In this talk I will introduce the Anderson-Gross-Pitaevskii equation, a nonlinear Schrödinger equation with both a spatial white noise potential and a smooth confining potential. Due to the spatial roughness of the white noise in dimension 2, a renormalization procedure is needed. I will briefly present this procedure which relies on a good integrability estimate on the kernel of an unbounded operator. Then, I will present a paracontroled approach to the confining Anderson operator in order to obtain Strichartz estimates. With Strichartz estimates at hand, I will present my local wellposedness result in two steps. First the low-regularity wellposedness through the usual fix point argument, and then unconditional local wellposedness in the energy space using propagation of regularity.
Local wellposedness of the 2d Anderson-Gross-Pitaevskii equation
Title - HTML
Local wellposedness of the 2d Anderson-Gross-Pitaevskii equation
- Se connecter pour publier des commentaires
Nom de l'orateur
Samaël Mackowiak
Etablissement de l'orateur
IECL
Date et heure de l'exposé
19-01-2026 - 11:00:00
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé
comments