Au sujet de  $\Gamma_4=0$

Nom de l'orateur
François Laudenbach
Etablissement de l'orateur
LMJL
Date et heure de l'exposé
Lieu de l'exposé
Salle des séminaires

Ce titre est un peu sibyllin. Il désigne un théorème prouvé par Jean Cerf à la fin des années 60, énonçant que tout difféomorphisme de la sphère de dimension trois se prolonge en difféomorphisme de la 4-boule. Par conséquent, aucune potentielle 4-sphère exotique ne pourra être obtenue par un recollement, aussi "exotique" soit-il, de deux hémisphères.

Le vrai théorème de Cerf (1968) énonce que tout difféomorphisme de la 3-sphère préservant l'orientation est isotope à l'identité. $\Gamma_4=0$ en est une conséquence immédiate.

Dans son article de 1992 à la mémoire de Claude Godbillon et de Jean Martinet, Yakov Eliashberg avait donné une preuve directe de $\Gamma4=0$, sans passer par $\pi0({\rm Diff_+}S^3)=0$. Il utilisait les outils de l'époque des courbes pseudo-holomorphes en géométrie de contact.

Dans cet exposé de séminaire, je voudrais présenter une preuve du théorème de Cerf que j'ai récemment rédigée. Elle se réduit à un théorème d'isotopie de feuilletages de $S^2\times [0,1]$ tangents au bord. De façon assez surprenante, le cadre géométrique est assez facile à traiter. La clé consiste en une suite convenable de chirurgies de Dehn qui "tue" toutes les obstructions sans changer le problème initial d'isotopie.