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Abstract

These are lecture notes for a 2 hour lecture at a meeting at Max Planck Institut für Gravitation-
sphysik in Potsdam, Germany (MPRS lecture day 20/08/2010).

Introduction

This is a very short overview on Lie algebra cohomology. For a longer and more complete survey, the
reader is refereed to the excellent [FeFu00].

Lie algebra cohomology is inspired by de Rham cohomology on the corresponding Lie group (see
Section 2.1), and has therefore both algebraic and geometric flavour. It gives insight about the algebraic
structure of the Lie algebra via the low degree interpretations of the cohomology spaces (see Section 3). On
the other hand, it gives geometric information, for example about a corresponding Lie group (see Cartan’s
Theorem, here Corollary 2.4). We restricted ourselves to finite dimensional Lie algebras (with exception
of the Lie algebra of vector fields on the circle Vect(S1)). Therefore, we did not include Gelfand-Fuchs
theory, nor current algebras, nor did we even comment on the computations of the continuous cohomology
of Lie algebras of vector fields, which are also very geometric in flavour (for all these subjects, see [Fu86],
[FeFu00]). Another source of links to geometry would have been the relation of Lie algebra cohomology
to the Riemann-Roch Theorem, which we also ignored completely (for this, see [FeTs89], [NeTs95]).

Deformation theory of Lie algebras is the study of the variety of Lie algebra laws, i.e. the moduli
space of Lie algebras, and of how a given Lie algebra deforms into another. Deformation theory is closely
linked to cohomology, the space of (inequivalent) infinitesimal deformations of g being H2(g, g) and the
obstructions to prolongation of a given infinitesimal deformation being expressed as Massey products in
H3(g, g). Unfortunately, we do not have the space to explain this here.

The content of the Sections is the following: Section 1 is about basic examples of Lie algebras and
modules. Section 2 gives the definition of Lie algebra cohomology, together with its geometric motivation
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and the derived functor approach. Unfortunately, we completely left out homology, and therefore did
not talk about the Loday-Quillen Theorem or K-Theory. In Section 3, we give the standard low degree
interpretations of the cohomology spaces. What is less standard is the part on the Virasoro algebra
and the glimpse about the interpretation of H3 by crossed modules. In Section 4, we talk about some
standard computational methods. These are kind of too sophisticated for an introduction to Lie algebra
cohomology, but the reader who wants to really compute cohomology spaces will have to draw on these.
Section 5 gives some very classical results on finite dimensional Lie algebras, with the intention to show
that semi-simple Lie algebras have “small”, while nilpotent Lie algebras have “huge” cohomology. We
also cite Kostant’s Theorem, leading to links with representation theory. In Section 6 we conclude with
a short overview on BRST quantization, based on [KoSt87].

1 Lie algebras and modules

Let g be a Lie algebra over a field k. We will always suppose k of characteristic zero. (Lie algebras over
a field of characteristic p > 0 together with their cohomology are still a different, very rich subject.)

Examples 1.1 (a) First of all, consider finite dimensional examples – matrix Lie algebras. g = gl(n, k)
(reductive Lie algebra), g = sl(n, k), so(n, k), sp(2n, k) (semisimple Lie algebras), g = t(n, k) (upper
triangular matrices – a solvable Lie algebra). t(n, k) = d(n, k)⊕n(n, k), diagonal plus strictly upper
triangular matrices. n(n, k) is a nilpotent Lie algebra.

(b) Let X be a (finite dimensional) manifold, and denote by Vect(X) the Lie algebra of vector fields
on X . For example, Vect(S1) is the Lie algebra of vector fields on the circle S1. As a space

Vect(S1) = {f(θ)
d

dθ
| f ∈ C∞(S1)}.

The bracket reads [
f(θ)

d

dθ
, g(θ)

d

dθ

]
= (fg′ − gf ′)

d

dθ
.

Introducing the (topological) generators en := zn+1 d
dz

with z = eiθ, the defining relations read

[en, em] = (m− n)en+m.

Definition 1.2 A g-module is a k-vector space M together with a map g⊗M →M , x⊗m 7→ x ·m ∈M
such that

[x, y] ·m = x · (y ·m) − y · (x ·m)

for all x, y ∈ g and all m ∈M . In other words, the map g → End(M), x 7→ x· is a homomorphism of Lie
algebras.

