Résumé de l'exposé
Soit u solution d’une équation de Klein-Gordon cubique, quasi-linéaire, en dimension 1 d’espace, avec données initiales régulières de taille petite. Il est connu que, sous certaines conditions sur la non-linéarité, la solution est globale en temps pour des données initiales à support compact. Nous montrons que ce résultat est aussi vrai quand les données ne sont pas à support compact mais seulement décroissantes à l’infini comme ⟨x⟩^{−1}, en combinant la méthode des champs de vecteurs de Klainerman avec une méthode de formes normales semi-classiques. De plus, nous obtenons un développement asymptotique à un terme pour u, prouvant ainsi un résultat de scattering modifié.
comments