Résumé de l'exposé
In this talk, we will first review some classical results on the so-called ’spectral inequalities’, which yield a sharp quantification of the unique continuation of the spectral family associated with the Laplace-Beltrami operator in a compact manifold. In a second part, we will discuss how to obtain the spectral inequalities associated to the Schrodinger operator -\Delta_x + V(x), in \mathbb{R}^d, in any dimension $d\geq 1$, where V=V(x) is a real analytic potential. In particular, we can handle some long-range potentials. This is a joint work with Prof G. Lebeau (Université de Nice-Côte d'Azur, France).
comments