Example 1.3 The most important g-modules will be for us the trivial module k, i.e. the action reads
x · λ = 0 for all λ ∈ k and all x ∈ g, and the adjoint module g, i.e. g acts on g by the adjoint action, i.e.
by the bracket, and the action reads x · y = [x, y] for all x, y ∈ g.

Definition 1.4 The universal enveloping algebra Ug of g is the following associative algebra:

Ug := Tg / (x⊗ y − y ⊗ x− [x, y], ∀x, y ∈ g).

In other words, Ug is the quotient of the tensor algebra Tg on g by the ideal generated by the elements
x⊗ y − y ⊗ x− [x, y] for all x, y ∈ g.
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The Lie algebra g may be regarded as included in Ug, because no identifications take place on g.
Recall that each associative algebra may be regarded as a Lie algebra with the bracket obtained by

antisymmetrizing the product. Then the universal property of Ug reads as follows:

Proposition 1.5 Given an associative algebra A and a Lie algebra morphism ϕ : g → A into the
underlying Lie algebra of A, there is a unique morphism of associative algebras Φ : Ug → A such that
Φ|g = ϕ.

(This may be formulated as saying that the functor U is a left adjoint to the functor sending an
associative algebra to its underlying Lie algebra.)

2 Lie algebra cohomology

Let g be a Lie algebra and M be a g-module. Define the space of p-cochains on g with values/coefficients
in M to be

Cp(g,M) := Homk(Λpg,M),

the space of p-linear alternating maps from g to M , where for p = 0 we set C0(g,M) = M .
Let c ∈ Cp(g,M). Define dc ∈ Cp+1(g,M) by

dc(x1, . . . , xp+1) =
∑

1≤i<j≤p+1

(−1)i+jc([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xp+1) +

+

p+1∑

i=1

(−1)i+1xi · c(x1, . . . , x̂i, . . . , xp+1)

The thus constructed cochain complex (C∗(g,M), d) is called the Chevalley-Eilenberg complex. It
computes the Lie algebra cohomology.

Denote as usual by
Zp(g,M) := {c ∈ Cp(g,M) | dc = 0}

the space of p-cocycles, and by

Bp(g,M) := {c ∈ Cp(g,M) | ∃c′ ∈ Cp−1(g,M) : c = dc′ }

the space of p-coboundaries. Then we define the pth cohomology space of g with values/coefficients in M
as the quotient vector space

Hp(g,M) := Zp(g,M) /Bp(g,M).

Remark 2.1 For infinite dimensional Lie algebras, the cochain spaces are very big and the cohomology
is usually infinite dimensional, and thus meaningless. This can be remedied for topological Lie algebra
(such as, for example, Lie algebras of vector fields) and topological g-modules by taking into account
the topology: taking the topological tensor product (usually the π-tensor product) and restricting to
continuous linear maps. This leads then to continuous cohomology, also called Gelfand-Fuchs cohomology,
for which the interested reader is invited to consult [Fu86].
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2.1 Motivation of Lie algebra cohomology by de Rham cohomology

Let G be a connected Lie group with Lie algebra g (and suppose for the moment M trivial, i.e. M = R

with the trivial action.) Let ω ∈ Ωp(G) be a differential p-form on G. Then the Cartan formula for the
exterior differential reads

dω(X1, . . . , Xp+1) =
∑

1≤i<j≤p+1

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1) +

+

p+1∑

i=1

(−1)i+1Xi · ω(X1, . . . , X̂i, . . . , Xp+1)

Here Xi are vector fields on G, and the bracket is the bracket of vector fields, while the action Xi ·
ω(X1, . . . , X̂i, . . . , Xp+1) denotes the Lie derivative. This formula for the exterior differential was the
starting point of Lie algebra cohomology.

In order to catch the exact relation of Lie algebra cochains to differential forms, introduce the following.
Here M denotes a g-module which also admits a smooth group action of G which differentiates to the
given g-module structure.

Definition 2.2 A p-form ω ∈ Ωp(G,M) (differential forms with values in the vector space M) is called
equivariant if for all g ∈ G,

λ∗gω = ρ(g) ◦ ω.

