbit.

Ad 2: Taking direct images of 0 → OS̃(−C̃) → OS̃ → OC̃ → 0 one gets an exact

sequence 0 → IC → OS → π∗OC̃ → R1σ∗OS̃(−C̃) → 0, where IC is the ideal sheaf

of C, and all other higher direct image sheaves vanish. As α is maximal, the restriction

of OS̃(−C̃) to any exceptional curve has non-negative degree. Let Z denote the sum of

the fundamental cycles of all exceptional fibres. According to [1], Lemma 5, one has

H1(Z,OS̃(−C̃ −mZ)) = 0 for all m ≥ 0, and the Theorem on Formal Functions [15],

Prop. III.4.2.1, now yields R1σ∗(OS̃(−C̃)) = 0 and thus σ∗OC̃ = OC . It follows that

χ(OC(nH)) = χ(OC̃(−nK̃)) = χ(OS̃(−nK̃))− χ(OS̃(−C̃ − nK̃))

= 1
2

(
n(n+ 1)K̃2 − (−C̃ − nK̃)(−C̃ − (n+ 1)K̃)

)
= 1

2

(
− C̃2 + (2n+ 1)C̃(−K̃)

)
= 3n+ 1.

�

The intersection product of an irreducible curve D ⊂ S̃ with −K̃ can only take the

following values: Either (−K̃) ·D = 0, in which case D is an exceptional (−2)-curve, or

(−K̃) ·D = 1, which implies that the image of D in S is a line, so that D itself must be a

smooth rational curve with D2 = −1, or, finally, (−K̃) ·D ≥ 2 and D2 ≥ 0.

Lemma 2.3 — If α is a minimal root, then (α− K̃) · F ≥ 0 for every effective divisor F

with F · (−K̃) ≤ 1.

Proof. F is the sum of (−2)-curves and at most one (−1)-curve. As α is minimal it

intersects each (−2)-curve non-negatively. It suffices to treat the case that F is a (−1)-

curve. But then u = 1
3K̃ + F lies in Λ⊗Q with u2 = − 4

3 . Now (α− K̃).F = α · u+ 1,

so by Cauchy-Schwarz we get (α− K̃).F ≥ 1−
√

2
√

4
3 > −

2
3 . But the left hand side is

an integer. �

Lemma 2.4 — Let α be a minimal root. Then the linear system |α−K̃| is two-dimensional

and base point free. In particular, the generic element in |α−K̃| is a smooth rational curve.

Proof. Let Lα = OS̃(α − K̃). Since (2K̃ − α) · (−K̃) = −6 < 0, the divisor 2K̃ − α
cannot be effective. This shows that h2(Lα) = h0(O(2K̃−α)) = 0. Any irreducible curve

D with 0 > deg L(α)|D = (α − K̃)D must be a fixed component of the linear system

|α − K̃| satisfying D2 < 0 and hence D(−K̃) ≤ 1. But this contradicts Lemma 2.3.

Hence Lα is nef and even big, and a fortiori Lα(−K̃) is as well. The Kawamata-Viehweg

Vanishing Theorem now implies that h1(Lα) = 0, and Riemann-Roch gives h0(Lα) = 3.
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Suppose that F is the fixed component of |α − K̃| and M a residual irreducible curve.

Then M is effective and nef, and M − K̃ is big and nef. This implies that hi(O(M)) = 0

for i > 0 and χ(O(M)) = h0(O(M)) = h0(Lα) = 3. Now Riemann-Roch gives

M2 = 4 − M(−K̃) = 1 + F (−K̃) ≥ 1. As M cannot be a (−1) or (−2) curve,

we have M(−K̃) ≥ 2 and F (−K̃) ≤ 1. By Lemma 2.3 we get 1 = (α − K̃)2 =

(α − K̃)F + FM + M2 ≥ M2. This shows in turn M2 = 1, FM = 0, F 2 = 0 and

F (−K̃) = 0. Since Λ is negative definite, F = 0. This shows that |α − K̃| has no fixed

component.

Since (α − K̃)2 = 1, there is at most one base point p. If there were such a point,

consider the blow-up Ŝ → S̃ at p with exceptional divisor E. The linear system −K̂ =

−K̃ −E is effective, big and nef, and since |α− K̃ −E| has not fixed components either,

another application of the Kawamata-Viehweg Vanishing Theorem gives the contradiction

C = H0(E,O(α− K̃)|E) ↪→ H1(Ŝ,O(α− K̃ − E)) = 0.

The smoothness of a generic curve in the linear system follows from Bertini’s theorem.

�

Proposition 2.5 — Let α ∈ R \ R0, and let α+ and α− denote the maximal and the

minimal root, resp., of its orbit.

(1) The linear system |α − K̃| is independent of the choice of α in its W (R0)-orbit.

More precisely, the differences e+ = α+ − α and e− = α − α− are sums of

(−2)-curves, and the multiplication by these effective classes gives isomorphisms

|α− − K̃| e−−−→ |α− K̃| e+−−→ |α+ − K̃|.

In particular, dim |α− K̃| = 2. The linear system |α− − K̃| is base point free.

(2) For every curve C̃ ∈ |α− − K̃| one has C := σ(C̃) = σ(C̃ + e−), and C is a

generalised twisted cubic.

(3) The image C = σ(C̃) of a generic curve C̃ ∈ |α− K̃| is smooth.

Proof. As before, let Lα = OS̃(α− K̃).

Assume first that α− 6= α+, and let β be any root from the orbit of α, different from

α−. Then there is an effective root αi such that β.αi ≤ −1. In fact, β.αi = −1, since

β.αi = −2 implies β = αi contradicting the assumption that no root of the orbit of α

is effective. Let β′ = β − αi = si(β) be the root obtained by reflecting β in αi. Now

multiplication with the equation of the exceptional (−2)-curve Ei gives an exact sequence

0 → Lβ′ → Lβ → Lβ |Ei → 0. Since Lβ |Ei = OEi(−1) has no cohomology, one gets

hi(Lβ′) = hi(Lβ) for all i. In particular, |Lβ′ | → |Lβ | is an isomorphism. If C̃ ∈ |Lβ′ |,
there is an exact sequence

0→ OS̃(−C̃ − Ei)→ OS̃(−C)→ OEi
(−1)→ 0,

so that the ideal sheaves σ∗(OS̃(−C̃−Ei)) = σ∗(OS̃(−C)) ⊂ OS define the same image

curve σ(C̃ + Ei) = σ(C̃). Replacing β by β′ subtracts a fixed component from the linear
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system |Lβ |. Iterations of this step lead in finitely many steps to the minimal root α−. The

argument can be reversed to move in the opposite direction from β to α+.

Hence all roots in the W (R0)-orbit of α define isomorphic linear systems and the same

family of subschemes in S. Of course, if α− = α+, this is true as well.

Taking α = α+, it follows from Proposition 2.2 that these subschemes are generalised

twisted cubics. Taking α = α−, it follows from Lemma 2.4 that the linear system is two-

dimensional and that the generic curve C̃ ∈ |Lα− | is smooth. If p ∈ S is any singular

point and Rp ⊂ R0 ⊂ R the corresponding root system, the pre-image σ−1(p) equals the

effective divisor corresponding to the maximal root α+
Rp

. As α−.α+
Rp

can only take the

values 0 or 1, the curve C := σ(C̃) has multiplicity 0 or 1 at p. Hence p is a smooth point

of C or no point of C at all. As σ is birational off the singular locus of S, the scheme C is

a smooth curve. �

The situation for effective roots is slightly different:

Proposition 2.6 — Let p ∈ S be a singular point, let Rp ⊂ R0 ⊂ R denote the corre-

sponding irreducible root system with maximal root α+ and minimal root α− = −α+. Let

α ∈ Rp be an effective root.

(1) The difference e := α+ − α is effective. Multiplication with the effective classes

e, α, and e, resp., induces the following isomorphisms

P2 ∼= |α− − K̃|
∼=−→ | − α− K̃| ( P3 ∼= | − K̃|

∼=−→ |α− K̃|
∼=−→ |α+ − K̃|.

(2) For every curve C̃ ∈ |α− − K̃|, the image C = σ(C̃ + 2Zp) is a generalised

twisted cubic in S with an embedded point at p, and every non aCM-curve C ⊂ S
with an embedded point at p arises in this way.

Proof. As long as β ∈ Rp is a non-effective root the first part of the proof of the previous

proposition still holds and shows that β − α− is effective, represented, say, by a curve E′,

that multiplication withE′ defines an isomorphism |α−−K̃| → |β−K̃| and that for every

curve C̃ ∈ |α− − K̃| the divisors C̃ and C̃ + E have the same scheme theoretic image in

S. The same method shows that for every effective root β ∈ Rp the linear systems |β− K̃|
and |α− − K̃| are isomorphic and give the same family of subschemes in S.

Multiplication by the fundamental cycle Zp (of class α+) defines an embedding of the

two-dimensional linear system |−α−−K̃| into the three-dimensional linear system |−K̃|
of hyperplane sections with respect to the contraction σ : S̃ → S ⊂ P3. The image of the

embedding is the linear subsystem of hyperplane sections through p. Let C̃ be any curve in

the linear system |α−−K̃|. Its imageC0 = σ(C̃) is a hyperplane sectionC0 = H∩S for a

hyperplane H through p. Then C̃ and C̃+Zp have the same image C, but σ(C+2Zp) has

an additional embedded point at p. By Proposition 2.2, the image is a generalised twisted

cubic, necessarily of non-CM type. �

The Propositions 2.5 and 2.6 together imply Theorem 2.1.
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2.2. Cubic surfaces with a simple-elliptic singularity. Simple-elliptic singularities were

introduced and studied in general by Saito in [30] and further studied by Looijenga [26]. A

cubic surface with a simple-elliptic singularity is a cone over a smooth plane cubic curve

E ⊂ P2 ⊂ P3 with a vertex p ∈ P3 \ P2. The type of such a simple-elliptic singularity is

denoted by Ẽ6.

In appropriate coordinates x0, . . . , x3 the surface S is given by the vanishing of g =

x3
1 + x3

2 + x3
3 − 3λx1x2x3 for some parameter λ ∈ C, λ3 6= 1. The same equation defines

a smooth elliptic curve E in the plane {x0 = 0}, and S is the cone over E with vertex p =

[1 : 0 : 0 : 0]. The parameter λ determines the j-invariant of the curve E. The Jacobian

ideal of g in the local ringOS,p is generated by the quadrics x2
1−λx2x3, x2

2−λx1x3, x2
3−

λx1x2. The monomials 1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3 form a basis ofOS,p/J(g)

and hence of the tangent space to the deformation space of the singularity. Since the total

degree of all monomials is ≤ 3, all deformations are realised by deformations of g in

the space of cubic polynomials. This shows that B is the base of a versal deformation

for the singularity of S. Note that although the Milnor ring OS,p/J(g) is 8-dimensional

the stratum B(Ẽ6) has codimension 7 since the parameter corresponding to the monomial

x1x2x3 only changes the isomorphism type of the elliptic curve.

Proposition 2.7 — Let S ⊂ P3 be the cone over a plane elliptic curve E with vertex p.

Then

Hilbgtc(S)red
∼= Sym3(E) = E3/S3,

the third symmetric product of E. If q = [q1 + q2 + q3] ∈ Sym3(E) is not a collinear

triple, the corresponding generalised twisted cubic is the union of the three lines connecting

p with each qi. If q = E ∩H for a hyperplane H through p, the generalised twisted cubic

is H ∩ S with an embedded point at p. The addition map Sym3(E) → E is a P2-bundle,

and the non-CM curves in Hilbgtc(S) form the fibre over the zero element 0 ∈ E.

