Local controllability for a Schrödinger equation at the quadratic level

Title - HTML

Local controllability for a Schrödinger equation at the quadratic level

Nom de l'orateur
Thomas Perrin
Etablissement de l'orateur
ENS Rennes
Date et heure de l'exposé
28-01-2026 - 11:00:00
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé

In this talk, I will present a new result about small-time local controllability near the ground state for a bilinear Schrödinger equation with Neumann boundary conditions, for which the linearized system is not controllable. I will prove that a Lie bracket–type condition ensures that either the nonlinear system exhibits a quadratic obstruction or, remarkably, recovers controllability at the quadratic order. This is a joint work with Karine Beauchard and Frédéric Marbach.

comments