Here λg is left translation on the group G and ρ : G ×M → M is the smooth group action of G on M .
Denote the subspace of equivariant forms by Ωp(G,M)eq ⊂ Ωp(G,M).

Proposition 2.3 (Lemma B.5 in [Ne04]) The evaluation at 1 ∈ G

ev1 : Ωp(G,M)eq → Cp(g,M)

defines an isomorphism of the (de Rham) complex of equivariant M -valued differential forms on G to the
complex of M -valued Lie algebra cochains.

main idea of the proof: recall that g may be seen as the left-invariant vector fields on G. Exactly in
the same way as a left-invariant field is determined by its value at 1 ∈ G, an equivariant form has the
same property. �

Corollary 2.4 (Cartan’s Theorem) Let G be a connected compact Lie group. Then

H∗
dR(G) ∼= H∗(g,R) ∼= InvGΛp(g∗).

main idea of the proof: in addition to the Proposition, one uses that on a compact group, integration
over the group renders differential forms invariant. Observe that equivariance means here invariance,
because the module is trivial. �

A full proof of Cartan’s theorem may be found in Ch. V.12 in [Bre93] and in Section 2.3.5 in [GuRo07].
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2.2 Derived functor approach to cohomology

Lie algebra cohomology is the derived functor of the functor of invariants

M 7→Mg := {m ∈M | ∀x ∈ g : x ·m = 0},

and can thus be described as an Ext-functor:

H∗(g,M) = Ext∗Ug
(k,M).

This follows from the fact that Mg = HomUg(k,M) and that the Koszul complex is a resolution of
the trivial g-module k. More precisely:

Proposition 2.5 The augmentation map Ug → k induces a quasiisomorphism Λ∗g ⊗ Ug → k. This
exhibits the Koszul complex

Λpg ⊗ Ug → Λp−1g ⊗ Ug , x1 ∧ . . . ∧ xp ⊗ u 7→

p∑

i=1

(−1)ix1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp ⊗ xiu+

+
∑

1≤i<j≤p

(−1)i+j+1[xi, xj ] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j . . . ∧ xp ⊗ u

as a projective resolution of the trivial g-module k.

Now compute the derived functor: apply the functor HomUg(−,M) to the resolution Ug⊗ Λ∗g → k.
Simplifying

HomUg(Ug ⊗ Λ∗g,M) ∼= Homk(Λ∗g,M),

one obtains the above Chevalley-Eilenberg complex for Lie algebra cohomology.

Remark 2.6 Note that Ext∗Ug(k,M) is in general not the Hochschild cohomology of the associative
algebra Ug. By definition, for a Ug-bimodule M , this is Ext∗Ug⊗(Ug)opp (k,M). The link to Lie algebra
cohomology is then

H∗(g,Mad) ∼= Ext∗Ug⊗(Ug)opp(k,M),

where for a Ug-bimodule M , Mad denotes the g-module M with the action x ·m = xm−mx for all x ∈ g

and all m ∈M .

For more informations about this abstract side of cohomology, we invite the reader to consult the
standard references [CaEi56], [Lo98], [We94].

3 Low degree cohomology spaces

We have seen a geometric motivation for the definition of Lie algebra cohomology. An algebraic motivation
is the interpretation of the low degree cohomology spaces in terms of algebraic properties of the Lie
algebra, which makes the cohomology spaces interesting invariants to compute.

These and more interpretations may be found in [Fu86] (without H3).
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3.1 Degree 0

H0(g,M) = Z0(g,M) = {m ∈M | dc = 0} = {m ∈M | ∀x ∈ g : x ·m = 0} = Mg.

Example: so(3,R) acts on R3 as infinitesimal rotations. It is easy to see (writing down elements of
so(3,R) as antisymmetric 3 × 3 matrices) that (R3)so(3,R) = {0}. This is compatible with our intuition,
as the only invariant vector under rotations is the origin.

3.2 Degree 1

H1(g,M) = Z1(g,M) /B1(g,M) = Der(g,M) /PDer(g,M),

with
Der(g,M) := {f ∈ Homk(g,M) | ∀x, y ∈ g : f([x, y]) = x · f(y) − y · f(x)},

and
PDer(g,M) := {f ∈ Homk(g,M) | ∃m ∈M : ∀x ∈ g : f(x) = x ·m}.