Proof. The only irreducible rational curves on S are lines connecting the vertex p with

a point q ∈ E. Let C be the union of three such lines over possibly coinciding points

q1, q2, q3 ∈ E. The Hilbert polynomial of C is 3n + 1 unless the points are collinear: the

Hilbert polynomial then drops by one to 3n. In this case, one has to augment C by an

embedded point at p. �

2.3. Non-normal integral cubic surfaces. Assume that the cubic surface S is irreducible

and reduced, but not normal. Then S is projectively equivalent to one of four surfaces

given by the following explicit equations:

X6 = {t20t2 + t21t3 = 0}, X7 = {t0t1t2 + t20t3 + t31 = 0},
X8 = {t31 + t32 + t1t2t3 = 0}, X9 = {t31 + t22t3 = 0}.

The labelling is chosen in such a way that in each case the stratum B(Xn) is a single

PGL4-orbit of codimension n in B. Moreover, each Xm lies in the closure the orbit of

Xm−1.
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In fact, the mutual relation between these strata can be made explicit: Both B(X9)

and B(X6) are smooth. A slice F in B(X6) to B(X9) through the point X9 is three-

dimensional. One such slice, or more precisely, the family of non-normal surfaces param-

eterised by it, is

f̃ = t31 + t22t3 + at21t3 + bt0t1t2 + ct0t
2
1, (a, b, c) ∈ C3.

The discriminant of this family is ∆ = ab2 + c2. One obtains the following stratification:

f̃a,b,c defines a surface isomorphic to
X9,

X8,

X7,

X6,

if


a = b = c = 0,

a 6= 0, b = c = 0,

∆ = 0, b 6= 0,

∆ 6= 0.

In particular, there are three different types of X6 surfaces over the real numbers corre-

sponding to the components of the complement of the Whitney-umbrella {∆ = 0}.
We will now describe Hilbgtc(X8); the other cases can be treated similarly. The surface

S = X8 is a cone in P3 over a plane nodal cubic. Its normalisation S̃ is a cone in P4

over a smooth twisted cubic B in a hyperplane U ⊂ P3. Let v denote the vertex of S̃. The

normalisation morphism ν : S̃ → S is the restriction to S̃ of a central projection P4 99K P3

with centre in a point c on a secant line L of B. Finally, let Ŝ → S̃ denote the minimal

resolution of the singularity of S̃. The exceptional curve E is a rational curve with self

intersection −3, and Ŝ is isomorphic to Hirzebruch surface F3. Lines in S̃ through the

vertex v correspond to fibres F of the ruling Ŝ → P1, and both E and B are sections to

this fibration. Any generalised twisted cubic on S when considered as a cycle, arises as

the image of a divisor on Ŝ of degree 3 with respect to E + 3F . Now, the only irreducible

curves of degree ≤ 3 on Ŝ belong to the linear systems |E|, |F |, |E + 3F | (cf. [18]). As

E is contracted to a point in S̃, it suffices to consider the curves in |E + 3F | =: P ∼= P4.

Note that P is the dual projective space to the P4 containing S̃. The images in S̃ of the

the curves in the linear system |E + 3F | are exactly the hyperplane sections. Let T ⊂ P4

denote the plane through the line L and the vertex v, and let T⊥ ⊂ P denote the dual line.

The plane T intersects S̃ in two lines F0 and F∞ which are glued to a single line F ′ in S

by the normalisation map. So far we have identified the underlying cycles of a generalised

twisted cubics on S as images of hyperplane sections of S̃: they are parameterised by P .

In order to get the scheme structures as well, we need to blow-up P along T⊥. The fibres

of the corresponding fibration P ′ := BlT⊥(P ) → T ∗ have the following description: If

[M ] ∈ T ∗ is represented by a line M ⊂ T , the fibre over [M ] is the P2 of all hyperplanes

in P4 that contain T . It is clear that the families of hyperplanes through the lines F0

and F∞ parameterise the same curves in S. Identifying [F0] and [F∞] in T ∗ and the

corresponding fibres in P ′ we obtain non-normal varieties T † := T ∗/ ∼ and P †/ ∼ with

a natural P2-fibration P † → T †. It is not difficult to explicitly describe the family of curves

parameterised by P †: We may choose coordinates z0, . . . , z4 for P4 in such a way that S̃
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is the vanishing locus of the minors of the matrix ( z1 z2 z3z2 z3 z4 ) and c = [0 : 1 : 0 : 0 : −1].

Let the central projection be given by xi = zi for i = 0, 2, 3 and x1 = z1 + z4, so that

S = {g = 0} with g = x1x2x3−x3
2−x3

3. For a generic choice of [a] ∈ P , the hyperplane

{a0z0 + . . . + a4z4 = 0} produces a curve in S̃ defined by the equation g = 0 and the

vanishing of the minors of(
a0x0 + a4x1 + a2x2 + a3x3 x2

1
2 (a4 − a1)x3

1
2 (a4 − a1)x2 x3 −a0x0 − a1x1 − a2x2 − a3x3

)
.

This fails to give a curve only if a0, a1 and a4 vanish simultaneously, i.e. along T⊥ ⊂ P ,

and is corrected by the blowing-up of P along T⊥. The identification in P ′ that produces

P † is in these coordinates given by [0 : 0 : a2 : a3 : a4] 7→ [0 : 2a2 : a3 : 1
2a4 : 0], and it

is easy to see that corresponding matrices yield equal subschemes in S. We infer:

Proposition 2.8 — Hilbgtc(X8)red is isomorphic to the four-dimensional non-normal pro-

jective variety P †. �

Similar calculations can be done for the other non-normal surfaces. In fact, for the proof

of the main theorems we only need the dimension estimate dim(Hilbgtc(Xm)) ≤ 4 for

m = 6, 7, 8, 9, and this result can be obtained much simpler without studying the Hilbert

schemes themselves using Corollary 3.11.

§3. MODULI OF LINEAR DETERMINANTAL REPRESENTATIONS

This section is the technical heart of the paper. There is a close relation between gen-

eralised twisted cubics on a cubic surface and linear determinantal representations of that

surface as we will explain first. This motivates the construction of various moduli spaces

using Geometric Invariant Theory as a basic tool.

Fix a three-dimensional projective space P(W ). We will first recall a construction of

Ellingsrud, Piene and Strømme [14] of the Hilbert scheme H0 of twisted cubics in P(W )

in terms of determinantal nets of quadrics. We will then adapt their method to construct a

moduli space of determinantal representations of cubic surfaces in P(W ), and establish the

relation between these two moduli spaces. The main intermediate result is the construction

of a P2-fibration for the Hilbert scheme of generalised twisted cubics for the universal

family of integral cubic surfaces (Theorem 3.13).

Every step in the construction will be equivariant for the action of GL(W ) and will

therefore carry over to the relative situation for the projective bundle a : P(W) → G
where O6

G → W is the tautological quotient of rank 4 over the Grassmannian variety

G = Grass(C6, 4). The ground is then prepared for passing to the particular case of the

family of cubic surfaces over G defined by the cubic fourfold Y ⊂ P5.

Beauville’s article [5] gives a thorough foundation to the topic of determinantal and

pfaffian hypersurfaces with numerous references to both classical and modern treatments

of the subject.
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3.1. Linear determinantal representations. Let S = {g = 0} ⊂ P3 = P(W ) be an

integral cubic surface and let C ⊂ S be a generalised twisted cubic. We saw earlier that

the homogeneous ideal IC of C is generated by the minors of a 3 × 2-matrix A0 with

coefficients in W ∼= C4 if C is an aCM-curve. As the cubic polynomial g ∈ S3W that

defines S must be contained in IC , it is a linear combination of said minors and hence can

be written as the determinant of a 3× 3-matrix

(3.1) A =
(
A0

∣∣∣ ∗∗∗) .
As any two such representations of g differ by a relation among the minors ofA0, it follows

from the resolution (1.1) that the third column is uniquely determined by A0 up to linear

combinations of the first two columns. Such a matrix A with entries in W and det(A) =

g is called a linear determinantal representation of S or g. Conversely, given a linear

determinantal representationA of g, any choice of a two-dimensional subspace in the space

generated by the column vectors of A gives a 3× 2-matrix A′0. We will see in Section 3.4)

that A′0 is always sufficiently non-degenerate to define a generalised twisted cubic. In this

way every generalised twisted cubic of aCM-type sits in a natural P2-family of such curves

on S regardless of the singularity structure of S or C.

If on the other hand C is not CM the situation is similar but slightly different: the ideal

IC is cut out by g and the minors of a matrix At0 =
(

0 −x0 x1
x0 0 −x2

)
. This matrix may be

completed to a skew-symmetric matrix as follows:

(3.2) A =
( 0 x0
−x0 0
x1 −x2

∣∣∣−x1
x2
0

)
.

Any A′0 with linearly independent vectors from the space of column vectors of A defines

a non-CM curve on S as before. In fact, the P2-family is in this case much easier to see

geometrically: Let p = {x0 = x1 = x2 = 0} denote the point defined by the entries of

A, necessarily a singular point of S. Then curves in the P2-family simply correspond to

hyperplane sections through the point p.

The P2-families of generalised twisted cubics that arise in this way from 3× 3-matrices

provide a natural explanation for the appearance of the P2-components of Hilbgtc(S), if S

has at most rational double points, and for the P2-fibration Hilbgtc(S) ∼= Sym3(E)→ E,

if S has a simple-elliptic singularity. We will exploit this idea further by constructing

moduli spaces of determinantal representations in the next section.

We end this section by making the connection between the structure of Hilbgtc(S) and

the set of essentially different determinantal representations of S if S is of ADE-type. Here

two matrices A and A′ are said to give equivalent linear determinantal representations if A

can be transformed into A′ by row and column operations.

Let S be a cubic surface with at most rational double points. According to the previ-

ous discussion, essentially different determinantal representations correspond bijectively

to families of generalised twisted cubics of aCM-type on S. We have seen in Theorem 2.1

that these are in natural bijection with W (R0) orbits on R \R0.
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R0 Type # R0 Type # R0 Type #

∅ I 72 4A1 XVI 13 A1 + 2A2 XVII 6

A1 II 50 2A1 +A2 XIII 12 A1 +A4 XIV 4

2A1 IV 34 A1 +A3 X 10 A5 XI 4

A2 III 30 2A2 IX 12 D5 XV 2

3A1 VIII 22 A4 VII 8 A1 +A5 XIX 1

A1 +A2 VI 20 D4 XII 6 3A2 XXI 2

A3 V 16 2A1 +A3 XVIII 5 E6 XX 0

Table 1: Numbers of inequivalent linear determinantal representations of cubic surfaces of

given singularity type.

This leads to the data in Table 1: For a surface with at most rational double points the

first column gives the Dynkin type of R0 or equivalently, the configuration of singularities

of S, the second column the type notation used by Dolgachev ([10], Ch. 9) and the third

column the number of W (R0)-orbits on R \ R0. The table can easily be computed with

any all purpose computer algebra system.

Here are two examples:

Example 3.1. (3A2 singularities) — Let p0, p1, p2 ∈ P2 denote the points corresponding

to the standard basis in C3. Consider the linear system of cubics through all three points

that are tangent at pi to the line pipi+1 (indices taken mod 3). A basis for this linear system

is z0 = x0x
2
1, z1 = x1x

2
2, z2 = x2x

2
0 and z3 = x0x1x2. The image of the rational map

P2 99K P3 is the cubic surface S with the equation f = z0z1z2 − z3
3 = 0. It has three A2-

singularities at the points q0 = [1 : 0 : 0 : 0], q1 = [0 : 1 : 0 : 0] and q2 = [0 : 0 : 1 : 0].

