Résumé de l'exposé
La notion de représentations Anosov s'est révélée ces dernières années comme un bon analogue de celle de représentations convexe-cocompactes pour les espaces symétrique de rang supérieur. Nous nous tâcherons dans un premier temps d'expliquer comment elles sont reliées à la géométrie projective. Notre exposé s'articulera ensuite autour de l'étude de différents invariants : exposants critiques, entropies, et dimension de Hausdorff dans le cas général des sous-groupes de SL(n,R) et dans celui plus spécifique des représentations de SO(p,q). Nous présenterons enfin deux résultats de rigidités pour ces invariants. Ces travaux sont en commun avec D. Monclair et D. Monclair -- N. Tholozan.
comments