One of the most important cases is here M = g with the adjoint action, where

Der(g, g) = Der(g) = {D ∈ Homk(g, g) | ∀x, y ∈ g : D([x, y]) = [D(x), y] + [x,D(y)]}

is the Lie algebra of (all) derivations of g, and where PDer(g, g) is the ideal of inner derivations, i.e.
PDer(g, g) = adg. The quotient space is then

H1(g, g) = Out(g),

the Lie algebra of outer derivations of g.
Another very important case is M = k with the trivial action. Here

H1(g, k) = {f ∈ Homk(g, k) | ∀x, y ∈ g : f([x, y]) = 0} / {0} = (g / [g, g])∗ .

Example: consider sl(2,C) = 〈e, f, h〉 with the standard generators

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

The bracket relations are well known: [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . This shows easily that
H1(sl(2,C), sl(2,C)) = {0}, i.e. all derivations are inner, and that H1(sl(2,C), k) = {0}. Actually, we
shall state later a theorem which implies that H1 of sl(2,C) with values in any finite dimensional module
is trivial.

3.3 Degree 2

Definition 3.1 A short exact sequence of Lie algebras 0 → M
i
→ e

π
→ g → 0 is called an abelian

extension of g by M in case i(M) is abelian. Two such abelian extensions e and e′ of g by M are called
equivalent in case the following diagram is commutative:
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0 // M

idM

��

i
// e

ϕ

��

π
// g

idg

��

// 0

0 // M
i′

// e′
π′

// g // 0

In this case, ϕ is necessarily an isomorphism. Denote by Ext(g,M) the set (actually an abelian group)
of equivalence classes of abelian extensions of g by M .

Theorem 3.2
H2(g,M) ∼= Ext(g,M).

sketch of proof: in one direction, associate to a given 2-cocycle c the extension ec := M ⊕ g (as vector
spaces) with the bracket

[(a, x), (b, y)] = (x · b − y · a+ c(x, y), [x, y]).

In the other direction, choose a linear section s : g → e of π. The default of s being a Lie algebra
morphism gives a cocycle:

c(x, y) := s([x, y]) − [s(x), s(y)],

for all x, y ∈ g. As ker(π) = im(i), c takes its values in i(M) ∼= M . �

A full proof of this theorem together with the same theorem for Lie groups and the relations between
the two may be found in [Ne04].

In each abelian extension e of g by M , the bracket on e induces an action of g on M by lifting elements
of g to e and bracketing them with elements of i(M). (If the g-module M is given, we require that this
action coincides with the given one.)

Definition 3.3 An abelian extension where the action of g on M is trivial is called a central extension.
Indeed, in this case i(M) is central in e.

The most important reason why central extensions are important to physics, is contained in the next
corollary. Recall that a projective representation of a group G on a vector space V is a map ρ : G→ Gl(V )
such that

ρ(x)ρ(y) = c(x, y)ρ(xy).

Actually, this is the same as a group homomorphism G→ PGl(V ).

Theorem 3.4 (a) The map c : G×G→ k∗ which is associated to a projective representation ρ : G→
Gl(V ) is a group cocycle.

(b) The two cocycles c and c′ which are associated to different lifts G → Gl(V ) of the same projective
representation G→ PGl(V ) are cohomologuous.

(c) If the cocycle c is a coboundary, the projective representation is equivalent to a linear representation.

Corollary 3.5 Each projective representation of G corresponds to a central extension Ĝ of G and a
linear representation of Ĝ.

An analoguous theorem holds true for Lie algebras and central extensions of Lie algebras. This
material together with full proofs may be found in Section 2.6.2 of [GuRo07].
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Remark 3.6 Projective representations abound in quantum physics due to the correspondence between
physical states and wave functions: two wave functions ψ1 and ψ2 represent the same physical state
in case ψ1 = λψ2 for some λ 6= 0. In the same vein, a typical example of a central extension is the
Heisenberg algebra, i.e. the 3-dimensional Lie algebra generated by x, y and z with the (only non-trivial)
bracket [x, y] = z. It is therefore a 1-dimensional central extension of the abelian 2-dimensional Lie
algebra in x and y.

