Résumé de l'exposé
We consider the intermediate nonlinear Schrödinger equation
$$
i \partial_t u – \partial_x^2 u = u (i + T_\delta) \partial_x |u|²
$$
on the real line, where $T_\delta$ is a nonlocal singular operator with symbol $-i \coth(\delta * \xi).$ Using a modified energy method, we establish global well-posedness in a Zhidkov-type space with a non-vanishing condition at infinity. This is joint work with Takafumi Akahori, Slim Ibrahim, and Nobu Kishimoto.
$$
i \partial_t u – \partial_x^2 u = u (i + T_\delta) \partial_x |u|²
$$
on the real line, where $T_\delta$ is a nonlocal singular operator with symbol $-i \coth(\delta * \xi).$ Using a modified energy method, we establish global well-posedness in a Zhidkov-type space with a non-vanishing condition at infinity. This is joint work with Takafumi Akahori, Slim Ibrahim, and Nobu Kishimoto.
comments