The reduced Hilbert scheme Hilbgtc(S)red consists of five copies of P2. Three of them are

given by the linear systems |OS(−qi)|, i = 0, 1, 2, and correspond to non-CM curves with

an embedded point at qi. The remaining two components correspond to the 2 orbits listed in

the table above. Representatives of these orbits are obtained by taking the strict transforms

L andQ of a general line L′ and a general quadricQ′ through p0, p1 and p2. To be explicit,

takeL′ = {x0+x1+x2 = 0} and its Cremona transformQ′ = {x0x1+x1x2+x2x0 = 0}.
The corresponding ideals then are IL = (z0(z2+z3)+z2

3 , z1(z0+z3)+z2
3 , z2(z1+z3)+z2

3)

and IQ = (z0(z1 + z3) + z2
3 , z1(z2 + z3) + z2

3 , z2(z0 + z3) + z2
3) and differ only by the

choice of a cyclic order of the variables z0, z1 and z2. Both L and Q are smooth twisted

cubics that pass through all three singularities. They lead to the following two essentially

different determinantal representations of the polynomial f :

f = det
( 0 −z3 z0

z1 0 −z3
−z3 z2 0

)
= det

( 0 −z3 z0
z2 0 −z3
−z3 z1 0

)
Example 3.2. (4A1 singularities) — Let `0, `1, `2, `3 be linear forms in three variables

that define four lines in P2 in general position (i.e. no three pass through one point) and

such that
∑
i `i = 0. The linear system of cubics through the six intersection points has a

basis consisting of monomials zi =
∏
j 6=i `j for i = 0, . . . , 3. The image of the induced
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rational map P2 99K P3 is a cubic surface S with the equation

f = z1z2z3 + z0z2z3 + z0z1z3 + z0z1z2

and with four A1-singularities that result from the contraction of the four lines. An explicit

calculation shows that there are 17 root orbits of different lengths. They correspond to

families of twisted cubics on S as follows: the transform H of a general line in P2 gives a

twisted cubic on S passing through all four singularities. It corresponds to the unique orbit

of length 16 and yields the following determinantal representation.

f = det
( 0 z0+z3 z0
z1+z2 0 z1
z2 z3 0

)
Despite the apparent asymmetry the matrix is in fact symmetric with respect to all variables

up to row and column operations. Now there are 16 possible choices of non-collinear

triples out of the 6 intersection points of the four lines. For each triple take a general smooth

conic through these points. There are four triples that form the vertices of a triangle of lines.

These yield plane curves in S that pass twice through the singularity corresponding to the

line not in the triangle: the associated generalised twisted cubics are non-CM and do not

lead to linear determinantal representations. They account for four orbits of effective roots

of length 2. The remaining 12 triples of points yield families of twisted cubics that pass

through any two out of the four singularities. These families account for the remaining 12

inequivalent linear determinantal representations and correspond to root orbits of length 4.

3.2. Kronecker modules I: twisted cubics. Let the group GL3×GL2 act on U0 :=

Hom(C2,C3 ⊗W ), with W ∼= C4, by

(3.3) (g, h) ·A0 = (g ⊗ idW )A0h
−1.

We will think of homomorphisms A0 ∈ U0 as 3 × 2-matrices with values in W and write

simply A0 7→ gA0h
−1 for the action. The diagonal subgroup ∆0 = {(tI3, tI2) | t ∈ C∗}

acts trivially, so that the action factors through the reductive groupG0 = GL3×GL2 /∆0.

We are interested in the invariant theoretic quotient Uss0 //G0. For an introduction to geo-

metric invariant theory see any of the standard texts by Mumford and Fogarty [27] or

Newstead [28]. In the given context, the conditions for A0 to be semistable resp. stable

were worked out by Ellingsrud, Piene and Strømme. The general case for arbitrary W and

arbitrary ranks of the general linear groups was treated by Drezet [11] and Hulek [20]. We

refer to these papers for proofs of the following lemma and of Lemma 3.4.

Lemma 3.3 — A matrixA0 ∈ U0 is semistable if and only if it does not lie in theG0-orbit

of a matrix of the form

(3.4)
( ∗ ∗

0 ∗
0 ∗

)
or

( ∗ ∗
∗ ∗
0 0

)
In this case, A0 is automatically stable. The isotropy subgroup of any stable matrix is

trivial. �
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Let Us0 = Uss0 ⊂ U0 denote the open subset of stable points. Then

X0 := Us0 //G0

is a 12-dimensional smooth projective variety, and the quotient map

q0 : Uss0 → X0

is a principalG0-bundle. There is a universal family of maps a0 : F0 → E0⊗W , where F0

and E0 are vector bundles of rank 2 and 3, respectively, on X0 with det(F0) = det(E0).

Moreover, Λ2a0 : E0 → S2W is an injective bundle map and defines a closed embedding

X0 → Grass(3, S2W ) into the Grassmannian of nets of quadrics on P(W ), see [14].

Let I0 ⊂ P(W ) × P(W ∗) denote the incidence variety of all pairs (p, V ) consisting of

a point p = {x0 = x1 = x2} on a hyperplane V = {x0 = 0}. Sending (p, V ) to the

net (x2
0, x0x1, x0x2) defines a map I0 → Grass(3, S2W ). Ellingsrud, Piene and Strømme

show that I0 is a closed immersion, that it factors through X0, and that the Hilbert scheme

H0 of twisted cubics on P3 is isomorphic to the blow-up of X0 along I0. Finally, under the

isomorphism H0
∼= BlI0(X0), the divisor J0 = H0 ∩H1 is identified with the exceptional

divisor. We let π0 : H0 → X0 denote the contraction of J0.

J0 −→ H0y yπ0

I0 −→ X0

3.3. Kronecker modules II: determinantal representations. The reductive group G =

GL3×GL3 /∆, with ∆ = {(tI3, tI3) | t ∈ C∗}, acts on the affine space

U = Hom(C3,C3 ⊗W )

with the analogous action by (g, h).A := gAh−1. In contrast to the case of 3× 2-matrices

the notions of stability and semistability differ here. Again, this is a special case of a more

general result of Drezet and Hulek.

Lemma 3.4 — A matrix A ∈ U is semistable if it does not lie in the G-orbit of a matrix

of the form

(3.5)
(

0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

)
or

( ∗ ∗ ∗
0 0 ∗
0 0 ∗

)
or

( ∗ ∗ ∗
∗ ∗ ∗
0 0 0

)
and is stable if it does not lie in the G-orbit of a matrix of the form

(3.6)
( ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
or

( ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

)
The isotropy subgroup of any stable matrix is trivial. �

Consequently, the quotient

X := Uss //G

is an irreducible normal projective variety of dimension dimX = dimU − dimG = 19.

The stable part Xs = Us //G is a smooth dense open subset, and the quotient

qs : Us → Xs
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is a principal G-bundle. The character group of G is generated by χ : G→ C∗, χ(g, h) =

det(g)/det(h), and the trivial line bundle OU (χ), endowed with the G-linearisation de-

fined by χ, descends to the ample generator LX of Pic(X).

The tautological homomorphism aU : O3
U → O3

U ⊗ W induces a map det(aU ) :

OU (−χ) → OU ⊗ S3W that descends to a homomorphism det : L−1
X → OX ⊗ S3W ,

which in turn induces a rational map det : X 99K P(S3W ∗). We need to understand the

degeneracy locus of this map.

Proposition 3.5 — Let A ∈ Uss be a semistable matrix and consider its determinant

det(A) ∈ S3W ∗.

(1) If A is semistable but not stable then det(A) is a non-zero reducible polynomial.

(2) If det(A) = 0, then A is stable and is conjugate under the G-action to a skew-

symmetric matrix.

Lemma 3.6 — LetB be a matrix with values in a polynomial ring over a field. If rk(B) ≤
1, i.e. if all 2×2-minors ofB vanish, there are vectors u and v with values in the polynomial

ring such that B = vut. If all entries of B are homogeneous of the same degree then the

same is true for both u and v.

Proof. We may assume that B has no zero columns. Extracting from each column its

greatest common divisor we may further assume that each column consists of coprime

entries. As all columns are proportional over the function field we find for each pair of

column vectors Bi and Bj coprime polynomials gi and gj such that gjBi = giBj . As gi
and gj are coprime, gi must divide every entry of Bi. Hence gi is unit, and for symmetry

reasons gj is as well. Therefore all columns of B are proportional over the ground field.

The last assertion follows easily. �

Proof of Proposition 3.5.

1. Assume first that A is semistable but not stable. Replacing A by another matrix from its

orbit we may assume that

(3.7) A =
( ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
or A =

( ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

)
.

It is clear that det(A) factors into a linear and a quadric polynomial in S∗W . If det(A) =

0, either the linear or the quadratic factor must vanish. If the linear factor vanishes A has

a trivial row or column, which contradicts its semistability. If the quadratic polynomial

vanishes, the lower right respectively upper left 2 × 2-block B satisfies det(B) = 0.

According to Lemma 3.6, appropriate row or column operations will eliminate a row or

column of B. This contradicts again the semistability of A.

2. Let A be a stable matrix with det(A) = 0 and let C = adj(A) ∈ (S2W )3×3 denote

its adjugate matrix. So Cij = (−1)i+jdet(Aji) where Aji is the matrix obtained from A

by erasing the j-th row and the i-th column. If det(Aji) were 0, the rows or columns of

Aji would be C-linearly dependent according to Lemma 3.6. Row or column operations

applied to A would produce a row or a column with at least two zeros, contradicting the
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stability of A. This shows that all entries of C are non-zero, and this holds even after

arbitrary row and column operations on C, since such operations correspond to column

resp. row operations on A. In particular, all columns and all rows of C contain C-linearly

independent entries. Since adj(C) = det(A)A = 0, one has rk(C) ≤ 1. By Lemma 3.6,

there are homogeneous column vectors u, v ∈ S∗W such that C = uvt. Since the entries

of the rows and columns of C are C-linearly independent, u and v must have entries of

degree 1, and these must be linearly independent for each vector. In an appropriate basis

x0, x1, x2, x3 of W we may write u = (x2 x1 x0)t. Since the entries of u form a regular

sequence their syzygy module is given by the Koszul matrix K =
( 0 x0 −x1
−x0 0 x2
x1 −x2 0

)
. Since

AC = 0 implies Au = 0, it follows that A = MK for some M ∈ C3×3. Finally, since the

columns of A are C-linearly independent because of the stability of A, the transformation

matrix M must be invertible, and A ∼G K as claimed. �

The proposition allows for a simple stability criterion in terms of the determinant:

Corollary 3.7 — For any A ∈ U the following holds:

(1) If det(A) 6= 0, then A is semistable.

(2) If det(A) is irreducible, then A is stable.

(3) If A is stable, then either det(A) 6= 0 or A is in the G-orbit of a skew-symmetric

matrix.

�

We continue the discussion of the rational map det : X 99K P(S3W ∗). The following

commutative diagram is inserted here as an optical guide through the following arguments.

The notation will be introduced step by step.

