Résumé de l'exposé
Dans cet exposé, on verra comment généraliser les fonctions holomorphes d'une variable à plusieurs variables complexes. Utiliser de telles fonctions peut s'avérer utile dans la résolution d'équations aux dérivées partielles lorsque l'on recherche des solutions particulières analytiques. On abordera la résolution d'une catégorie particulière d'EDP holomorphes à l'aide d'un théorème de Cauchy-Kowalevskaya (version "complexe"). Enfin, l'échelle analytique peut également permettre de résoudre localement en temps des EDP non linéaires d'ordre un en temps et en espace, à l'aide d'un théorème de Cauchy-Kowalevskaya (version "réel").
comments