GWP of the intermediate nonlinear Schrodinger equation with nonvanishing boundary conditions at infinity

Title - HTML

GWP of the intermediate nonlinear Schrodinger equation with nonvanishing boundary conditions at infinity

Nom de l'orateur
Rana Badreddine
Etablissement de l'orateur
UCLA
Date et heure de l'exposé
08-12-2025 - 16:00:00
Lieu de l'exposé
salle Eole
Résumé de l'exposé
We consider the intermediate nonlinear Schrödinger equation
$$
i \partial_t u – \partial_x^2 u = u (i + T_\delta) \partial_x |u|²
$$
on the real line, where $T_\delta$ is a nonlocal singular operator with symbol $-i \coth(\delta * \xi).$ Using a modified energy method, we establish global well-posedness in a Zhidkov-type space with a non-vanishing condition at infinity. This is joint work with Takafumi Akahori, Slim Ibrahim, and Nobu Kishimoto.

comments