Résumé de l'exposé
On considère le laplacien de Hodge-de Rham H sur les formes différentielles sur une variété riemannienne complète non compacte. L'objectif est de comprendre sous quelles conditions géométriques (portant sur la courbure de Ricci) le semi-groupe e^{-tH} agit sur tous les L^p et obtenir la meilleure majoration possible de sa norme. Pour ce faire, nous étudions quelques estimations du noyau de la chaleur correspondant à H. Ces questions sont liées à d'autres problèmes tels que la transformée de Riesz ou le gradient du noyau de la chaleur sur les fonctions. Dans cet exposé, nous ferons le point sur ces questions et présentons quelques résultats récents.
comments