(3.8)

Hom′(C3,W )
∼= //

// GL3 ''

T ss

// Γ

��

// Uss⊂ Hom(C3,C3 ⊗W )

//G

��
P(W ) // X

det // P(S3W ∗)

P(N ′) = J

σ

OO

// H

σ

OO
δ

::

Consider the splitting U = V ⊕T into the subspaces V = {a ∈ U | at = a} of symmetric

and T = {a ∈ U | at = −a} of skew-symmetric matrices. According to Proposition 3.5,

the smooth closed subset

T ss := T ∩ Uss ⊂ Uss

is in fact contained in the open subset Us of stable points, and its G-orbit G.T ss is the

vanishing locus of the determinant det(aU ) : OUss(−χ) → OUss ⊗ S3W . An element

A ∈ T ss is mapped back to T ss by [g, h] ∈ G if and only if (gAh−1)t = −gAh−1. This

is equivalent to saying that [htg, gth] is a stabiliser of A. Hence h = λ(gt)−1 for some

λ ∈ C∗. In fact, changing h and g by an appropriate scalar, we get [g, h] = [γ, (γt)−1] for
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some γ ∈ GL3, well-defined up to a sign ±1. We conclude that

T ss // Γ = G.T ss //G ⊂ Uss //G = X,

where Γ := GL3 / ± I acts freely on T ss via γ.A = γAγt. Any deformation a ∈ U of

A ∈ T ss can be split into its symmetric and its skew-symmetric part. The skew-symmetric

part gives a tangent vector to T ss at A. Among the symmetric deformations those of

the form uA − Aut, u ∈ gl3
∼= Lie(Γ), are tangent to the G-orbit of A. The bundle

homomorphism

(3.9) ρ : gl3⊗OT ss → V ⊗OT ss , (A, u) 7→ (A, uA−Aut),

is equivariant with respect to the natural action of γ ∈ Γ given by γ.u = γuγ−1 and

γ.a = γaγt and has constant rank 8. The cokernel of ρ therefore has rank 16 and is

isomorphic to the restriction to T ss of the normal bundle of G.T ss in Uss. It descends to

the normal bundle of T ss // Γ in X .

We can look at T ss in a different way that will lead to an isomorphism T ss // Γ ∼=
P(W ) and to an identification of its normal bundle: Let Hom′(C3,W ) denote the open

subset of injective homomorphisms v : C3 → W . The group GL3 acts naturally on

C3, and we consider the induced action on Hom′(C3,W ) given by g.v := v ◦ g−1. The

projection Hom′(C3,W ) → P(W ) is a principal fibre bundle with respect to this action.

The isomorphism

τ : Hom′(C3,W )→ T ss, v 7→


0 v(e3) −v(e2)

−v(e3) 0 v(e1)

v(e2) −v(e1) 0


is equivariant for the group isomorphism

GL3 → Γ = GL3 /± I3, h 7→ h√
det(h)

.

We conclude that P(W ) = Hom′(C3,W ) // GL3
∼= T ss // Γ. The pull-back of the bundle

homomorphism ρ in (3.9) to Hom′(C3,W ) via τ is a homomorphism

ρ̂ : Hom′(C3,W )× gl3 −→ Hom′(C3,W )× V, (v, u) 7→ (v, uτ(v)− τ(v)ut),

that is GL3-equivariant with respect to the adjoint representations on gl3 and the represen-

tation

h.a =
h√

det(h)
a

ht√
det(h)

=
1

det(h)
haht

on V . The trivial bundle Hom′(C3,W ) × C3 descends to the kernel K in the tautolog-

ical sequence 0 → K → W ⊗ OP(W ) → OP(W )(1) → 0 on P(W ). Accordingly, the

homomorphism ρ̂ descends to a bundle homomorphism

ρ̃ : End(K)→ S2K ⊗W ⊗ det(K)−1



22 CH. LEHN, M. LEHN, CH. SORGER, D. VAN STRATEN

on P(W ). Rewriting the first sheaf as End(K) = K ⊗K∗ = K ⊗Λ2K ⊗det(K)−1, this

bundle map is explicitly given by w ⊗ w′ ∧ w′′ ⊗ µ 7→ (ww′ ⊗ w′′ − ww′′ ⊗ w′)⊗ µ. In

particular, the cokernel of ρ̃ is isomorphic to N ⊗ det(K)−1, where

N := im(S2K ⊗C W → OP(W ) ⊗C S
3W )

is the image of the natural multiplication map. From this we conclude:

Proposition 3.8 — The morphism i : P(W ) ∼= T ss // Γ ↪→ X constructed above is an

isomorphism onto the indeterminacy locus of the rational map det : X 99K P(S3W ∗). The

normal bundle of P(W ) inX is isomorphic toN⊗det(K)−1, and i∗(LX) ∼= det(K)−1 ∼=
det(W )−1 ⊗OP(W )(1).

Proof. Only the last statement has not yet been shown. In fact, the composite character

χ′ : GL3

∼=−−→ Γ ↪→ G
χ−−→ C∗ is given by χ′(h) = det( h√

h
)2 = det(h)−1. This

implies i∗LX ∼= det(K)−1. It follows from the exactness of the tautological sequence

0→ K → OP(W )⊗W → OP(W )(1)→ 0 that det(K)−1 ∼= det(W )−1⊗COP(W )(1). �

The one-dimensional vector space det(W ) appears in the proposition in order to keep

all statements equivariant for the natural action of GL(W ). Let

J −→ H

σ

y yσ
P(W ) −→ X

denote the blow-up of X along P(W ) with exceptional divisor J . According to the pre-

vious proposition J = P(N ′), where N ′ := (N ⊗ det(K)−1)∗. Note that the fibre of

σ : J → P(W ) over a point p is exactly the P15-family of cubic surfaces that are singular

at p. The Picard group of H is generated by σ∗LX and OH(J).

Proposition 3.9 — The rational map det : X 99K P(S3W ∗) extends to a well-defined

morphism

δ : H → P(S3W ∗).

Moreover, there are bundle isomorphisms

OH(J)|J ∼= ON ′(−1) and δ∗OP(S3W∗)(1) ∼= σ∗LX ⊗OH(−J).

In view of this proposition we may call H the universal linear determinantal represen-

tation.

Proof. Let p ∈ P(W ) be defined by the vanishing of the linear forms x0, x1, x2 ∈ W . Its

image in X is represented by the skew-symmetric matrix A =
( 0 x0 −x1
−x0 0 x2
x1 −x2 0

)
∈ T ss.

The 16-dimensional vector space

N0 := {a ∈ U | a = at}/{uA−Aut | u ∈ gl3}
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represents a slice transversal to the G-orbit through A, as we have seen before. The differ-

ential of det : U → S3W restricted to A+N0 at A equals

(3.10) (DAdet)(a) = tr(a adj(A)) =
(
x0
x1
x2

)t
a
(
x0
x1
x2

)
.

An explicit calculation now shows that DKdet : N0 → S3W is injective. This implies

that det : X \ P(W ) = H \ J → P(S3W ∗) extends to a morphism δ : H → P(S3W ∗).

The restriction δ|J : J = P(N ′) → P(S3W ∗) is induced by the bundle epimorphisms

OP(N ′) ⊗C S
3W ∗ � σ∗N∗ � ON ′(1)⊗ σ∗det(K)−1, so that

δ∗OP(S3W∗)(1)|P(N ′) = ON ′(1)⊗ σ∗det(K)−1.

There are integers m,m′ such that δ∗OP(S3W∗)(1) = σ∗LmX ⊗OH(J)m
′
. The restriction

to J becomes

δ∗OP(S3W∗)(1)|J = σ∗(LmX |P(W ))⊗OH(J)|m
′

J = det(K)−m ⊗ON ′(−m′).

Comparison of the two expressions for δ∗OP(S3W∗)(1)|J showsm = 1 andm′ = −1. �

Corollary 3.10 — The line bundle OH(J) is ample relative δ : H → P(S3W ∗).

Proof. Let F ⊂ H be a subvariety of a fibre of δ. Then

OF ∼= δ∗OP(S3W∗)(1)|F ∼= σ∗LX |F ⊗OH(−J)|F ,

so thatOH(J)|F ∼= σ∗LX |F . Since δ is an embedding on fibres of σ, the variety F projects

isomorphically into X . Hence σ∗LX |F is ample. �

Corollary 3.11 — For any cubic surface S ⊂ P(W ) the δ-fibre over the corresponding

point [S] ∈ P(S3W ∗) is finite if S has at most ADE-singularities and satisfies the estimate

dim δ−1([S]) ≤ dim Sing(S) + 1,

otherwise.

Proof. The case of surfaces with ADE-singularitites was treated in Section §2. Otherwise,

a point in J encodes a point p ∈ P(W ) together with a cubic surface S that is singular at p.

Hence J ∩ δ−1([S]) is isomorphic to the singular locus of S through projection to P(W ).

Since J is an effective Cartier divisor that is ample relative δ, the intersection with every

irreducible component of δ−1([S]) of positive dimension is non-empty and of codimension

≤ 1 in this component. This implies the asserted inequality. �

3.4. The P2-fibration for the universal family of cubic surfaces. Let

R ⊂ H0 × P(S3W ∗)

denote the incidence variety of all points ([C], [S]) such that the generalised twisted cubic

C is contained in the cubic surface S. Of the two projections α : R → H0 and β : R →
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P(S3W ∗) the first is a P9-bundle by [13], Cor. 2.4, so that R is smooth and of dimension

21. We have arrived at the following set-up:

(3.11)

R

α

P9~~

β

##

H

δ

zz

σ

!!
H0 P(S3W ∗) X .

detoo

Consider the open subset P(S3W ∗)int ⊂ P(S3W ∗) of integral surfaces and the corre-

sponding open subsets

H int = δ−1(P(S3W ∗)int) and Rint = β−1(P(S3W )int).

By part (1) of Proposition 3.5, one has H int ⊂ Hs ⊂ H , where Hs = σ−1(Xs).

For any matrix A ∈ U let res(A) ∈ U0 denote the submatrix consisting of its first two

columns. A comparison of the Lemmas 3.4 and 3.3 shows immediately, that res restricts

to a map res : Us → Us0 . Let P ′ ⊂ GL3 denote the parabolic subgroup of elements that

stabilise the subspace C2 ×{0} ⊂ C3. The parabolic subgroup P = (GL3×P ′)/C∗ ⊂ G
has a natural projection γ : P → G0 through its Levi factor, and res : Us → Us0 is

equivariant with respect to this group homomorphism, i.e. γ(p). res(A) = res(p.A) for all

A ∈ Us and p ∈ P .

Since qs : Us → Xs is a principal G-bundle, it factors through maps

(3.12) Us
qP−−→ Us/P

aP−−→ Us //G = Xs,

where aP is an étale locally trivial fibre bundle with fibres isomorphic to G/P ∼= P2. As

res is γ-equivariant it descends to a morphism res : Us/P → X0 = Us0/G0. This provides

us with morphisms

(3.13) X0
res←−−− Us/P aP−−−→ Xs.

Let σQ : Q → Us/P denote the blow-up along a−1
P (I). By the universal property of the

blow up, there is a natural morphism aQ : Q→ Hs, which is again a P2-bundle.

Q
σQ−−→ Us/P

aQ

y yaP
Hs σ−−→ Xs

Let Qint = a−1
Q (H int).

