Classification results for two-dimensional Lagrangian tori

Title - HTML
Nom de l'orateur
Georgios Dimitroglou Rizell
Etablissement de l'orateur
Cambridge University
Date et heure de l'exposé
01-04-2016 - 11:00:00
Lieu de l'exposé
Salle Eole
Résumé de l'exposé

Abstract: We present several classification results for Lagrangian tori, all proven using the splitting construction from symplectic field theory. Notably, we classify Lagrangian tori in the symplectic vector space up to Hamiltonian isotopy; they are either product tori or rescalings of the Chekanov torus. The proof uses the following results established in a recent joint work with E. Goodman and A. Ivrii. First, there is a unique torus up to Lagrangian isotopy inside the symplectic vector space, the projective plane, as well as the monotone S2 x S2. Second, the nearby Lagrangian conjecture holds for the cotangent bundle of the torus.

comments