3.4 On the central extension of Vect(S1)

The Lie algebra Vect(S1) possesses a (unique, up to equivalence) 1-dimensional central extension, called
the Virasoro algebra. This may be seen by direct computations (taking into account that we are here
computing Gelfand-Fuchs cohomology and that we only need the degree 0 subcomplex (due to Theorem
(4.3), i.e. the relevant cochain space is just

∞⊕

p=0

Cǫp ∧ ǫ−p,

where ǫi denotes the generator which is dual to ei. See the computation in Section 4.2.4 of [GuRo07].)
The standard Virasoro cocycle reads:

c(en, em) =
1

12
(n3 − n)δn+m,0

The term n3δn+m,0 is the important part, while nδn+m,0 is actually a coboundary and the factor 1
12 is a

normalization factor.
Another cocycle generating (a non-zero multiple of) the same cohomology class is the Gelfand-Fuchs

cocycle which reads as

ω(f, g) =

∫

S1

∣∣∣∣
f ′ g′

f ′′ g′′

∣∣∣∣ .

This expression of the cocycle comes up in Gelfand-Fuchs’ computation of the continuous cohomology
of Vect(S1). It takes into account the knowledge of the cohomology of the Lie algebra of formal vector
fields on R, together with the Gelfand-Fuchs spectral sequences. All this is explained in [Fu86].

Actually, the Gelfand-Fuchs cocycle is the fiber integral over the Godbillon-Vey cocycle, but this is
different story (see for example [Wa06]).

We will take here a different point of view: using the above corollary, the Virasoro algebra appears
naturally when one tries to define a representation of Vect(S1) on the standard fermionic Fock space.
This is the point of view of the central extension of Vect(S1) as an anomaly which comes up in second
quantization.

Let E be a graded vector space, E = 〈fi | i ∈ Z〉. Define the space of semi-infinite forms Λ
∞

2 E to be

Λ
∞

2 E := {fi0 ∧ fi1 ∧ fi2 ∧ . . . | (in) decreasing, ∃N : in+1 = in − 1 ∀n ≥ N }.

Other names of this space are fermionic Fock space or Dirac’s sea/ocean. A semi-infinite form v ∈ Λ
∞

2 E
has charge m in case there exists N such that for all n ≥ N , in = m − n. Define the energy of a v of
charge m to be

En(v) =
∞∑

n=0

in + n−m.
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Note that this is a finite sum. For an arbitrary v, the notion of energy extends by linearity, because each
v is sum of elements of fixed charge.

The name “Dirac’s ocean” is justified by Dirac’s formula for the energy: let v be of charge 0. Then
we have

En(v) =
∑

in>0

in −
∑

jk≤0, jk 6=in∀n

jk.

Read this formula as stating that the energy of v is given as the sum over all positive indices/modes
minus all negative indices/modes which do not appear. This illustrates the idea that the absence of a
mode is a mode of negative energy.

Coming back to Vect(S1), we choose E = Vect(S1), denoting its elements still fj . We want to extend
the adjoint action of Vect(S1) on E (i.e. ei ·fj = (j−i)fi+j) to the space of semi-infinite forms Λ

∞

2 E. This
works rather nicely for indices not involving 0; one simply extends by derivation (like the Lie derivative).
Then one gets

ei · (ej · v) − ej · (ei · v) = [ei, ej] · v,

but only if i 6= 0, j 6= 0 and i+ j 6= 0. Trying to extend this to e0 using [e−1, e1] = 2e0 and [e−2, e2] = 4e0
leads to different results. The upshot of this discussion is that the adjoint representation of Vect(S1) on
itself extends to a projective representation and that the corresponding central extension of Vect(S1) is
the Virasoro algebra. Details for this computation may be found in [GuRo07] §7.3, p. 495 (take µ = 0
and λ = −1 for adjoint coefficients).

This result is due to Feigin [Fe84] and is crucial in the later treatment of BRST cohomology.

3.5 Degree 3

For degree 3, the picture is very similar to degree 2 (and permits a glimpse on the interpretation of arbi-
trary degree cohomology spaces). Here, H3(g,M) is isomorphic to the set/abelian group of equivalence
classes of crossed modules with cokernel g and kernel M .