Proposition 3.12 — Rint ∼= Qint as schemes over X0 × P(S3W ∗)int

Proof. Qint parameterises via the composite morphism Qint → H int → P(S3W ∗) a

family of cubic surfaces Sq = {gq = 0}, q ∈ Qint, and via the composite morphism

Qint → Us/P → X0 a family of determinantal nets of quadrics (Q
(1)
q , Q

(2)
q , Q

(3)
q ),

q ∈ Qint, in such a way that either the ideal Iq := (Q
(1)
q , Q

(2)
q , Q

(3)
q ) defines an aCM

generalised twisted cubic on the surface Sq , or Iq is the ideal of a hyperplane with an em-

bedded point on Sq . But in both cases the ideal I ′q := Iq + (gq) defines a generalised

twisted cubic Cq on Sq . As the base scheme Qint of this family is reduced and the Hilbert
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polynomial of the family of curves Cq is constant, this family is flat. Since R is the moduli

space of pairs (C ⊂ S) of a generalised twisted cubic on a cubic surface, there is classify-

ing morphism ψ : Qint → R whose image is obviously contained in Rint. As both Qint

and Rint are smooth it suffices to show that ψ is bijective.

Let ([A], g) be a point in Qint. We need to show that A can be reconstructed up to the

action of P from ([A0], g) where A0 = res(A). If A0 defines an aCM-curve, it follows

from the presentation (1.1) that any extension of A0 to a matrix B with det(B) = g and

res(B) = A0 is unique up to adding multiples of the first two columns to the last. But

this is exactly the way that P acts on the columns of A. If on the other hand A0 (together

with g) defines a non-CM curve, the point [A0] belongs to I0, and the determinant of any

B with res(B) = A0 will split off a linear factor. As [B] is required to lie in Qint this is

only possible when det(B) = 0 according to part (1) of Proposition 3.5. By part (2) of the

same proposition it follows again that B is in the P -orbit of A. This proves the injectivity

of ψ.

Assume finally that a point n ∈ Rint be given. It determines and is determined by a pair

([A0], f). If [A0] ∈ I0, the existence of a stable matrix A with res(A) = A0 is clear. If

[A0] 6∈ I0, there is a unique matrixA ∈ U up to column transformations with res(A) = A0

and det(A) = g. Since g is non-zero and irreducible, A is stable. This shows that ψ is

surjective as well. �

We can summarise the results of this section as follows:

Theorem 3.13 — Let Rint denote the moduli space of pairs (C, S) of an integral cubic

surface S and a generalised twisted cubic C ⊂ S in a fixed three-dimensional projective

space P(W ).

(1) The projectionRint → H0 to the first component is a surjective smooth morphism

whose fibres are open subsets in P9. In particular, Rint is smooth.

(2) The projection Rint → P(S3W ∗)int is projective and factors as follows:

(3.14) Rint aR−−→ H int δ−→ P(S3W ∗)int,

where aR is a P2-bundle and δ is generically finite.

�

§4. TWISTED CUBICS ON Y

In the previous Section §3 we have discussed the geometry of generalised twisted cu-

bics on cubic surfaces for the universal family of cubic surfaces in a fixed 3-dimensional

projective space P(W ), the main result being the construction of maps

H0 ←− Rint −→ H
δ−→ P(S3W ∗).

The cubic fourfold Y has played no rôle in the discussion so far. The intersections of Y

with all 3-spaces in P5 form a family of cubic surfaces parameterised by the Grassmannian

G = Grass(C6, 4). All schemes discussed in the previous section come with a natural
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GL(W )-action, and all morphisms are GL(W )-equivariant. This allows us to generalise

all results to this relative situation over the Grassmannian.

In this section we will construct the morphisms Hilbgtc(Y ) → Z ′ → Z and prove that

Z is an 8-dimensional connected symplectic manifold.

4.1. The family over the Grassmannian. Let G := Grass(C6, 4) denote as before the

Grassmannian of three-dimensional linear subspaces in P5, let O6
G → W denote the uni-

versal quotient bundle of rank 4. The projectivisation P(W) is a partial flag variety and

comes with two natural projections a : P(W)→ G and q : P(W)→ P5. Let

(4.1) 0→ K → a∗W → Oa(1)→ 0

denote the tautological exact sequence. Then det(K)−1 = Oa(1)⊗a∗det(W)−1. Further-

more, let S := P(S3W∗) denote the space of cubic surfaces in the fibres of a, let Sint ⊂ S
denote the open subset corresponding to integral surfaces, and let c : S → G denote the

natural projection.

We will build up the following commutative diagram of morphisms step by step:

(4.2)

P(N ′) �
� j //

σ

��

H

σ̃

��

δ

��
P(W)

a
""

� � i //

q

��

X

b

��

det // S
c

��
P5 G

Generalising the results of Section 3.3 to the relative case we consider the vector bundle

Hom(C3,C3 ⊗W) on G and the quotient X of its open subset of semistable points by the

group G = (GL3×GL3)/C∗. The natural projection b : X→ G is a projective morphism

and a Zariski locally trivial fibre bundle with fibres isomorphic to X . There is a canonical

embedding i : P(W) → X of G-schemes such that the normal bundle of P(W) in X is

given by

(4.3) νP(W)/X ∼= N ⊗ det(K)−1 ∼= N ⊗Oa(1)⊗ a∗det(W)−1,

where N is the image of the natural multiplication map S2K ⊗ a∗W → a∗S3W . Let

σ̃ : H → X denote the blow-up of X along P(W). The exceptional divisor of σ̃ can be

identified with P(N ′), where N ′ := ν∗P(W)/X, and we let σ : P(N ′) → P(W) and j :

P(N ′)→ H denote the canonical projection and inclusion, respectively. As we have seen

in previous sections, the rational map det : X 99K S extends to a well-defined morphism

δ : H→ S.

Finally, let H0 → G denote the relative Hilbert scheme of generalised twisted cubics

in the fibres of a : P(W) → G, and let Rint denote the moduli space of pairs (C, S)

where S is an integral cubic surface in a fibre of a and C is a generalised twisted cubic in
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S. Generalising Theorem 3.13 to the relative situation over the Grassmannian we obtain a

commutative diagram

(4.4)

H

��

Hintoo

��

Rintaoo

��
S

!!

Sintoo H0

||
G

where a is a P2-bundle.

Let Y ⊂ P5 be a smooth cubic hypersurface defined by a polynomial f ∈ S3C6 and

assume that Y does not contain a plane. Then f defines a nowhere vanishing section in

S3W and hence a section γf : G→ S to the bundle projection c. For a point [P(W )] ∈ G,

its image [S] = γf ([P(W )]) is the surface S = P(W ) ∩ Y . Since Y does not contain a

plane, γf takes values in the open subset Sint ⊂ S of integral surfaces.

We define a projective scheme Z ′ with a Cartier divisor D ⊂ Z ′ by the following

pull-back diagram

P(N ′) ↪→ H −→ S
∪ ∪ ∪
D ↪→ Z ′ −→ γf (G)

As γf (G) is contained in Sint, the scheme Z ′ is in fact contained in the open subset Hint ⊂
H.

Proposition 4.1 — a−1(Z ′) ∼= Hilbgtc(Y ), and a−1(D) is the closed subset of non-CM

curves.

Proof. The natural projection Hilbgtc(Y )→ G lifts both to a closed immersion

Hilbgtc(Y )→ H0

and to a morphism Hilbgtc(Y ) → Sint, sending a curve C with span 〈C〉 = P(W ) to

the point [C] ∈ Hilbgtc(P(W )) ⊂ H0 and the point [P(W ) ∩ Y ], respectively. By the

definition of Rint, these two maps induce a closed immersion Hilbgtc → Rint, whose

image equals a−1(Z ′) by Theorem 3.13. The second assertion follows similarly. �

We have proved the first part of Theorem B: the existence of a natural P2-fibration

Hilbgtc(Y )
a−−→ Z ′

relative to G.

Proposition 4.2 — Let Y be a smooth cubic fourfold. Then the closure of the set of

points [P(W )] ∈ G such that S = P(W ) ∩ Y is a non-normal integral surface is at most

4-dimensional.



28 CH. LEHN, M. LEHN, CH. SORGER, D. VAN STRATEN

Proof. Let L ⊂ Y = {f = 0} be a line, and let U ⊂ C6 denote the four-dimensional

space of linear forms that vanish on L, so that L = P(V ) for V = C6/U . By assumption,

the cubic polynomial f ∈ S3C6 vanishes on L and hence is contained in the kernel of

S3C6 → S3V . Its leading term is a polynomial f̄ ∈ U ⊗ S2V = Hom(U∗, S2V ).

That Y is smooth along L is equivalent to saying that the four quadrics in the image of

f̄ : U∗ → S2V must not have a common zero on L. Hence f̄ has at least rank 2. On

the other hand, if L is the line of singularities of a non-normal surface Y ∩ P(W ), then

f̄ has at most rank 2, and W ∗ ⊂ C6∗ is determined as the preimage of ker(f̄) under the

projection C6∗ → U∗. In particular, every line L ⊂ Y is the singular locus of at most one

non-normal integral surface of the form S = Y ∩P(W ). As the space of lines on a smooth

cubic fourfold is four-dimensional, the assertion follows. �

Since non-normal surfaces form a stratum of codimension 6 in P(S3C4), the ’non-

normal’ locus in G is in fact only 2-dimensional for a generic fourfold Y .

Proposition 4.3 — Let Y be a smooth cubic fourfold not containing a plane. Then the

closure of the set of points [P(W )] ∈ G such that S = P(W ) ∩ Y has a simple-elliptic

singularity is at most 4-dimensional.

Proof. Let p ∈ Y = {f = 0} be a point. Any 3-space P(W ) with the property that S =

Y ∩P(W ) is a cone with vertex pmust be contained in the tangent space to Y at p. Then one

may choose coordinates x0, . . . , x5 in a way that x0, . . . , x4 vanish at p, that x0 = 0 defines

the tangent space and that f takes the form f = x2
5x0 + x5q(x1, . . . , x4) + c(x0, . . . , x4)

for a quadric polynomial q and a cubic polynomial c. If q vanishes identically, we may

choose a line L in {x0 = 0 = c} ⊂ P4. As the plane spanned by L and p would be

contained in Y this case is excluded. A 3-space through p intersects Y in a cone if and

only if it is the span of p and a plane in the quadric surface {x0 = 0 = q}. Clearly, for any

point p ∈ Y there at most two such planes. Thus the family of such 3-spaces is at most

4-dimensional. �

Again, the expected dimension of the ’simple-elliptic’ locus is much smaller. We may

restate the argument in a coordinate free form as follows: Let f ∈ S3C6 denote the cubic

polynomial that defines a smooth fourfold Y ⊂ P5 as before. The restriction to Y of the

Jacobi map Jf : OY (−2) → O6
Y takes values in ΩP5(1)|Y . Since Y is smooth, this map

vanishes nowhere, giving rise to a short exact sequence 0 → ΩY (1) → F → OY (1) →
0 with F = O6

Y /OY (−2). By construction, the image of f under the canonical map

S3C6 → H0(Y, S3F) takes values in the subbundle F · S2(ΩY (1)) with leading term

f̃ ∈ H0(Y, S2(ΩY (1))⊗OY (1)) = HomY (OY (−3), S2ΩY ). Considering f̃ considered

as a symmetric mapOY (−3)⊗Ω∗Y → ΩY we may ask for the locus where its rank is≤ 2.

Standard intersection theoretic methods [17] allow to calculate the expected cycle class as

35h3, where h is the class of a hyperplane section in Y . This implies:

Corollary 4.4 — Let Y be smooth cubic fourfold not containing a plane. Then there is a

3-space P(W ) ⊂ P5 such that Y ∩ P(W ) has a simple-elliptic singularity.
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4.2. The divisor D ⊂ Z ′. A closed point [C] in D ⊂ Z ′ corresponds to a family of

non-CM curves on a surface S = P(W ) ∩ Y for some three-dimensional linear subspace

P(W ) ⊂ P5. In fact, such a family is obtained by intersecting S with all planes in P(W )

through a fixed singular point p ∈ S (and adding the unique non-reduced structure at p).

