The Steklov spectral problem: asymptotic results and probabilistic applications

Title - HTML

TBA

Nom de l'orateur
Denis Grebenkov
Etablissement de l'orateur
Ecole Polytechnique, CNRS
Date et heure de l'exposé
12-06-2025 - 14:00:00
Lieu de l'exposé
Résumé de l'exposé

In this overview talk, I will present the encounter-based approach to diffusive processes in Euclidean
domains and highlight its fundamental relation to the Steklov spectral problem. So, the Steklov
eigenfunctions turn out to be particularly useful for representing heat kernels with Robin boundary
condition and describing diffusive dynamics with reaction events on the boundary. In the second
part of the talk, I will discuss the asymptotic behavior of the Steklov eigenvalues for the exterior
Steklov problem. Some open questions related to spectral, probabilistic and asymptotic aspects of
this problem will be outlined.

References:

[1] D. S. Grebenkov, Paradigm Shift in Diffusion-Mediated Surface Phenomena, Phys. Rev. Lett. 125, 078102 (2020).

[2] D. S. Grebenkov and A. Chaigneau, The Steklov problem for exterior domains: asymptotic behavior
and applications (accepted to J. Math. Phys.; preprint ArXiv 2407.09864v2)

comments