Résumé de l'exposé
L'existence des métriques hyperkälériennes avec torsion sur des variétés hypercomplexes de dimension 8
Résumé: Dans cet exposé, je vais introduire la notion de métriques hyperkälériennes avec torsion (HKT) sur des variétés hypercomplexes. Ces métriques présentent des propriétés analogues à celles des métriques kählériennes sur des variétés complexes. Le but de l'exposé est de montrer qu'une variété hypercomplexe compacte de dimension 8, avec l'holonomie de la connection d'Obata dans SL(2,H), admet une métrique HKT si et seulement si H^{0,1} est paire. Ceci est l'analagoue au résultat de Buchdahl et Lamari qui dit qu'une surface compacte complexe est kählérienne si et seulement si le premier nombre de betti est paire.
comments