On the other hand, if p ∈ Y is any point, a three-dimensional linear space P(W ) through

p intersects Y in such a way that p becomes a singular point of S = P(W )∩Y if and only

if P(W ) is contained in the projective tangent space of Y at p. This defines a bijective

morphism j : P(TY )→ D ⊂ Z ′. In fact:

Proposition 4.5 — Let π : P(TY ) → Y denote the projectivisation of the tangent bundle

of Y . The morphism j : P(TY )→ D is an isomorphism, and j∗OZ′(D) = Oπ(−1).

Proof. Let 0 → U → π∗TY → Oπ(1) → 0 denote the tautological bundle sequence on

P(TY ). Starting from the Euler sequence on P5 we obtain the following pull-back diagram

of short exact sequences of sheaves on P(TY ).

0 → π∗OY (−1) → C6 ⊗OP(TY ) → π∗(TP5 |Y ⊗OY (−1)) → 0∥∥∥ x x
0 → π∗OY (−1) → V ′ → π∗(TY ⊗OY (−1)) → 0∥∥∥ x x
0 → π∗OY (−1) → V → U ⊗ π∗OY (−1) → 0

The bundle inclusions π∗OY (−1) ⊂ V ⊂ C6 ⊗ OP(TY ) induce a closed immersion u :

P(TY )→ P(W) with V ∗ = u∗a∗W and u∗Oa(1) = π∗OY (1). Moreover, the composite

map OP(TY )
f−−→ S3O6

P(TY ) → u∗a∗S3W takes values in the subbundle u∗N (cf. (4.3)),

inducing a bundle monomorphism

u∗(Oa(1)⊗ a∗det(W)−1)→ u∗(N ′)

and hence a morphism v : P(TY )→ P(N ′) with σ ◦ v = u and

(4.5) v∗Oσ(−1) = u∗(Oa(1)⊗ a∗det(W)−1) = π∗OY (1)⊗ (a ◦ u)∗det(W)−1.

Adding u and v to diagram (4.2) we get

(4.6)

P(N ′) �
� j //

σ

��

H

σ̃

��
P(TY )

u
//

π

��

v
::

P(W)

a
""

� � i //

q

��

X

b

��
Y �
� // P5 G

Since (a ◦ u)∗det(W)−1 = det(V ) = π∗OY (−1)4 ⊗ det(U) we may simplify this as

follows:

(4.7) v∗Oσ(−1) ∼= π∗(det(TY )⊗OY (−3))⊗Oπ(−1) ∼= Oπ(−1)
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Since u is a closed immersion, so is v. By construction, the image of v is contained in

D. This shows that P(TY ) ∼= Dred. But the pull-back of the normal bundle OH(J)|J =

Oσ(−1) to P(TY ) equals Oπ(−1) according to equation (4.7) and hence is not a power

of any other line bundle. This implies that P(TY ) indeed is isomorphic to the scheme-

theoretic intersection D = Z ′ ∩ J and that OZ′(D)|D = Oπ(−1) with respect to the

identification D = P(TY ). �

Corollary 4.6 — Z ′ is smooth along D.

Proof. Since D is smooth and a complete intersection in Z ′, the ambient space Z ′ must be

smooth along D as well. �

4.3. Smoothness and Irreducibility. Let Y = {f = 0} ⊂ P5 be a smooth cubic hyper-

surface that does not contain a plane. In this section we prove that Hilbgtc(Y ) is smooth

and irreducible. Due to the P2-bundle map a : Hilbgtc(Y ) → Z ′ both assertions are

equivalent to the analogous statement about Z ′.

Theorem 4.7 — Hilbgtc(Y ) is smooth of dimension 10.

Proof. 1. Since Hilbgtc(Y ) is the zero locus of a section in a vector bundle of rank 10

on a 20-dimensional smooth variety H0 = Hilbgtc(P5), every irreducible component of

Hilbgtc(Y ) has dimension ≥ 10. In order to proof smoothness, it suffices to show that all

Zariski tangent spaces are 10-dimensional.

Due to the existence of a P2-fibre bundle map a : Hilbgtc(Y )→ Z ′, the Hilbert scheme

is smooth at a point [C] if and only if Z ′ is smooth at a([C]), or equivalently, if Hilbgtc(Y )

is smooth at any point of the fibre a−1(a([C])). And due to Corollary 4.6 which takes care

of the non-CM-locus, it suffices to consider aCM-curves, for which there is a functorial

interpretation of tangent space: T[C]Hilbgtc(Y ) ∼= Hom(IC/Y ,OC).

Thus it remains to prove that hom(IC/Y ,OC) = 10 for any generalised twisted cubic

C ⊂ Y of aCM-type whose isomorphism type is generic within the family a−1(a([C])).

2. Given an aCM-curve C ⊂ Y we may choose coordinates x0, . . . , x5 in such a

way that the ideal sheaf IC/P5 is defined by the linear forms x4 and x5 and the quadratic

minors of a 3× 2-matrix A0 with linear entries in the coordinates x0, . . . , x3. The surface

S = Y ∩{x4 = x5 = 0} is cut out by a cubic polynomial g ∈ C[x0, x1, x2, x3]. There are

quadratic polynomials q4 and q5 such that f = g+ x4q4 + x5q5 and linear forms `0, `1, `2
in x0, . . . , x3 such that

g = det(A) for A =

(
A0

∣∣∣ `0`1
`2

)
.

The ideal sheaf IC/P5 has a presentation

OP5(−3)2 ⊕OP5(−3)6 ⊕OP5(−2)
M−−→ OP5(−2)3 ⊕OP5(−1)2 −→ IC/P5 −→ 0,

with

M =

(
A0 ∗ 0

0 ∗ ∗

)
,
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where the entries denoted by ∗ give the tautological relations between the quadrics and

the linear forms defining IC/P5 . They vanish identically when restricted to C. Therefore,

Hom(IC/P5 ,OC) = F ⊕ OC(1)2 with F = ker(OC(2)3 At
0−−→ OC(3)2). Since Y is

smooth along C, the natural homomorphism ϕ : Hom(IC/P5 ,OC)→ NY/P5 |C = OC(3)

is surjective, and ker(ϕ) = Hom(IC/Y ,OC). The homomorphism ϕ can be lifted to

OC(2)3 ⊕OC(3)2 in such a way that there is an exact sequence

(4.8) 0 −→ Hom(IC/Y ,OC) −→ OC(2)3 ⊕OC(1)2 B−−→ OC(3)3

with

B =

(
At0 0 0

`0 `1 `2 q4 q5

)
Note that ϕ|F vanishes at a point of C if and only if the surface S is singular at this point.

We will now analyse B for the four reduced types of aCM-curves. In the first three cases,

the curve C is in fact locally a complete intersection, and NC/Y = Hom(IC/Y ,OC) is

locally free of rank 3.

3. Assume that C is a smooth twisted cubic. For an appropriate choice of coordinates

we have At0 = ( x0 x1 x2
x1 x2 x3

), and we parameterise the curve by

ι : P1 → C, [s : t]→ [s3 : s2t : st2 : t3 : 0 : 0].

Then ι∗At0 = ( st ) · ( s2 st t2 ) has kernel ι∗F = OP1(5)2, and

Hom(IC/Y ,OC) ∼= ker
(
B′ : OP1(5)2 ⊕OP1(3)2 → OP1(9)

)
with B′ = (t`0 − s`1 t`1 − s`0 q4 q5). The kernel of B′ has rank 3 and degree 7.

Writing it in the form OP1(a) ⊕ OP1(b) ⊕ OP1(c) with 5 ≥ a ≥ b ≥ c, it follows that

either b ≤ 3 (and hence c ≥ −1) or a ≥ b ≥ 4. In the first case h1(NC/Y ) = 0 and

h0(NC/Y ) = 10, as desired. In the second case, we must have OP1(5)2 ⊂ NC/Y , since

the kernel is saturated. But this implies that S is singular along C, which is impossible.

Hence Hilbgtc(Y ) is smooth at any point [C] whose corresponding curve C is smooth.

4. Assume that C is the union of a line L and a quadric Q. We may take At0 =

( x0 x1 x2
0 x2 x3

), so that L = {x2 = x3 = 0} and Q = {x0 = x1x3 − x2
2 = 0}. Then

At0|L =
(
x0 x1 0
0 0 0

)
has kernel OL(1)⊕OL(2) and

NC/Y |L = ker(B′ : OL(1)⊕OL(2)⊕OL(1)2 → OL(3))

with B′ = (x1`0 − x0`1 `2 q4 q5). Since NC/X |L has rank 3 and degree 2 and is a

subsheaf ofOP1(2)⊕OP1(1)3, it cannot have a direct summand of degree−2. This implies

h1(NC/Y |L) = 0 and hence h0(NC/Y |L) = 5. We parameterise the second component of

C by ι : P1 → Q, [s : t] → [0 : s2 : st : t2 : 0 : 0]. The kernel of ι∗At0 =
(

0 s2 st
0 st t2

)
is

isomorphic to OP1(4)⊕OP1(3), and

NC/Y |Q = ker(B′ : OP1(4)⊕OP1(3)⊕OP1(2)2 → OP1(6))

withB′ = (`0 t`1 − s`0 q4 q5). The sheafOP1(4) can lie in the kernel only if `0|Q =

0, i.e. if `0 is a multiple of x0, which is impossible since x0 must not divide det(A). If two
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copies of OP1(3) were contained in the kernel they would have to lie in OP1(4)⊕OP1(3),

and since the kernel is saturated, this would imply thatOP1(4) is contained in the kernel as

well, a case we just excluded. Therefore we have NC/Y |Q = OP1(a)⊕OP1(b)⊕OP1(c)

with a ≥ b ≥ c and a ≤ 3 and b ≤ 2. Since a+b+c = 5, this implies c ≥ 0. NowNC/Y |Q
not only has vanishing H1 but is in fact globally generated, so that H0(NC/Y |Q) →
H0(NC/Y |L∩Q) is surjective. Hence it follows from the exact sequence

0→ H0(NC/Y ) −→ H0(NC/Y |L)⊕H0(NC/Y |Q) −→ H0(NC/Y |L∩Q)

that h0(NC/Y ) = 5 + 8− 3 = 10.

5. Assume that C is the union of three lines L1, M and L2 that intersect in two distinct

points p1 = L1 ∩M and p2 = M ∩ L2. In appropriate coordinates C is defined by the

minors of At0 =
(
x0 x1 0
0 x2 x3

)
, and L1 = {x0 = x1 = 0}, M = {x0 = x3 = 0} and

L2 = {x2 = x3 = 0}. Then At0|L1 =
(

0 0 0
0 x2 x3

)
has kernel F |L1 = OL1(2)⊕OL1(1), so

that

NC/Y |L1
= ker(B′ : OL1

(2)⊕OL1
(1)3 → OL1

(3))

with B′ = (`0 x3`1 − x2`2 q4 q5). Assume first that `0|L1 = 0. Then `0 must be a

linear combination of x0 and x1. If it were a multiple of x0, the determinant det(A) would

be divisible by x0, contradicting the assumptions on Y . Hence `0 = αx0 + βx1 with

β 6= 0. Then for any ε ∈ C the matrix Atε =
(
x0 x1 0
ε`0 x2+ε`1 x3+ε`2

)
defines a curve Cε in the

P2-family of C, which for generic choice of ε is the union of a quadric and a line. Hence

the isomorphism type of C is not generic in the family, and we need not further consider

this case. If on the other hand `0|L1
6= 0, then the maximal degree of a direct summand of

in the kernel of B′ is 1, so that NC/Y |L1 is isomorphic to OL1(1)2 ⊕ OL1 , has exactly 5

global sections and is even globally generated. By symmetry, the same is true for L2.