Definition 3.7 A crossed module of Lie algebras is a homomorphism of Lie algebras µ : m → n together
with an action of n on m by derivations, denoted by m 7→ n ·m, such that for all m,m′ ∈ m and all n ∈ n

(a) µ(n ·m) = [n, µ(m)]

(b) µ(m) ·m′ = [m,m′].

The requirements (a) and (b) imply that the cokernel of µ, denoted g, is a Lie algebra, that the kernel
of µ, denoted M , is a central ideal, and that g acts on M . Therefore a crossed module corresponds to a
4-term exact sequence of Lie algebras

0 →M → m → n → g → 0,

and one may associate to this a 3-cocycle by iterating the procedure of Section 3.3.
References for the degree 3 case are [Ne06] and [Wa06]. For physicists, it might be interesting to note

that degree 3 cohomology is linked to Lie 2-algebras and to the string group, see for example [Sc10].
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4 Main computational methods

In order to compute cohomology spaces, it may help to know how these space decompose in case g

decomposes, or M decomposes.

Proposition 4.1 (coefficient sequence: M decomposes) Let

0 →M ′ →M →M ′′ → 0

be a short exact sequence of g-modules. Then there is a long exact sequence in cohomology

. . .→ Hi(g,M ′′) → Hi+1(g,M ′) → Hi+1(g,M) → Hi+1(g,M ′′) → . . . .

sketch of proof: this is the long exact sequence which holds for all Ext-functors, see for example
[CaEi56], [We94]. In our case, one may show that the short exact coefficient sequence induces a short
exact sequence of complexes

0 → C∗(g,M ′) → C∗(g,M) → C∗(g,M ′′) → 0,

and then apply the usual construction of the connecting homomorphism. �

Theorem 4.2 (Hochschild-Serre spectral sequence: g decomposes) Let

0 → h → g → q → 0

be a short exact sequence of Lie algebras and M be a g-module. There exists a spectral sequence

{Ep,q
r , dp,q

r : Ep,q
r → Ep+r,q−r+1

r }

such that

(i) Ep,q
1 = Hq(h, Cq(q,M)),

(ii) Ep,q
2 = Hp(q, Hq(h,M)),

(iii) {Ep,q
r } ⇒ H∗(g,M).

This theorem admits intermediate results for subalgebras which are not ideals. It has been used
by Hochschild and Serre to compute cohomology using a reductive subalgebra. The original reference
is [HoSe52], but see also [Fu86]. For explanations about spectral sequences, the interested reader may
consult [We94].

Theorem 4.3 (inner gradings: g decomposes) Suppose g possesses a grading element e0, i.e.

g =
⊕

i∈Z

gi, gl = {x ∈ g | [e0, x] = lx}.

Then all cochain spaces are graded and the inclusion C∗
0 (g) ⊂ C∗(g) induces an isomorphism in cohomol-

ogy.

sketch of proof: for an inner grading, one has formulae like in Cartan calculus:

ie0
◦ d+ d ◦ ie0

= l id

holds on the subcomplex C∗
l (g) of cochains of degree l. Therefore one may construct a contracting chain

homotopy for all subcomplexes with l 6= 0. �

The theorem admits generalizations to more grading elements and to non-trivial modules. For this
and a full proof, consult [Fu86] (theorem 1.5.2).
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5 Some results for finite dimensional Lie algebras

5.1 g complex semi-simple

Proposition 5.1 (Whitehead’s Lemmas) Let g be complex semi-simple, and M be a finite-dimensional
g-module. Then

H1(g,M) = {0}, and H2(g,M) = {0}.

The proof of this proposition may be found in Section 3.12 of [Va84].

Proposition 5.2 Let g be complex semi-simple. Then

H3(g,M) ∼= C
l,

where l is the number of simple factors contained in g. For each simple factor with Killing form 〈, 〉, the
3-cocycle 〈[, ], 〉 generates the corresponding factor in Cl.

Theorem 5.3 Let g be complex semi-simple. Then H∗(g,C) is an exterior algebra in odd generators.

sketch of proof: let Gc be a compact form of a connected Lie group G corresponding to g. Then we
have by Cartan’s Theorem

H∗(g,C) ∼= H∗
dR(Gc,C).

The latter is known to be a graded Hopf algebra, and by the Milnor-Moore Theorem, it would be infinite
dimensional, if it contained even generators. �

For a full proof, see, for example, Example 3, II.12, p. 143 in [FHT01].

