Construction of higher dimensional ALF Calabi-Yau metrics

Title - HTML
Nom de l'orateur
Daheng MIN
Etablissement de l'orateur
Jussieu
Date et heure de l'exposé
27-10-2023 - 11:00:00
Lieu de l'exposé
salle de seminaires
Résumé de l'exposé

Roughly speaking, an ALF metric of real dimension 4n should be a metric such that its asymptotic cone is 4n - 1 dimensional, the volume growth of this metric is of order 4n - 1 and its sectional curvature tends to 0 at infinity. We will show that the Taub-NUT deformation of a hyperkahler cone with respect to a locally free circle action is ALF hyperkahler. Modelled on this metric at infinity, we can show the existence of ALF Calabi-Yau metric on certain crepant resolutions. In particular, there exist ALF Calabi-Yau metrics on canonical bundles of classical homogeneous Fano contact manifolds.

comments