Singularites logarithmiques des fonctions de Green des puissances conformes du Laplacien

Title - HTML
Nom de l'orateur
Raphaël Ponge
Etablissement de l'orateur
Séoul National University
Date et heure de l'exposé
24-01-2014 - 10:15:00
Lieu de l'exposé
Salle des Séminaires
Résumé de l'exposé

Motivé par l'analyse du noyau de Bergman d'un domaine strictement pseudo-convexe, Charles Fefferman a lance vers la fin des années 70 le programme de déterminer tous les invariants biholomorphes locaux d'un domaine strictement pseudo-convexe. Ce programme a depuis évolue pour inclure d'autres géométries paraboliques telle que la géométrie conforme. Les fonctions de Green jouent un rôle important en géométrie conforme a l'interface des EDP et de la géométrie différentielle. Dans cet expose, je vais expliquer comment calculer explicitement les singularités logarithmiques des fonctions de Green des puissances conformes du Laplacien. Ces opérateurs inclus les opérateurs de Yamabe et Paneitz, et plus généralement les opérateurs GJMS de Graham et al, mais aussi les puissances fractionnaires obtenues a partir de la théorie du scattering pour les métriques asymptotiquement hyperboliques. Les résultats sont formules en termes d'invariant conformes définis a partir de la métrique ambiante de Fefferman-Graham. Comme application on obtient une caractérisation spectrale des classes conformes des sphères. Bien que les problèmes et les formules finales n'invoquent qu'analyse et géométrie, les calculs utilisent la théorie des représentations de façon essentielle.

comments