Theorem 5.4 Let g be complex semi-simple (or even reductive). Let M be a finite dimensional, semi-
simple g-module such that Mg = {0}. Then

Hn(g,M) = {0} ∀n ≥ 0.

For a proof, see [HoSe52].

5.2 g nilpotent

Let g be a nilpotent Lie algebra of dimension n. Denote by bi(g) the integer dimHi(g, k).

Theorem 5.5 (Dixmier, 1955)

bi(g) ≥ 2, ∀ 1 ≤ i ≤ n− 1.

This is only one of the first bounds on the cohomology of nilpotent Lie algebras. It shows that where
simple Lie algebras have “few” cohomology, nilpotent Lie algebras have “huge” cohomology. One moti-
vation for finding more and more precise bounds for the cohomology of nilpotent Lie algebras is the

Toral rank conjecture (Halperin) ∑
bi(g) ≥ 2d,

where d is the dimension of the center of g.
For more information about this branch of mathematics, we refer to [DeSi88].
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5.3 Another famous result

Theorem 5.6 (Kostant) Let g be a semi-simple Lie algebra with root decomposition g = n+ ⊕ h ⊕ n−.
Let V be an irreducible, finite-dimensional, highest weight g-module of highest weight λ.

Then Hk(n+, V ) splits (as a g-module) into the direct sum of 1-dimensional modules of multiplicity
one. The corresponding weights are exactly all elements of the form w(λ + δ) − δ, where w is any Weyl
group element of length k (and δ denotes the half sum of the positive roots).

For a proof and applications, see [Ko61]. Actually, this theorem permits an algebraic proof of the
Borel-Weil-Bott theorem which realizes representations of semi-simple Lie groups as spaces of sections of
bundles over complex manifolds. This line of thoughts still inspires many authors and has been generalized
to infinite dimensional Lie algebras, see for example [Ku02] or [Ne01].

6 BRST cohomology

BRST = quantization procedure of a classical system with constraints by introducing odd variables
(“ghosts”)

Standard references are [Fe84], [FGZ86] and [KoSt87]. Here we followed very closely [KoSt87]. For
some more recent development in this direction, see [Se99].

6.1 Review of symplectic reduction

Let X be a symplectic manifold. Let G act on X such that there is a moment map ϕ : X → g∗. The
map ϕ gives rise to a map δ : g → Fun(X) setting

δ(ξ)(x) := ϕ(x)(ξ)

for all ξ ∈ g and all x ∈ X .
The Marsden-Weinstein (symplectic) reduction proceeds then as follows: first take the inverse image

under the moment map of a regular value, then divide out the group action.

C := ϕ−1(0), B := C /G,

provided 0 is a regular value.

6.2 Reformulation in cohomological terms

Suppose that C is a submanifold (for example, if 0 is a regular value) and suppose further that C
corresponds to an ideal I in Fun(X) via

Fun(C) = Fun(X) / I.

By definition of C, for all ξ ∈ g, δ(ξ) vanishes on C, and therefore δ(ξ) ∈ I. Suppose I is generated by
these elements, i.e.

I = Fun(X)δ(g).

Then we obtain
Fun(C) = Fun(X) / δ(g)Fun(X),
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i.e. Fun(C) is the space of coinvariants under g, acting via δ.
Next B = C /G, and we therefore get

Fun(B) = Fun(C)G,

i.e. Fun(B) is the space of invariants under the G-action.
Now consider Λg ⊗ Fun(X). This is a superalgebra (as tensor product of a superalgebras and an

ordinary algebra). Define a superderivation δ (extending the above map δ) on it by
{

δ(ξ ⊗ 1) = 1 ⊗ δ(ξ)
δ(1 ⊗ f) = 0

This defines in fact the Koszul differential on Λg ⊗ Fun(X), and we obtain the Koszul complex. By
construction, we have

H0
δ (Λg ⊗ Fun(X)) = Fun(X) / δ(g)Fun(X).