Similarly, At0|M =
(

0 x1 0
0 x2 0

)
has kernel F |M = OM (2)2, and

NC/Y |M = ker(B′ : OM (2)2 ⊕OM (1)2 → OM (3))

with B′ = (`0 `2 q4 q5). Hence NC/Y |M has degree 3, and any direct summand has

degree ≤ 2. The only possibility for NC/Y not to be globally generated is NC/Y |M =

OM (2)2 ⊕ OM (−1), but even then it has vanishing H1 and hence h0 = 6. Since the

restrictions of NC/Y to the lines L1 and L2 are globally generated, we conclude as in the

previous step that the map

H0(NC/Y |L1
)⊕H0(NC/Y |M )⊕H0(NC/Y |L2

) −→ H0(NC/Y |p1)⊕H0(NC/Y |p2)

is surjective, and that h0(NC/Y ) = 5 + 6 + 5− 3− 3 = 10.

6. Assume that C is the union of three collinear lines L1, L2 and L3 that meet in a point

p but are not coplanar. We may take At0 =
(
x0 0 −x2
0 −x1 x2

)
and index the lines so that xi and

x3 are the only non-zero coordinates on Li. In particular, every column of At0 vanishes

on two of the lines identically. We obtain F =
⊕2

i=0 Fi with Fi = ker(OC(2)
xi−−→

OC(3) ∼= OLi+1
(1) ⊕ OLi+2

(1) with indices taken mod 3, and need to analyse the exact
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sequences of the form

(4.9) 0 −→ N −→
⊕
i

OLi
(1)2 ⊕OC(1)2 −→ OC(3)→ 0.

At most one line is contained in the singular locus of S. Should this be the case we may

renumber the coordinates so that that line is L0. In any case, we may restrict sequence

(4.9) to L0 and divide out the zero-dimensional torsion. We obtain a commutative diagram

or purely 1-dimensional sheaves with exact columns and rows:

0 0 0y y y
0 → N ′ →

⊕
i=1,2

(
OLi(1)2 ⊕O2

Li

)
→

⊕
i=1,2OLi(2) → 0y y y

0 → N →
⊕2

i=0OLi
(1)2 ⊕OC(1)2 → OC(3) → 0y y y

0 → N ′′ → OL0
(1)2 ⊕OL0

(1)2 → OL0
(3) → 0y y y

0 0 0

Now N ′ = N ′1 ⊕ N ′2 where each summand N ′i = ker(OLi
(1)2 ⊕ O2

Li
→ OLi

(2))

is a vector bundle of rank 3 and degree 0 on Li. Since S is not singular along Li for

i = 1, 2, the two summands OLi(1) cannot both be contained in N ′. Necessarily, we have

N ′i
∼= OLi(a) ⊕ OLi(b) ⊕ OLi(c) with (a, b, c) = (1, 0,−1), (0, 0, 0). In any case, N ′

has vanishing H1 and 6 global sections. On the other hand, N ′′ is locally free on L0 of

rank 3 and degree 1. Admissible decompositions N ′′ = OL0
(a) ⊕ OL0

(b) ⊕ OL0
(c) are

(a, b, c) = (1, 1,−1) and (1, 0, 0). In any case, H1(N ′′) = 0 and h0(N ′′) = 4. It follows

that h0(N) = h0(N ′) + h0(N ′′) = 10.

7. Assume thatC is the first infinitesimal neighbourhood of a line in P3, defined by, say,

At0 =
(
x0 x1 0
0 x0 x1

)
. We will show that the corresponding P2-family contains a non-reduced

curve, so that this case is reduced to those treated before. The curve C necessarily forms

the singular locus of S, and S must be one of the four types of non-normal surfaces. In

each case there is only one determinantal representation up to equivalence and coordinate

change, namely

A =
( x0 0 x2
x1 x0 0
0 x1 x3

)
,
(
x0 0 x1
x1 x0 x2
0 x1 x3

)
,
(
x0 0 x1
x1 x0 x2
0 x1 x0

)
, and

( x0 0 x2
x1 x0 0
0 x1 x0

)
.

A reduced curve in the corresponding P2-family is provided for example by the matrices

A′0 =
( x0 x2
x1 0
0 x3

)
,
( x0 x1
x1 x2
0 x3

)
,
( x0 x1
x0+x1 x2
x1 x0

)
, and

( x0 x2
x0+x1 0
x1 x0

)
,

respectively.

8. The remaining three types of non-reduced aCM-curves (corresponding to matrices

A(5), A(6) and A(7) in the enumeration of Section §1) are each the union of two lines

L and M , of which one, say L, has a double structure. As we have already shown that

any P2-family containing the most degenerate type also contains a non-reduced curve, it
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suffices to show that there is no P2-family parameterising only non-reduced curves with

two components. Assume that A ∈ W 3×3 defines such a family. The corresponding

bundle homomorphism is the composite map

ΩP2(1) −→ O3
P2

A−−−→ O3
P2 ⊗W.

We form Λ2ΩP2(2) ∼= OP2(−1) → Λ2(O3
P2) ⊗ S2W and obtain the associated family

of nets of quadrics OP2(−1)3 → OP2 ⊗ S2W . To each parameter λ ∈ P2 in the family

there are associated subspaces Bλ ⊂ Uλ ⊂ W , where Bλ defines the plane spanned by

the lines Lλ and Mλ, and Uλ defines the line Lλ. Let B ⊂ U ⊂ OP2 ⊗C W denote the

corresponding vector bundles. Then there are inclusions

B · U ⊂ OP2(−1)3 ⊂ OP2 ⊗ S2W.

But such a configuration of vector bundles is impossible: Both inclusions B ⊂ U and

BU ⊂ OP2(−1)3 would have to split, say B = OP2(a), U = OP2(a) ⊕ OP2(b) and

finallyOP2(−1)3 ∼= OP2(2a)⊕OP2(a+b)⊕OP2(c), and the latter isomorphism is clearly

impossible. �

Theorem 4.8 — Z ′ is an 8-dimensional smooth irreducible projective variety.

Proof. Due to the existence of the P2-fibration Hilbgtc(Y ) → Z ′, the smoothness of

Hilbgtc(Y ) implies that Z ′ is smooth as well and of dimension 8. The morphism Z ′ → G
is finite over the open subset of ADE-surfaces, and has fibre dimension ≤ 1 resp. ≤ 2

over the strata of simple-elliptic and non-normal surfaces, resp., due to Corollary 3.11. By

Proposition 4.3 and Proposition 4.2, simple-elliptic and non-normal surfaces form strata

in G of dimension ≤ 4. It follows that every irreducible component of Z ′ must dominate

G. The stratum of simple-elliptic surfaces in G is non-empty by Corollary 4.4. Since

Hilbgtc(S) is connected for a simple-elliptic surface, Z ′ must be connected as well. Being

smooth, Z ′ is irreducible. �

Again, due to the existence of the P2-fibre bundle map Hilbgtc(Y )→ Z ′, this theorem

is equivalent to Theorem A.

4.4. Symplecticity. We continue to assume that Y ⊂ P5 is a smooth hypersurface that

does not contain a plane.

De Jong and Starr [8] showed that any smooth projective model of the coarse moduli

space associated to the stack of rational curves of degree d on a very general cubic fourfold

carries a natural 2-form ωd. In our context, ω3 can be defined directly as follows: Let

Ω =
∑5
i=0(−1)ixidx0 ∧ . . . d̂xi . . . ∧ dx5. An equation f for Y determines a generator

α ∈ H3,1(Y ) as the image of [Ω/f2] under Griffiths’s residue isomorphism

Res : H5(P5 \ Y,C)→ H4
prim(Y ).
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The cycle [C] ∈ H22(Hilbgtc(Y ) × Y ;Z) of the universal curve C ⊂ Hilbgtc(Y ) × Y

defines a correspondence

[C]∗ : H4(Y,C)→ H2(Hilbgtc(Y ),C)

via [C]∗(u) = PD−1 pr1∗(pr∗2(u) ∩ [Z]), where pr1 and pr2 denote the projections from

Hilbgtc(Y )×Y to its factors. Since the homology class [C] is algebraic, the map [C]∗ is of

Hodge type (−1,−1) and maps H3,1(Y ) ∼= C to H2,0(Hilbgtc(Y )). Let the two-form ω3

be the image of α ∈ H3,1(Y ). More importantly, de Jong and Starr showed that the value

of ω3 on the tangent space T[C]Hilbgtc(Y ) = H0(C,NC/Y ) at a smooth rational curve

C ⊂ Y has the following geometric interpretation:

There is a short exact sequence of normal bundles

(4.10) 0→ NC/Y → NC/P5 → NY/P5 |C → 0.

To simplify the notation let A := NC/Y , N := NC/P5 and F := NY/P5 . The fact, that Y

is a cubic contributes the relation

(4.11)
detA

F
∼=

detN

F 2
∼=

ωC
ωP5 ⊗ F 2

∼= ωC .

Taking the third exterior power of (4.10) and dividing by F one obtains a short exact

sequence

(4.12) 0→ detA

F
→ Λ3N

F
→ Λ2A→ 0,

whose boundary operator defines a skew-symmetric pairing

(4.13) δ : Λ2H0(A)→ H0(C,Λ2A)→ H1(C, det(A)⊗ F ∗) = H1(C,ωC) ∼= C.

By Theorem 5.1 in [8], one has ω3(u, v) = δ(u ∧ v) for any two tangent vectors u, v ∈
H0(C,NC/Y ), up to an irrelevant constant factor. By a rather involved calculation de

Jong and Starr show that ω3 generically has rank 8. We will need the following minimally

sharper result:

Proposition 4.9 — ω3 has rank 8 at [C] ∈ Hilbgtc(Y ) whenever C is smooth.

Proof. Consider the second exterior power of (4.10) and divide again by F :

(4.14) 0→ Λ2A

F
→ Λ2N

F
→ A→ 0.

Note that Λ2A/F ∼= A∗⊗detA/F ∼= A∗⊗ωC . The associated boundary operator defines

a map

(4.15) δ′ : H0(C,A) −→ H1(C,Λ2A⊗ F ∗) ∼= H0(C,A)∗.

The commutative diagram

H0(A)⊗H0(A) → H0(A)⊗H1(Λ2A/F ) → H0(A)⊗H1(A∗ ⊗ ωC)y y y
H0(Λ2A) → H1(detA/F ) ∼= H1(ωC)

shows that δ′ is the associated linear map of the pairing δ.
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Though it is less clear from δ′ that the pairing on H0(A) is skew symmetric, it makes it

easier to compute the radical of ω3 at [C], which is simply the kernel of δ′ and hence the

cokernel of the injective homomorphism γ : H0(C,Λ2A ⊗ F ∗) → H0(C,Λ2N ⊗ F ∗)
induced by (4.14). Using an identification C ∼= P1 we have isomorphisms F ∼= OP1(9)

and N ∼= OP1(5)2⊕OP1(3)2. The bundle Λ2N ⊗F ∗ ∼= OP1(1)⊕OP1(−1)4⊕OP1(−3)

has exactly two sections. If we write A = OP1(a) ⊕ OP1(b) ⊕ OP1(c) with a ≥ b ≥ c

then a + b + c = deg(A) = 7, and we know from step 3 in the proof of Theorem 4.7

that c ≥ −1 and a + b ≤ 8. Thus the maximal degree of a direct summand of Λ2A/F is

a + b − 9 ≤ −1. This shows h0(Λ2A/F ) = 0 and dim radω3([C]) = dim coker(γ) =

h0(Λ2N/F ) = 2. �

Theorem 4.10 — Let a : Hilbgtc(Y )→ Z ′ be the P2-fibration constructed before.

