Unsupervised Bayesian variable selection

Title - HTML
Nom de l'orateur
Pierre Latouche
Etablissement de l'orateur
MAP5, Université de Paris
Date et heure de l'exposé
19-01-2021 - 11:00:00
Lieu de l'exposé
Zoom (info de connection dans le résumé)
Résumé de l'exposé

We present a Bayesian model selection approach to estimate the intrinsic dimensionality of a high-dimensional dataset. To this end, we introduce a novel formulation of the probabilisitic principal component analysis model based on a normal-gamma prior distribution. In this context, we exhibit a closed-form expression of the marginal likelihood which allows to infer an optimal number of components. We also propose a heuristic based on the expected shape of the marginal likelihood curve in order to choose the hyperparameters. In non-asymptotic frameworks, we show on simulated data that this exact dimensionality selection approach is competitive with both Bayesian and frequentist state-of-the-art methods.

Mathieu Ribatet vous invite à une réunion Zoom planifiée.

Sujet : Séminaire Pierre Latouche Heure : 19 janv. 2021 11:00 AM Paris

Participer à la réunion Zoom https://ec-nantes.zoom.us/j/95248305469

ID de réunion : 952 4830 5469 Code secret : .Lq!HDh4

comments