Un modèle jouet pour l'effet tunnel d'opérateurs pseudodifférentiels 1D

Title - HTML

Un modèle jouet pour l'effet tunnel d'opérateurs pseudodifférentiels 1D

Nom de l'orateur
Antide Duraffour
Etablissement de l'orateur
Institut Fourier (Grenoble)
Date et heure de l'exposé
01-12-2025 - 11:00:00
Lieu de l'exposé
Salle des séminaires
Résumé de l'exposé
Dans cet exposé on s'intéressera au spectre de l'opérateur pseudodifférentiel $P_h = (a(\xi) + hb(x,\xi))^w$ où :
i) $a \in S(1)$ est un symbole borné qui se comporte comme $\xi^2$ en $0$ son unique minimum,
ii) $b \in S(1)$ et $b(x,0)$ vérifie les hypothèses d'un double puit non dégénéré et symétrique.
Sous des hypothèses supplémentaires d'holomorphie et d'ellipticité, on trouve un équivalent de l'écart entre les deux plus faibles valeurs propres de cet opérateur. L'idée principale est d'adapter la preuve déjà existante dans le cas des opérateurs de Schrödinger électriques 1D. Les outils principaux sont l'analyse BKW, le théorème de la phase stationnaire et les estimées d'Agmon.

comments