We study the Pauli operator in a two-dimensional, connected domain with Neumann or Robin boundary condition. We prove a sharp lower bound on the number of negative eigenvalues reminiscent of the Aharonov-Casher formula. We apply this lower bound to obtain a new formula on the number of eigenvalues of the magnetic Neumann Laplacian in the semi-classical limit. Our approach relies on reduction to a boundary Dirac operator. We analyze this boundary operator in two different ways. The first approach uses Atiyah-Patodi-Singer index theory. The second approach relies on a conservation law for the Benjamin-Ono equation. This is a joint work with S. Fournais, R. L. Frank, M. Goffeng, M. Sundqvist.
Counting Negative Eigenvalues for the Magnetic Pauli Operator
Title - HTML
Counting Negative Eigenvalues for the Magnetic Pauli Operator
- Se connecter pour publier des commentaires
Nom de l'orateur
Ayman Kachmar
Etablissement de l'orateur
The Chinese University of Hong Kong, Shenzhen
Date et heure de l'exposé
12-06-2024 - 11:00:00
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé
comments