We will review Sullivan's theory of minimal differential graded algebras, stating the main results in the context of an appropriate homotopy theory. We will then extend these results to the case of filtered algebras, and explain some applications to rational homotopy theory, and to (mixed) Hodge theory of algebraic varieties.
Le Programme des Modeles Minimaux (MMP) a pour but de determiner un "bon representant" de toute classe d'equivalence birationnelle. Soit X une variete projective lisse.