Publications

Publications

  • C. Berthon, M. Bessemoulin-Chatard, A. Crestetto, F. Foucher
    A Riemann solution approximation based on the zero diffusion-dispersion limit of Dafermos reformulation type problem
    Calcolo, 56, 2019 [hal]
  • M. Bessemoulin-Chatard, C. Chainais-Hillairet
    Uniform-in-time bounds for approximate solutions of the drift-diffusion system
    Numer. Math., 141, pp. 881-916, 2019 [hal]
  • M. Bessemoulin-Chatard, M. Herda, T. Rey
    Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations
    Math. of Comp., 89, pp. 1093-1133, 2020 [hal]
  • S. Bulteau, C. Berthon, M. Bessemoulin-Chatard
    Convergence rate of an asymptotic preserving scheme for the diffusive limit of the $p$-system with damping
    CMS, 17, pp. 1459-1486, 2019 [hal]
  • C. Cancès, C. Chainais-Hillairet, J. Fuhrmann, B. Gaudeul
    A numerical analysis focused comparison of several Finite Volume schemes for an Unipolar Degenerated Drift-Diffusion Model
    To appear in IMA J. Numer. Anal., 2020 [hal]
  • C. Cancès, C. Chainais-Hillairet, A. Gerstenmayer, A. Jüngel
    Finite volume scheme for a degenerate cross-diffusion model motivated from ion transport
    Num. Methods for PDE, pp. 1-31, 2018 [hal]
  • C. Cancès, C. Chainais-Hillairet, M. Herda, S. Krell
    Large time behavior of nonlinear finite volume schemes for convection-diffusion equations
    To appear in SIAM J. Numer. Anal., 2020 [hal]
  • C. Cancès, C. Chainais-Hillairet, S. Krell
    Numerical analysis of a nonlinear free-energy diminishing discrete duality finite volume scheme for convection diffusion equations
    CMAM, vol. 18, n°3, pp. 407-432, 2018 [hal]
  • S. Carpy, H. Mathis
    Modelling binary alloy solidification by a random projection method
    NMPDE, 35, 2018 [hal]
  • C. Chainais-Hillairet, M. Herda
    Large-time behavior of a family of finite volume schemesfor boundary-driven convection-diffusion equations
    To appear in IMAJNA, 2019 [hal]
  • C. Chainais-Hillairet, B. Merlet, A. Zurek
    Convergence of a finite volume scheme for a parabolic system with a free boundary modeling concrete carbonation
    ESAIM: M2AN, vol. 52, n°2, 2018 [hal]
  • A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou
    Asymptotically complexity diminishing schemes (ACDS) for kinetic equations in the diffusive scaling
    Journal of Computational Physics, 394, pp. 243-262, 2019 [hal]
  • A. Crestetto, N. Crouseilles, M. Lemou
    A particle micro-macro decomposition based numerical scheme for collisional kinetic equations in the diffusion scaling
    Communications in Mathematical Sciences, 16, pp. 897-911, 2018 [hal]
  • A. Crestetto, C. Klingenberg, M. Pirner
    Kinetic/Fluid micro-macro numerical scheme for a two component plasma
    To appear in Multiscale Modeling and Simulation, 2020 [hal]
  • G. Dimarco, R. Loubère, J. Narski, T. Rey
    An efficient numerical method for solving the Boltzmann equation in multidimensions
    Journal of Computational Physics, 353, pp. 46-81, 2018 [hal]
  • J.-M. Hérard et H. Mathis
    A three-phase flow model with two miscible phases
    To appear in M2AN [hal]
  • H. Mathis
    A thermodynamically consistent model of a liquid-vapor fluid with a gas
    ESAIM: M2AN, 53, pp. 63-84, 2019 [hal]
  • W. Melis, T. Rey, G. Samaey
    Projective and telescopic projective integration for the nonlinear BGK and Boltzmann equations
    SMAI J. Comput. Math., 5, pp. 53-88, 2019 [hal]
  • M. A. H. Oulhaj, C. Cancès, C. Chainais-Hillairet, P. Laurençot
    Large time behavior of a two phase extension of the porous medium equation
    Interfaces Free Bound., 21, pp. 199-229, 2019 [hal]
  • E. H. Quenjel, M. Saad, M. Ghilani et M. Bessemoulin-Chatard
    Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations
    Calcolo, 57, 2020 [hal]

Communications (with proceedings)

  • H. Mathis
    A thermodynamically consistent model of a liquid-vapor fluid with a gas
    Compressible Multiphase Flows : derivation, closure laws and thermodynamics , Strasbourg, May 2018
  • T. Rey
    Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations
    Innovative Trends in the Numerical Analysis and Simulation of Kinetic Equations, Oberwolfach, Germany, December 2018 [pdf]
  • M. Bessemoulin-Chatard, C. Chainais-Hillairet, H. Mathis
    Numerical schemes for semiconductors energy-transport models
    Finite Volumes for Complex Applications IX, Bergen, June 2020 [hal]
  • C. Chainais-Hillairet, M. Herda
    L ∞ Bounds for Numerical Solutions of Noncoercive Convection-Diffusion Equations
    Finite Volumes for Complex Applications IX, Bergen, June 2020 [hal]
  • A. El Keurti, T. Rey
    Finite Volume Method for a System of Continuity Equations Driven by Nonlocal Interactions
    Finite Volumes for Complex Applications IX, Bergen, June 2020 [hal]
  • G. Lissoni
    DDFV schemes for semiconductors energy-transport models
    Algoritmy 2020, Vysoke Tatry, Podbanske, September 2020 [hal]

Communications (without proceedings)

  • A. Crestetto
    Particle Micro-Macro schemes for collisional kinetic equations in the diffusive scaling
    Asymptotic Behavior of systems of PDE arising in physics and biology: theoretical and numerical points of view (ABPDE III), Lille, August 2018
  • A. Crestetto
    Particle Micro-Macro schemes for collisional kinetic equations in the diffusive scaling
    Numerical Methods for Multiscale PDEs, Cargèse, September 2018
  • M. Bessemoulin-Chatard
    Analysis of a finite volume scheme discretizing drift-diffusion systems
    AMaSiS 2018: Applied Mathematics and Simulation for Semiconductors, Berlin, October 2018
  • T. Rey
    Projective integration of collisional kinetic equations
    Trails in kinetic theory: foundational aspects and numerical methods, Bonn, May 2019
  • A. Crestetto
    Micro-macro discretizations for collisional kinetic equations of Boltzmann-BGK type in the diffusive scaling
    Qualitative behaviour of kinetic equations and related problems: numerical and theoretical aspects, Bonn, June 2019
  • M. Bessemoulin-Chatard
    Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations
    Qualitative behaviour of kinetic equations and related problems: numerical and theoretical aspects, Bonn, June 2019
  • H. Mathis
    A three-phase flow model with two miscible phases
    ICIAM 2019, Valence, July 2019
  • A. Crestetto
    Micro-macro discretizations for collisional kinetic equations of Boltzmann-BGK type in the diffusive scaling
    Workshop on Multiscale Methods for Deterministic and Stochastic Dynamics, Genève, January 2020