Adding the Lie algebra cohomology, we obtain

Λpg∗ ⊗ Λqg ⊗ Fun(X)
δ

//

d

��

Λpg∗ ⊗ Λq+1g ⊗ Fun(X)

Λp+1g∗ ⊗ Λqg ⊗ Fun(X)

We have δ2 = 0, d2 = 0, δ ◦ d = d ◦ δ, and therefore a double complex. The total differential

D = d+ (−1)p2δ

is called the (classical) BRST differential.
The above superalgebra also carries a super Poisson bracket - it comes from identifying it with the

associated graded algebra of a filtered Clifford algebra. (Details can be found in [KoSt87] p. 65.) This
is also the meaning of fermionic quantization here ! Actually, D can be expressed as the super Poisson
bracket with some element Θ:

D = {Θ,−}.

The element Θ arises as follows. Define the 3-form Ω by

Ω(x, y, z) := −
1

2
(x, [y, z]).

This can be defined for any quadratic Lie algebra a, (, ) denoting the quadratic form. We have seen in
5.1 that for a semi-simple Lie algebra a and (, ) its Killing form, these elements give generators of H3.

In our context, we will later take a = g ⋉ g∗. Disposing of a non-degenerate quadratic form, one can
identify chains and cochains on a, and any element gives a 1-cochain. Now one easily verifies

dx(y, z) = (2ixΩ)(y, z)

for all x, y, z ∈ a, therefore in our context the Lie algebra differential d may be identifies with the Poisson
bracket by Ω:

d = {Ω,−}

The element Θ is therefore simply
Θ = Ω ⊗ 1 + δ.
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6.3 BRST quantization

Suppose the quantization of Fun(X) as operators on some graded vector space T is known. The BRST
procedure prescribes how to extend this to Λ(g ⊕ g∗) ⊗ Fun(X) such that Λ(g ⊕ g∗) is quantized as the
Clifford algebra for the quadratic vector space

a := g ⋉ g∗

and such that the above element Θ becomes quantized to an operator Q : Tk → Tk+1 with Q2 = 0.
More precisely, instead of T, one takes the tensor product of T with the either a standard Clifford

module (for finite dimensional g) or the fermionic Fock space of Section 3.4 (for infinite dimensional g).
Both the quantization of Fun(X) and the Clifford algebra of g ⊕ g∗ then acts on their respective tensor
factor.

In terms of the filtration on the Clifford algebra C(a), the element Q ∈ C3
1 (a) is chosen such that

gr3Q = 1
2Ω, i.e. their classes modulo C1

1 (a) coincide. (Here the upper index is the length filtration
(induced from the graduation of the tensor algebra), the lower index is the Z2-graduation (induced from
the Z2-graduation of the tensor algebra).) This is the part corresponding to Ω. The quantum analogue
of δ is called τ . As before, we put

Q := Q⊗ id +τ.

The BRST space, i.e. the space of true physical states, is then just H0
Q(T), and the elements of Fun(B)

act by construction on it as operators. This works well for a finite dimensional Lie algebra (content of
Sections 2 to 6 in [KoSt87]).

For an infinite dimensional Lie algebra g, the identity Q2 = 0 may fail to be true. This is due to an
anomaly arising in quantization – the mechanism was explained in a nutshell in Section 3.4. Kostant
and Sternberg introduce the necessary machinery to tackle the infinite dimensional case, to express the
anomaly/cocycle, and find a way around Q2 6= 0. Namely, adding the negative of the class of the central
extension to the differential, the anomaly vanishes (see p. 88 of loc. cit.).

References

[Bre93] G. Bredon, Topology and geometry. Graduate Texts in Mathematics, 139. Springer-Verlag, New
York, 1993

[CaEi56] H. Cartan, S. Eilenberg, Homological Algebra. Princeton University Press 1956

[DeSi88] C. Deninger, W. Singhof, On the cohomology of nilpotent Lie algebras. Bull. Soc. Math. France
116 (1988), no. 1, 3–14
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matics 204 Birkhäuser Boston, Inc., Boston, MA, 2002

[Lo98] J.-L. Loday, Cyclic homology. Grundlehren der Mathematischen Wissenschaften 301 Springer-
Verlag, Berlin, 1998

[Ne01] K.-H. Neeb, Borel-Weil theory for loop groups. Infinite dimensional Khler manifolds (Oberwolfach,
1995), 179–229

[Ne04] K.-H. Neeb, Abelian extensions of infinite-dimensional Lie groups. Travaux mathématiques. Fasc.
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