(1) There is a unique form ω′ ∈ H0(Z ′,Ω2
Z′) such that a∗ω′ = ω3.

(2) ω′ is non-degenerate on Z ′ \D.

(3) KZ′ = mD for some m > 0.

Proof. 1. From the exact sequence 0 → a∗ΩZ′ → ΩM3 → ΩM3/Z′ → 0 one gets a

filtration by locally free subsheaves 0 ⊂ a∗Ω2
Z′ ⊂ U ⊂ Ω2

M3
with factors U/a∗Ω2

Z′
∼=

a∗ΩZ′ ⊗ ΩM3/Z′ and Ω2
M3
/U ∼= Ω2

M3/Z′
. This in turn yields exact sequences

(4.16) 0 −→ H0(M3, U) −→ H0(M3,Ω
2
M3

) −→ H0(M3,Ω
2
M3/Z′

)

and

(4.17) 0 −→ H0(M3, a
∗Ω2

Z) −→ H0(M3, U) −→ H0(M3, a
∗ΩZ′ ⊗ ΩM3/Z′).

Since neither ΩP2 nor Ω2
P2 have nontrivial sections, a∗ΩM3/Z′ and a∗Ω2

M3/Z′
vanish. It fol-

lows that H0(M3,Ω
2
M3/Z′

) = H0(Z ′, a∗Ω
2
M3/Z′

) = 0 and H0(M3, a
∗ΩZ′ ⊗ ΩM3/Z′) =

H0(Z ′,ΩZ′ ⊗ a∗ΩM3/Z′) = 0. We are left with isomorphisms

(4.18) H0(Z ′,Ω2
Z′)
∼= H0(M3, a

∗Ω2
Z′)
∼= H0(M3, U) ∼= H0(M3,Ω

2
M3

).

This shows that ω3 descends to a unique 2-form ω′ on Z ′.

2. It follows from Proposition 4.9 that ω′ is non-degenerate at all points z ∈ Z ′ for

which the fibre a−1(z) contains a point corresponding to a smooth rational curve. By

Theorem 2.1, this is the case for all points corresponding to fibres with aCM-curves on a

surface with at most ADE-singularities. The dimension argument in the proof of Theorem

4.8 shows that the locus of points in Z ′ \D that do not satisfy this condition has codimen-

sion ≥ 2. But the degeneracy locus of a 2-form is either empty or a divisor. Thus ω′ is

indeed non-degenerate on Z ′ \D.

3. Since ω′ is non-degenerate on Z ′ \D, its 4th exterior power defines a non-vanishing

section in the canonical line bundle of Z ′ over Z ′ \D, showing that KZ′ = mD for some

m ≥ 0. To see thatm > 0, it suffices to note that Y has no non-trivial holomorphic 2-form,

so that the restriction of ω′ to D = P(TY ) must vanish identically. Consequently ω′ must

be degenerate along D. �



TWISTED CUBICS ON CUBIC FOURFOLDS 37

A calculation of the topological Euler characteristic of the preimage curve in Z ′ of a

generic line L ⊂ Grass(C6, 4) shows that KZ′ ∼ 3D. We will not need this explicit

number and hence omit the calculation. In fact, m = 3 easily follows a posteriori once we

have shown the existence of a contraction Z ′ → Z to a manifold Z that maps D to Y .

4.5. The extremal contraction.

Theorem 4.11 — There exists an 8-dimensional irreducible projective manifold Z and a

morphism Φ : Z ′ → Z with the following properties:

(1) Φ maps Z ′ \D isomorphically to Z \ Φ(D).

(2) Φ|D factors through the projection π : D = P(TY )→ Y and a closed immersion

j : Y → Z.

(3) There is a unique holomorphic 2-form ω ∈ H0(Z,Ω2
Z) such that ω′ = Φ∗ω.

(4) ω is symplectic.

We will prove the theorem in several steps:

Lemma 4.12 — The line bundle OZ′(D) is ample relative to s : Z ′ → G.

Proof. As the statement is relative over the Grassmannian, it suffices to prove the analo-

gous statement for the divisor J ⊂ H relative to the morphism H → P(S3W ∗). This is

the content of Corollary 3.10. �

Let W denote the universal rank 4 bundle on G. Then det(W) is very ample, and its

pull-back B := s∗det(W) to Z ′ is a nef line bundle. The linear system of the line bundle

L := OZ′(D)⊗B.

will produce the contraction Φ : Z ′ → Z. It follows from Proposition 4.5 that with respect

to the identification D = P(TY ) we have

(4.19) O(D)|D = Oπ(−1) and L|D ∼= π∗OY (1).

Lemma 4.13 — L is nef, and all irreducible curves Σ ⊂ Z ′ with deg(L|Σ) = 0 are

contained in D, and more specifically, in the fibres of π : D = P(TY )→ Y .

Proof. Assume first, that Σ is an irreducible curve not contained in D. Since D is ef-

fective, D.Σ ≥ 0. As B is nef, one has deg(L|Σ) ≥ 0. Moreover, deg(L|Σ) > 0

unless deg(B|Σ) = 0, which is only possible when Σ is contained in the fibres of Z ′ →
Grass(C6, 4). But since D is relatively ample over the Grassmannian, one would have

D.Σ > 0.

Conversely, if Σ ⊂ D, we have deg(L|Σ) = deg(OY (1)|π(Σ)) ≥ 0 by the previous

lemma. This number is > 0 unless Σ lies in the fibre of π : D → Y . �

Lemma 4.14 — For all p, q > 0 the line bundle Lp ⊗Bq is ample.

Proof. As B is the pull-back of an ample line bundle on G and L is ample relative G,

it follows that L ⊗ B` is ample for some large `. Since both L and B are both nef,
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L1+m ⊗ B`+n is ample for all m,n ≥ 0 by Kleiman’s numerical criterion for ampleness

[22]. �

Lemma 4.15 — The classes [Σ] of curves with deg(L|Σ) = 0 form a KZ′ -negative ex-

tremal ray.

Proof. According to the previous lemma, curves with deg(L|Σ) = 0 are contained in the

fibres of a projective bundle D = P(TY ) → Y . Any such curve is numerically equivalent

to a multiple of a line in any of these fibres. Such classes [Σ] generate a ray. Moreover, as

OD(D) is negative on the fibres of π by (4.19) and KZ′ ∼ mD, the restriction of KZ′ to

this ray is strictly negative. �

Using the Contraction Theorem ([24] Thm. 3.7, or [23] Thm. 8-3-1) we conclude: There

is a morphism Z ′ → Z with the following properties:

(1) Z is normal and projective, Φ has connected fibres, and Φ∗OZ′ = OZ .

(2) A curve Σ ⊂ Z ′ is contracted to a point in Z ′ if and only if its class is contained

in the extremal ray.

(3) There is an ample line bundle L′ on Z such that L ∼= Φ∗L′.

Let Y ′ ⊂ Z denote the image of D. By Lemma 4.13 and Lemma 4.15, the morphism

Φ contracts exactly the fibres of π : P(TY ) → Y . Since the fibres of π and of Φ are

connected, Φ induces bijections Z ′ \D → Z \Y ′ and Y → Y ′. As both Z ′ \D and Z \Y ′

are normal, the restriction Φ : Z ′ \D → Z \ Y ′ is an isomorphism.

Lemma 4.16 — For sufficiently large ` the natural map H0(Z ′, L`) → H0(D,L`|D) is

surjective.

Proof. By Lemma 4.14,

L`(−D)⊗O(−KZ′) = L`(−(m+ 1)D) = Bm+1 ⊗ L`−m−1

is ample for ` > m + 1. Hence an application of the Kodaira Vanishing Theorem gives

H1(Z ′, L`(−D)) = 0, so that H0(Z ′, L`)→ H0(D,L`|D) is surjective. �

Since L|D ∼= π∗OY (1) it follows from the previous lemma that Y → Y ′ is an isomor-

phism.

Proposition 4.17 — Z is smooth.

Proof. It remains to show that Z is smooth along Y . The system of ideal sheaves In :=

Φ−1(InY/Z)OZ′ and OZ′(−nD) are cofinal. Moreover, there are exact sequences

0 −→ OD(−nD) −→ O(n+1)D −→ OnD −→ 0

and

0 −→ SnTY −→ Φ∗O(n+1)D −→ Φ∗OnD −→ 0,

since OD(−nD) = Oπ(n) and thus Φ∗OD(−nD) = SnTY and RiΦ∗OD(−nD) = 0

for all i > 0. It follows from Grothendieck’s version of Zariski’s Main Theorem ([15],
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Thm. III.4.1.5.) that the completion of Z along Y can be computed by

ÔZ = lim←−Φ∗(OZ′/In) = lim←−Φ∗(OnD) = Ŝ(TY ).

This shows that Z is smooth along Y . �

Proposition 4.18 — The form ω′ on Z ′ descends to a symplectic form ω on Z.

Proof. As Y ⊂ Z has complex codimension 4, the pull-back of ω′ via the isomorphism

Z \Y → Z ′\D extends uniquely to a holomorphic 2-form ω that is necessarily symplectic

since the degeneracy locus of a 2-form is either empty or a divisor. �

This finishes the proof of Theorem 4.11.

4.6. The topological Euler number.

Theorem 4.19 — The topological Euler number of Z is 25650.

This number equals the Euler number of the Hilbert scheme Hilb4(K3) of 0-dimen-

sional subschemes of length 4 on a K3-surface [16]. This and the fact that the Beauville-

Donagi moduli space of lines on Y is isomorphic to Hilb2 of a K3-surface if Y is of

Pfaffian type makes it very hard not to believe that Z is isomorphic to some Hilb4(K3) for

special choices of Y or is at least deformation equivalent to such a Hilbert scheme.

For this reason we will not give a detailed proof of the theorem here. Our method imi-

tates the pioneering calculations of Ellingsrud and Strømme [13]. Note first that e(Z ′) =

e(Z) + e(Y )(e(P3)−1) = e(Z) + 81 and e(Hilbgtc(Y )) = e(Z ′)e(P2) = 3e(Z ′). Hence

the assertion is equivalent to e(Hilbgtc(Y )) = 77193. Now Hilbgtc(Y ) is the zero locus of

a regular section in a certain 10-dimensional tautological vector bundle A on Hilbgtc(P5)

(cf. Section §1). It is therefore possible to explicitly express both the class of Hilbgtc(Y )

and the Chern classes of its tangent bundle in terms of tautological classes in the cohomol-

ogy ring H∗(Hilbgtc(P5),Q). Two options present themselves for the calculation:

1. Follow the model of Ellingsrud and Strømme and write down a presentation of the

rational cohomology ring of Hilbgtc(P5) in terms of generators and relations and calculate

using Groebner base techniques. This is the option we chose. We wrote pages of code first

in SINGULAR and then in SAGE [25].

2. Take a general linear C∗ action on P5 and determine the induced local weights at

any of the 1950 fixed points for the induced action on Hilbgtc(P5). Fortunately there are

only nine different types of fixed points. The relevant calculations can then be executed by

means of the Bott-formula.
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